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* Reboots are risky

- Security updates are postponed

e Security patches often touch only few lines of
code

 How about patching this code while it runs?
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* reqguire specia

ly written software

e constrain mec

nanisms software can use

e can only update kernels / software that had
this feature in mind to begin with

e are constraine
languages

d to specific programming

* Need laborious adaptation work to make
patches runtime applicable.
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» Binary diffs and patching of the changed code
paths only!

- Does not require changes in to original binary

- Is not constrained on specific programing
anguages
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* resolve symbols in replacement code

 find changes resulting from patch in replacement object
code

« avoid obfuscation by compiler optimization
e avoid inter code jumps making function isolation difficult
e ensure safety of code replacement (avoid crashes)

- avoid missing inlined code leading to an
Inconsistent binary
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e Use

Kallsyms symbol table

 problem for ambiguous
symbols

* need to know no-ops (used as
function alignment padding,
does not imply difference!)

e must know Instructions with
relative addressing so that
different rel. addresses pointing
to the same location are not
dentified as differences.
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» Ksplice core kernel module (preforms run-pre
matching)

* pre/post object code generator in userspace

* helper module for loading pre-code (for
comparison)

* primary module (loads new functions)
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* Functions can only be replaced when:

- they are on no threads kernel stack
- no threads fp Is in the function

* Retry on failure, give up after threshold
e stop_machine takes about 0.7 ms to execute
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Figure 3: Number of patches by patch length
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 Found a way to patch arbitrary software during
runtime

« With few limitations
* Independent of programing language

e Safe (checks performed, does abort if assumptions
not met)

e Can even cope with changes to data structures
e Eliminates reboots for kernel security updates
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 How about jumps into functions? How are they
covered?

 How do they compare pre and run code?
* Evaluation: 0.7 ms for how many threads?
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