
Introduction NewtOS Evaluation Discussion

When Slower is Faster: On Heterogeneous
Multicores for Reliable Systems

Tomas Hruby, Herbert Bos and Andrew S. Tanenbaum
The Network Institute, VU University Amsterdam

Usenix ATC 2013

1 / 21



Introduction NewtOS Evaluation Discussion

Outline

1 Introduction

2 NewtOS

3 Evaluation

4 Discussion

2 / 21



Introduction NewtOS Evaluation Discussion

Outline

1 Introduction

2 NewtOS

3 Evaluation

4 Discussion

3 / 21



Introduction NewtOS Evaluation Discussion

Motivation

More and more vendors develop heterogeneous cores (ARM
big.LITTLE, NVIDIA Tegra-3, Xeon Phi, . . . ).

All cores share a large subset of the ISA, but have different.
performance characteristics.

There has been a lot of research about them, but mostly
focused on applications and not on the operating system.

They want to explore how these architectures can help to
balance performance and resource consumption.

4 / 21



Introduction NewtOS Evaluation Discussion

Contributions

1 They explore hardware design space of future platforms with
current ones.

2 They show that performance is equal or better with slower
cores.

3 The system has the potential for dynamic reconfiguration.

5 / 21



Introduction NewtOS Evaluation Discussion

Outline

1 Introduction

2 NewtOS

3 Evaluation

4 Discussion

6 / 21



Introduction NewtOS Evaluation Discussion

What is it?

High-performance clone of MINIX 3.

Has the same reliability.

Even core OS components can be replaced on the fly.

If components crash, they can restart them.

Often that’s transparent for applications.

7 / 21



Introduction NewtOS Evaluation Discussion

Design of the network stack

8 / 21



Introduction NewtOS Evaluation Discussion

Dynamic reconfiguration

Each system component can run on a dedicated core.

Or it can share a core with others.

If the workload changes, the system can redistribute itself.

9 / 21



Introduction NewtOS Evaluation Discussion

Non-overlapping ISA

They claim that NewtOS’ live update functionality can be
used for migration.

This can be done by recompiling the same code and replacing
it while it’s running.

Is done only at the top of the main loop.

If memory layout changes, a transition function is generated.

Can of course also be done by precompiling an application for
multiple ISAs.

10 / 21



Introduction NewtOS Evaluation Discussion

Outline

1 Introduction

2 NewtOS

3 Evaluation

4 Discussion

11 / 21



Introduction NewtOS Evaluation Discussion

Introduction

Done with dual socket quad-core Intel Xeon E5520.

Two ways to scale the performance of a core:
1 Scale frequency of a whole chip down (2.3Ghz .. 1.6Ghz)
2 Thermal throttling per core (in steps of 12.5% of clock speed)

They use frequency scaling from 2.3Ghz to 1.6Ghz and
thermal throttling from 1.6Ghz to 0.2Ghz.

Benchmarks are done by running iperf on a Linux machine
and connecting to it from NewtOS (can achieve 10G when
using Linux to connect).

CPU utilization is measured by the time spent in userspace
(started/ stopped before and after a kernel call)

12 / 21



Introduction NewtOS Evaluation Discussion

Test configurations

13 / 21



Introduction NewtOS Evaluation Discussion

Frequency scaling (2.3Ghz - 1.6Ghz)

Important: TCP uses the core to 70%, IP and driver to 40%.

14 / 21



Introduction NewtOS Evaluation Discussion

Thermal throttling (1.6Ghz - 0.2Ghz)

15 / 21



Introduction NewtOS Evaluation Discussion

Thermal throttling: CPU utilization

16 / 21



Introduction NewtOS Evaluation Discussion

Hyperthreading

17 / 21



Introduction NewtOS Evaluation Discussion

Why is slower faster?

18 / 21



Introduction NewtOS Evaluation Discussion

Outline

1 Introduction

2 NewtOS

3 Evaluation

4 Discussion

19 / 21



Introduction NewtOS Evaluation Discussion

Major point of criticism

They don’t really explain what is happening there.

This is especially bad because the claim ”slower is faster” is
really bold.

My guess is: if IP and the driver have low CPU utilization,
they sleep often. This introduces latency which prevents that
TCP can use the CPU more than 70-75%.

If that is the case, I’m wondering why...

they stop to throttle IP and driver up at 600 Mhz instead of
showing what happens if they go further to 1600Mhz,
they haven’t shown what happens if they poll and
they don’t say that this is the bottleneck and the reason why
scaling the chip down decreases the throughput although TCP
doesn’t use the CPU to 100%.

20 / 21



Introduction NewtOS Evaluation Discussion

Other points

Using 2 ways of slowing down the cores makes it difficult to
draw a connection between them. Why don’t they only use
throttling?

They mention power consumption, but don’t really evaluate
it, although this is a major point of the paper (using less
resources while reaching the same performance).

Doesn’t the whole approach conflict with flow-control? Both
try to scale the speed until it fits.

Good point: The idea of scaling down cores (or assigning
applications to slower cores) to reach a high utilization instead
of sleeping is quite nice (if you can give an application its own
core).

21 / 21


	Introduction
	NewtOS
	Evaluation
	Discussion

