Ksplice: Automatic Rebootless
Kernel Updates

Eurosys 2009 Paper

by
Jeff Arnold and M. Frans Kaashoek



* Reboots are risky

- Security updates are postponed

e Security patches often touch only few lines of
code

 How about patching this code while it runs?

09.01.2013 - Paper Reading Group -
kSplice: Automatic Rebootless Kernel Updates

20f12



* reqguire specia

ly written software

e constrain mec

nanisms software can use

e can only update kernels / software that had
this feature in mind to begin with

e are constraine
languages

d to specific programming

* Need laborious adaptation work to make
patches runtime applicable.

09.01.2013

- Paper Reading Group - 3 of 12

kSplice: Automatic Rebootless Kernel Updates



» Binary diffs and patching of the changed code
paths only!

- Does not require changes in to original binary

- Is not constrained on specific programing
anguages

09.01.2013 - Paper Reading Group - 4 of 12
kSplice: Automatic Rebootless Kernel Updates



* resolve symbols in replacement code

 find changes resulting from patch in replacement object
code

« avoid obfuscation by compiler optimization
e avoid inter code jumps making function isolation difficult
e ensure safety of code replacement (avoid crashes)

- avoid missing inlined code leading to an
Inconsistent binary

09.01.2013 - Paper Reading Group - 5o0f12
kSplice: Automatic Rebootless Kernel Updates



source kernel's
code patch

| urcecode ) 0 COMPIle both version
seing avins— (patched and unpatched)

patched
source

pinary dif e each function within its own

object files object files - . .
‘ data and function section in
f::c?onsl' . list of functionf_, . .lnp;iir:acttinn th e b I n ary

source

that that differ units that

differed differed

recods | ® COMpare sections to find

functions optimization

that differed u:;i,t-::t Changed fu nCtIOnS

generic
i Kemet | Ly
 but what about symbol
processed post primary =
object file (- module resolution?
09.01.2013 - Paper Reading Group - 6 of 12

kSplice: Automatic Rebootless Kernel Updates



relocation at 77s to

pre
object
files

extract

r
optimization| ¢

units that
differed

I
r

\ £

optimization
units that
differed

pre object code
metadata:

symbol "x" with
addend = -4

sample pre
object code:

kernel's
running code
("run code"):

J| sample_func:
.| 5152 e8
.| [7?7 72727 77]

6

at address
fO000000:

sample_func:
5152 e8

N

sample_func

comparison of
+ 7 run code and pre | -
object code

compute value
of symbaol "x" in

0011 11 00

®x =00111100 +
fO000003 - (-4)
= f0111107

determine what values

primary
module

to use for symbols

put update
to use

09.01.2013

)' (insert jump
instructions)

- Paper Reading Group -

e Use

Kallsyms symbol table

 problem for ambiguous
symbols

* need to know no-ops (used as
function alignment padding,
does not imply difference!)

e must know Instructions with
relative addressing so that
different rel. addresses pointing
to the same location are not
dentified as differences.

7 of 12

kSplice: Automatic Rebootless Kernel Updates



» Ksplice core kernel module (preforms run-pre
matching)

* pre/post object code generator in userspace

* helper module for loading pre-code (for
comparison)

* primary module (loads new functions)

09.01.2013 - Paper Reading Group -
kSplice: Automatic Rebootless Kernel Updates

8 of 12



* Functions can only be replaced when:

- they are on no threads kernel stack
- no threads fp Is in the function

* Retry on failure, give up after threshold
e stop_machine takes about 0.7 ms to execute

09.01.2013 - Paper Reading Group - 9of 12
kSplice: Automatic Rebootless Kernel Updates



Figure 3: Number of patches by patch length

LS]
Lhn
T

o
o

2
Ln

Number of patches
o w 55 & B

09.01.2013

0 5 10 15 20

——]

25303540455

055

60 65 70 75 80 oo

Lines of code in the patch

- Paper Reading Group -
kSplice: Automatic Rebootless Kernel Updates



 Found a way to patch arbitrary software during
runtime

« With few limitations
* Independent of programing language

e Safe (checks performed, does abort if assumptions
not met)

e Can even cope with changes to data structures
e Eliminates reboots for kernel security updates

09.01.2013 - Paper Reading Group - 11 of 12
kSplice: Automatic Rebootless Kernel Updates



 How about jumps into functions? How are they
covered?

 How do they compare pre and run code?
* Evaluation: 0.7 ms for how many threads?

09.01.2013 - Paper Reading Group - 12 of 12
kSplice: Automatic Rebootless Kernel Updates



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

