Power Containers

An OS Facility for Fine-Grained Power and Energy Management on Multicore Servers

Kai Shen, Arrvindh Shriraman, Sandhya Dwarkadas, Xiao Zhang, Zhuan Chen

Goals

- Isolate power consumption up to individual request level
- Account power based on power containers (budgets)
- Prevent excessive power usage by "power viruses"
- Multicore servers

Related Work / Challenges

- Power modeling usually only for whole system
- High inaccuracies in performance counter based models
- Need expensive/complex calibration equipment
- Limiting individual applications or requests is difficult

Design: Power Attribution

- Use performance counters for individual applications
- Introduce "chip maintenance power"

08.05.2013

Design: Recalibration

- Modeling inaccuracies can introduce quite some error
- Fix it by on-line recalibration

08.05.2013

Design: Request Power Accounting

- Track IPC, forking, socket communication
- Tag socket messages with sender request context for persistent socket connections

Design: Management Possibilities

- Limiting "Power Viruses" by selective duty-cycle modulation
 - Power consumption target per request
- Distribute requests to the most efficient server for this request type in heterogeneous environments
 - enabled by fine grained profiling of requests

Measured active Power

Figure 5. Measured active power of application workloads on three machines and two load levels.

\mathcal{C}_{idle}	=	26.1 Watts;
$\mathcal{C}_{core} \cdot \mathcal{M}_{core}^{max}$	=	33.1 Watts;
$\mathcal{C}_{\mathrm{ins}} \cdot \mathcal{M}_{\mathrm{ins}}^{\mathrm{max}}$	=	12.4 Watts;
$\mathcal{C}_{ ext{cache}} \cdot \mathcal{M}_{ ext{cache}}^{ ext{max}}$	=	13.9 Watts;
$\mathcal{C}_{mem} \cdot \mathcal{M}_{mem}^{max}$	=	8.2 Watts;
$\mathcal{C}_{ ext{chipshare}} \cdot \mathcal{M}_{ ext{chipshare}}^{ ext{max}}$	=	5.6 Watts;
$\mathcal{C}_{ ext{disk}} \cdot \mathcal{M}_{ ext{disk}}^{ ext{max}}$	=	1.7 Watts;
$\mathcal{C}_{\mathrm{net}} \cdot \mathcal{M}_{\mathrm{net}}^{\mathrm{max}}$	=	5.8 Watts.

08.05.2013

Power/Energy distribution

Modeling approaches

08.05.2013

Power Containers

10

Evaluation

08.05.2013

Power Containers

11

Power Virus limiting

08.05.2013

Exploiting Heterogeneity

08.05.2013

Discussion / Critique

- They don't make clear when they use RAPL / CPU Power for calibration/comparison and when they use full system power
- The details on how to track requests were a bit short
- ... as were the details on I/O power attribution
- Why are Viruses sometimes not limited? Per request power limit is exceeded! Also ... What about energy?
- What about the overhead in OS primitives?
- "... sample the SandyBridge power once every 10 ms ..."