
Paper Reading Group

Ksplice: Automatic Rebootless
Kernel Updates

Eurosys 2009 Paper
by

Jeff Arnold and M. Frans Kaashoek

09.01.2013 - Paper Reading Group -
kSplice: Automatic Rebootless Kernel Updates

2 of 12

Use Case

● Reboots are risky

→ Security updates are postponed
● Security patches often touch only few lines of

code
● How about patching this code while it runs?

09.01.2013 - Paper Reading Group -
kSplice: Automatic Rebootless Kernel Updates

3 of 12

Current Approaches

● require specially written software
● constrain mechanisms software can use
● can only update kernels / software that had

this feature in mind to begin with
● are constrained to specific programming

languages
● Need laborious adaptation work to make

patches runtime applicable.

09.01.2013 - Paper Reading Group -
kSplice: Automatic Rebootless Kernel Updates

4 of 12

How About Something New

● Binary diffs and patching of the changed code
paths only!
– Does not require changes in to original binary

– Is not constrained on specific programing
languages

09.01.2013 - Paper Reading Group -
kSplice: Automatic Rebootless Kernel Updates

5 of 12

Challanges

● resolve symbols in replacement code

● find changes resulting from patch in replacement object
code

● avoid obfuscation by compiler optimization

● avoid inter code jumps making function isolation difficult

● ensure safety of code replacement (avoid crashes)

→ avoid missing inlined code leading to an
inconsistent binary

09.01.2013 - Paper Reading Group -
kSplice: Automatic Rebootless Kernel Updates

6 of 12

pre-post differencing

● Compile both version
(patched and unpatched)

● each function within its own
data and function section in
the binary

● compare sections to find
changed functions

● but what about symbol
resolution?

09.01.2013 - Paper Reading Group -
kSplice: Automatic Rebootless Kernel Updates

7 of 12

run-pre matching

● Use kallsyms symbol table

● problem for ambiguous
symbols

● need to know no-ops (used as
function alignment padding,
does not imply difference!)

● must know instructions with
relative addressing so that
different rel. addresses pointing
to the same location are not
identified as differences.

09.01.2013 - Paper Reading Group -
kSplice: Automatic Rebootless Kernel Updates

8 of 12

Ksplice Components

● Ksplice core kernel module (preforms run-pre
matching)

● pre/post object code generator in userspace
● helper module for loading pre-code (for

comparison)
● primary module (loads new functions)

09.01.2013 - Paper Reading Group -
kSplice: Automatic Rebootless Kernel Updates

9 of 12

Quiescent State

● Functions can only be replaced when:
– they are on no threads kernel stack

– no threads fp is in the function

● Retry on failure, give up after threshold
● stop_machine takes about 0.7 ms to execute

09.01.2013 - Paper Reading Group -
kSplice: Automatic Rebootless Kernel Updates

10 of 12

Evaluation

09.01.2013 - Paper Reading Group -
kSplice: Automatic Rebootless Kernel Updates

11 of 12

Conclusion

● Found a way to patch arbitrary software during
runtime

● With few limitations

● independent of programing language

● Safe (checks performed, does abort if assumptions
not met)

● Can even cope with changes to data structures

● Eliminates reboots for kernel security updates

09.01.2013 - Paper Reading Group -
kSplice: Automatic Rebootless Kernel Updates

12 of 12

Discussion Points

● How about jumps into functions? How are they
covered?

● How do they compare pre and run code?
● Evaluation: 0.7 ms for how many threads?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

