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Use Case

● Reboots are risky

→ Security updates are postponed
● Security patches often touch only few lines of 

code
● How about patching this code while it runs?
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Current Approaches

● require specially written software
● constrain mechanisms software can use
● can only update kernels / software that had 

this feature in mind to begin with
● are constrained to specific programming 

languages
● Need laborious adaptation work to make 

patches runtime applicable.
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How About Something New

● Binary diffs and patching of the changed code 
paths only!
– Does not require changes in to original binary

– Is not constrained on specific programing 
languages
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Challanges

● resolve symbols in replacement code

● find changes resulting from patch in replacement object 
code

● avoid obfuscation by compiler optimization

● avoid inter code jumps making function isolation difficult

● ensure safety of code replacement (avoid crashes)

→ avoid missing inlined code leading to an 
inconsistent binary
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pre-post differencing

● Compile both version 
(patched and unpatched)

● each function within its own 
data and function section in 
the binary

● compare sections to find 
changed functions

● but what about symbol 
resolution?
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run-pre matching

● Use kallsyms symbol table

● problem for ambiguous 
symbols

● need to know no-ops (used as 
function alignment padding, 
does not imply difference!)

● must know instructions with 
relative addressing so that 
different rel. addresses pointing 
to the same location are not 
identified as differences.
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Ksplice Components

● Ksplice core kernel module (preforms run-pre 
matching)

● pre/post object code generator in userspace
● helper module for loading pre-code (for 

comparison)
● primary module (loads new functions)
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Quiescent State

● Functions can only be replaced when:
–  they are on no threads kernel stack

–  no threads fp is in the function

● Retry on failure, give up after threshold
● stop_machine takes about 0.7 ms to execute
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Evaluation
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Conclusion

● Found a way to patch arbitrary software during 
runtime

● With few limitations

● independent of programing language

● Safe (checks performed, does abort if assumptions 
not met)

● Can even cope with changes to data structures

● Eliminates reboots for kernel security updates
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Discussion Points

● How about jumps into functions? How are they 
covered?

● How do they compare pre and run code?
● Evaluation: 0.7 ms for how many threads? 
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