
Prototype Evaluation Conclusion

PrivExec
Private Execution as an Operating System Service

Kaan Onarlioglu, Collin Mulliner,
William Robertson and Engin Kirda

2013 IEEE Symposium on Security and Privacy

1 / 11



Prototype Evaluation Conclusion

Intro

Observations
Privacy gains importance
Wiping data on disk/“Private Browsing” → Unreliable
Full-disk encryption → Coercion

2 / 11



Prototype Evaluation Conclusion

Intro

Observations
Privacy gains importance
Wiping data on disk/“Private Browsing” → Unreliable
Full-disk encryption → Coercion

Source: http://xkcd.com/538/ 2 / 11

http://xkcd.com/538/


Prototype Evaluation Conclusion

Intro

Observations
Privacy gains importance
Wiping data on disk/“Private Browsing” → Unreliable
Full-disk encryption → Coercion

Threat Model
Benign applications
Phase 1 – Execution: Normal user with remote access
Phase 2 – Session ended: Physical access

2 / 11



Prototype Evaluation Conclusion

Design

Goals
Data from a private execution is never leaked
Secure disposal of private data after termination
No cooperation required from application or filesystem
Flexibility

Private Process Group
Bound to ephemeral private execution key (PEK)
Secure storage container
Partitioned swap space
Restricted IPC

3 / 11



Prototype Evaluation Conclusion

Design

Goals
Data from a private execution is never leaked
Secure disposal of private data after termination
No cooperation required from application or filesystem
Flexibility

Private Process Group
Bound to ephemeral private execution key (PEK)
Secure storage container
Partitioned swap space
Restricted IPC

3 / 11



Prototype Evaluation Conclusion

Design Overview

P1 P2

P3 P4

Public Processes

P6
{PEK }x

Private Process Group

Private 
Container

Disk 
reads, writes

P7
{PEK }y

Disk 
reads, writes

Public 
Filesystem

Disk readsDisk 
reads, writes

P8
{PEK }y

Private 
Container

Disk 
reads, writesP5

IPC

IPC

IPC

x

Private Process Groupy

Figure 1. Overview of the design of PRIVEXEC. Public processes behave
as normal applications, with read-write access to one or more public
filesystems and unrestricted IPC in that they can write to all other processes.
Private processes, however, have read-only access to the public filesystem.
All private process writes are redirected to a dedicated temporary secure
storage container that persists only for the lifetime of the process and
is irrevocably discarded at process exit. Data stored in this container is
encrypted with a protected, process-specific private execution key (PEK)
that is never revealed. Private process swap is conceptually handled in
a similar fashion. Finally, private processes cannot write data to public
processes or unrelated private processes via IPC channels.

to shared system resources, private processes are subject to
special restrictions to prevent disclosure of sensitive data
resulting from private execution. In the PRIVEXEC model,
private processes might execute within the same logical
privacy context, where resource access restrictions between
processes sharing a context are relaxed. We refer to private
processes related in this way as private process groups.

The concrete security properties that our system provides
are the following.

(S1) Data explicitly written to storage must never be re-
coverable without knowledge of a secret bound to an
application for the duration of its private execution.

(S2) Application memory that is swapped to disk must
never be recoverable without knowledge of the ap-
plication secret.

(S3) Data produced during a private execution must never
be passed to processes outside the private process

group via IPC channels.
(S4) Application secrets must never be persisted, and never

be exposed outside of protected volatile memory.
(S5) Once a private execution has terminated, application

secrets and data must be securely discarded.
Together, (S1), (S2) and (S3) guarantee that data resulting

from a private execution cannot be disclosed without access
to the corresponding secret. (S4) ensures that users cannot
be coerced into divulging their personal information, as they
do not know the requisite secret, and hence, cannot provide
it. (S5) implies that once a private execution has ended, it
is computationally infeasible to recover the data produced
during that execution.

In addition, we set out to satisfy the following design
goals for the system.
(D1) PRIVEXEC must be generic; it must be applicable to

any type of application, running on any filesystem
and block I/O device. It must not require explicit
cooperation on behalf of applications that wish to
make use of the private execution service, including
source code modification, or recompilation against a
new API or library.

(D2) PRIVEXEC must be flexible; users should be able
to apply it selectively to arbitrary applications to
execute them privately as desired. At the same time,
PRIVEXEC must not have any negative impact on
other public processes running on the system.

(D3) After launching a private process, PRIVEXEC must
operate automatically, without requiring any manual
intervention on behalf of the user.

(D4) Finally, the system must introduce minimal perfor-
mance overhead relative to normal execution.

Figure 1 depicts an overview of the design of PRIVEXEC.

B. Filesystem

Public processes have the expected read-write access to
public filesystems. Private processes, on the other hand, are
short-lived processes that have temporary secure storage
containers. This storage container is allocated only for the
lifetime of a private execution and is accessible only to the
private process group it is associated with.

Each private process group is bound to a private execution
key, or PEK, which is the basis for uniquely identifying a
privacy context. This PEK is randomly generated at private
process creation, protected by the operating system, never
stored in non-volatile memory, and never disclosed to the
user or any other process. The PEK is used to encrypt all
data produced during a private execution before it is written
to persistent storage within the secure container. In this
way, PRIVEXEC ensures that sensitive data resulting from
private process computation cannot be accessed through the
filesystem by any process that does not share the associated
privacy context. Furthermore, when a private execution

4 / 11



Prototype Evaluation Conclusion

Implementation

PEK stored in process descriptor (kernel memory) and
inherited by children
modify process management (do_fork, do_exit)
modify paging (pageout, do_swap_page) using Crypto API
secure storage container: eCryptfs + Overlayfs
Wrapper to run ordinary application in private mode

1 Create private copy of itself
2 Setup secure storage container
3 Load application in chroot
4 Clean up

5 / 11



Prototype Evaluation Conclusion

Implementation

PEK stored in process descriptor (kernel memory) and
inherited by children
modify process management (do_fork, do_exit)
modify paging (pageout, do_swap_page) using Crypto API
secure storage container: eCryptfs + Overlayfs
Wrapper to run ordinary application in private mode

1 Create private copy of itself
2 Setup secure storage container
3 Load application in chroot
4 Clean up

5 / 11



Prototype Evaluation Conclusion

Setting Up The Secure Storage Container

root
/

eCryptfs
~/private/

P

r/w

r/w

root
/

Overlayfs
/tmp/fakeroot/

P

r/w

r/w

eCryptfs
~/private/

r/w

root
/

r/w

eCryptfs
~/private/

ro

U

chroot
/tmp/fakeroot/ P

r/w

Overlayfs
/tmp/fakeroot/

root
/

r/w

eCryptfs
~/private/

ro

U

Step I Step II Step III

Figure 3. Setting up the secure storage container and overlaying it on the root filesystem.

We use Overlayfs to layer secure storage containers on top
of the root filesystem tree. The root filesystem is mounted
as a read-only lower branch, while the secure container is
made the read-write upper branch. In this way, through an
Overlayfs mount point, a private process has a complete
view of the root filesystem, while all write operations are
actually performed on the secure container. Overlayfs also
supports copy-on-write; in other words, when an application
attempts to write to a file in the lower read-only root
filesystem, it first makes a copy of the file in the writable
secure container and performs the write on the copy. The
files in an upper branch take precedence over and shadow
the same files in the lower branch, which also ensures that
all subsequent read and write operations are redirected to
the new encrypted copies.

The entire process of setting up a secure container for a
private process P and overlaying it on the root filesystem is
illustrated in Figure 3. Note that the given path names are
only examples; PRIVEXEC actually uses random paths to
support multiple private execution sessions that run simul-
taneously. Before launching a private process, in step one,
PRIVEXEC creates a secure container using our modified
version of eCryptfs and mounts it on ~/private. In step 2,
Overlayfs is used to overlay the container on the root filesys-
tem, and this new view is mounted on /tmp/fakeroot.
In the final step, the private process is launched in a
chroot environment, with its root filesystem the Overlayfs
mount point. In this way, the private process still has a
complete view of the original filesystem, and full read-write
access; however, all writes are transparently redirected to
the secure container. When the private process terminates,
PRIVEXEC destroys the secure container and PEK, rendering
the encrypted data in ~/private irrecoverable.

Together, the combination of Overlayfs with our modified
eCryptfs satisfies all of our desired security properties and
stated design goals for PRIVEXEC filesystem I/O.

C. Private Swap Space

Since the Linux kernel handles swap devices separately
from block filesystem I/O, PRIVEXEC must also interpose
on these operations in order to preserve the privacy of virtual
memory pages swapped to disk. To this end, each page
written to a swap device must be encrypted with the PEK
of the corresponding private process.

Concretely, this is a straightforward modification to the
kernel swap routines. The cryptographic primitives we use
for this are provided by the kernel Crypto API framework;
specifically, AES in CBC-ESSIV mode, with a page-specific
IV consisting of the page’s process virtual address and a
random nonce.

We implemented per-application swap encryption as a
patch to the pageout function in mm/vmscan.c. First, a
check is performed to determine whether a page to be written
belongs to a private process. If so, the pre-allocated cipher
transform in the process task_struct is initialized with a
page-specific IV, and the page is encrypted with PEK prior
to scheduling an asynchronous write operation.

For page-in, the situation is more complex. The kernel
swap daemon (kswapd) is responsible for scanning memory
to perform page replacement, and operates in a kernel
thread context. Therefore, once a page has been selected
for replacement, process virtual memory structures must be
traversed to locate a task_struct that owns the swap page.
Once this has been done, however, the inverse of page-out
can be performed. Specifically, once the asynchronous read
of the page from the swap device has completed, a check
is performed to determine whether the owning process is in
private execution mode. If so, the process cipher transform
is initialized with the page-specific IV, and the page is
decrypted with PEK prior to resumption of the user process.

A summary of all modifications to the Linux kernel
described in this section is presented in Table III.

6 / 11



Prototype Evaluation Conclusion

Disk I/O And Filesystem Performance

Table IV
DISK I/O AND FILESYSTEM PERFORMANCE OF PRIVEXEC. ECRYPTFS-ONLY PERFORMANCE IS ALSO SHOWN FOR COMPARISON.

Original eCryptfs-only PRIVEXEC

Performance Performance Overhead Performance Overhead

Write 110694.60 KB/s 97536.83 KB/s 13.49 % 97979.47 KB/s 12.98 %
Rewrite 48724.53 KB/s 38800.78 KB/s 25.58 % 38790.07 KB/s 25.61 %
Read 111217.67 KB/s 107134.53 KB/s 3.81 % 106293.73 KB/s 4.63 %

Seek 196.27 seeks/s 147.53 seeks/s 33.04 % 138.37 seeks/s 41.84 %

Create 13906.73 files/s 8312.73 files/s 67.29 % 8181.10 files/s 69.99 %
Stat 217734.60 files/s 126326.23 files/s 72.36 % 117844.75 files/s 84.76 %
Delete 42012.87 files/s 25232.67 files/s 66.50 % 23017.00 files/s 82.53 %

could also be resolved by running a private X session, or
simply by disabling the MIT-SHM extension in the X server
configuration file.

Once the above problems were dealt with, all 50 ap-
plications worked correctly, without exhibiting any unusual
behavior or noticeable performance issues.

B. Disk I/O and Filesystem Benchmarks

In order to evaluate the disk I/O and filesystem per-
formance of PRIVEXEC, we used Bonnie++ [3], a well-
known filesystem benchmark suite for UNIX-like operating
systems.

We first configured Bonnie++ to use 10 × 1 GB files to
test the throughput of block write, rewrite, read, and random
seek operations. Next, we benchmarked filesystem metadata
operations such as file creation and deletion rates, and small-
file access performance by configuring Bonnie++ to create,
access, and delete 102,400 files, each containing 512 bytes
of data, in a single directory. We ran Bonnie++ as a normal
process and then using PRIVEXEC for comparison, repeated
all the experiments 10 times, and calculated the average
scores to get the final results. We present our findings in
Table IV.

These results show that PRIVEXEC performs reasonably
well when doing regular reads and writes, incurring an over-
head of 12.98% and 4.63%, respectively. However, private
applications can experience slowdowns ranging from 70%
to 85% when dealing with large numbers of small files in a
single directory. In fact, unoptimized filesystem performance
with large amounts of files is a known deficiency of eCryptfs,
which could provide an explanation for this performance
hit.1 When we adjusted our benchmarks to decrease the
number of files used, or when we configured Bonnie++ to
distrubute the files evenly to a number of subdirectories, the
performance gap decreased drastically.

To see the impact of eCryptfs on PRIVEXEC’s perfor-
mance in general, we repeated the measurements by running

1See an eCryptfs developer’s response to a similar
performance-related issue at http://superuser.com/questions/397252/
ecryptfs-and-many-many-small-files-bad-performance, also linked from
the official eCryptfs web page.

Bonnie++ on an eCryptfs-only partition. The results, also
shown in Table IV for comparison, indicate that a significant
part of PRIVEXEC’s disk I/O and filesystem overhead is
introduced by the eCryptfs layer. This suggests that a more
optimized encrypting filesystem, or the use of block-level
encryption via dm-crypt (despite its various disadvantages
such as the requirement to create separate partitions of fixed
size to be utilized by PRIVEXEC) could greatly increase
PRIVEXEC’s disk I/O and filesystem performance. We report
the worst-case figures in this paper and leave the evaluation
of these alternative techniques for future work.

While these results clearly indicate that PRIVEXEC might
not be suitable for workloads involving many small files,
such as running scientific computation applications or com-
piling large software projects, we must stress that such
workloads do not represent the use cases PRIVEXEC is de-
signed to target. Indeed, in the next section we demonstrate
that these benchmark scores do not translate to decreased
performance when executing real-world applications with
concrete privacy requirements using PRIVEXEC.

C. Real-World Application Performance

In a final set of experiments, we measured the overhead
incurred by various common desktop and console appli-
cations when running them with PRIVEXEC. Specifically,
we identified 12 applications that are representative of the
privacy-related scenarios and concerns that PRIVEXEC aims
to address, and designed various automated tests to stress
those applications. We ran each application first as a normal
process, then with PRIVEXEC, and compared the elapsed
times under each configuration.

Note that designing custom test cases and benchmarks in
this way requires careful consideration of factors that might
influence our runtime measurements. In particular, a major
challenge we faced was automating the testing of desktop
applications with graphical user interfaces. Although several
GUI automation and testing frameworks exist for Linux,
most of them rely on recording and issuing X server events
without any understanding of the tested application’s state.
As a result, the test developer is often expected to insert
fixed delays between each step of the test in order to give

7 / 11



Prototype Evaluation Conclusion

Runtime Performance Overhead I Table V
RUNTIME PERFORMANCE OVERHEAD OF PRIVEXEC FOR TWO POPULAR WEB BROWSERS.

Firefox Chromium

Orig. Runtime (s) PRIVEXEC Runtime (s) Overhead Orig. Runtime (s) PRIVEXEC Runtime (s) Overhead

Alexa 98.43 103.56 5.21 % 91.63 94.69 3.34 %
Wikipedia 37.80 39.96 5.71 % 39.25 40.12 2.22 %
CNN 66.61 69.15 3.81 % 49.21 50.83 3.29 %
Gmail 58.43 61.36 5.02 % 30.61 30.98 1.21 %

the application enough time to respond to the issued events.
For instance, consider a test that involves opening a menu
by clicking on it with the mouse, and then clicking on a
menu item. When performing this task automatically using
a tool that issues X events, the developer must insert a delay
between the two automated click events. After the first click
on the menu, the second click must be delayed until the
tested application can open and display the menu on the
screen. This technique works well for simple automation
tasks, but for runtime measurements, long delays can easily
mask the incurred overhead and lead to inaccurate results.
Taking this into consideration, in our tests, we refrained from
using any artificial delays, or employing tools that operate
in this way.

First, we tested PRIVEXEC with two popular web
browsers, Firefox and Chromium. We designed four test
cases that represent different browsing scenarios.

Alexa
In this test, we directed the browsers to visit the top
50 Alexa domains. While some of these sites were
relatively simple (e.g., www.google.com), others
included advertisement banners, embedded Flash,
multimedia content, JavaScript, and pop-ups (e.g.,
www.bbc.co.uk).

Wikipedia
In this test, we visited 50 Wikipedia articles. As
is typical of Wikipedia, these web pages mostly
included text and images.

CNN
In this test, we navigated within the CNN web
site by clicking on different news categories and
articles. We cycled 5 times through 10 CNN pages
with many embedded images, videos and Flash
content in order to exercise the browser’s cache.

Gmail
In this test, we navigated to and logged into Gmail,
composed and sent 5 emails, and then logged out
of the web site.

To execute these tests, we used Selenium WebDriver [8],
a popular browser automation framework. Selenium com-
mands browsers natively through browser-specific drivers,
and is able to detect when the page elements are fully
loaded without requiring the user to introduce fixed delays.
We repeated each test 10 times, and calculated the average

Table VI
RUNTIME PERFORMANCE OVERHEAD OF PRIVEXEC FOR VARIOUS

DESKTOP AND CONSOLE APPLICATIONS.

Orig. Runtime (s) PRIVEXEC Runtime (s) Overhead

Audacious 61.27 62.30 1.68 %
Feh 51.86 52.52 1.27 %
FFmpeg 105.47 111.31 5.54 %
grep 245.37 253.82 3.44 %
ImageMagick 96.16 101.41 5.46 %
LibreOffice 99.64 100.62 0.98 %
MPlayer 122.98 129.39 5.21 %
Pidgin 116.49 117.87 1.19 %
Thunderbird 75.45 78.78 4.41 %
Wget 71.48 71.89 0.57 %

runtime over all the runs. We present a summary of the
results in Table V.

Next, we tested 10 popular Linux applications, including
media players, an email client, an instant messenger, and
an office suite. These applications and their corresponding
test cases are described below.

Audacious
We configured Audacious, a desktop audio player,
to iterate through a playlist of 2500 MP3 audio files
totaling 15 GB, load each file, and immediately
skip to the next file without playing them.

Feh
Feh is a console-based image viewer. We config-
ured Feh to load and cycle through 1000 JPEG
images, totaling 1.5 GB.

FFmpeg
FFmpeg, a video and audio converter, was config-
ured together with libmp3lame to convert 25 AAC
formatted audio files to the MP3 format.

grep
grep is the standard Linux command-line utility for
searching files for matching regular expressions.
We used grep to search the entire root filesystem
for the string “linux”, and dumped the matching
lines into a text file. This process resulted in 16186
matching lines, leading to a 3 MB dump.

ImageMagick
ImageMagick is a software suite for creating,
editing and viewing various image formats. Using

Table V
RUNTIME PERFORMANCE OVERHEAD OF PRIVEXEC FOR TWO POPULAR WEB BROWSERS.

Firefox Chromium

Orig. Runtime (s) PRIVEXEC Runtime (s) Overhead Orig. Runtime (s) PRIVEXEC Runtime (s) Overhead

Alexa 98.43 103.56 5.21 % 91.63 94.69 3.34 %
Wikipedia 37.80 39.96 5.71 % 39.25 40.12 2.22 %
CNN 66.61 69.15 3.81 % 49.21 50.83 3.29 %
Gmail 58.43 61.36 5.02 % 30.61 30.98 1.21 %

the application enough time to respond to the issued events.
For instance, consider a test that involves opening a menu
by clicking on it with the mouse, and then clicking on a
menu item. When performing this task automatically using
a tool that issues X events, the developer must insert a delay
between the two automated click events. After the first click
on the menu, the second click must be delayed until the
tested application can open and display the menu on the
screen. This technique works well for simple automation
tasks, but for runtime measurements, long delays can easily
mask the incurred overhead and lead to inaccurate results.
Taking this into consideration, in our tests, we refrained from
using any artificial delays, or employing tools that operate
in this way.

First, we tested PRIVEXEC with two popular web
browsers, Firefox and Chromium. We designed four test
cases that represent different browsing scenarios.

Alexa
In this test, we directed the browsers to visit the top
50 Alexa domains. While some of these sites were
relatively simple (e.g., www.google.com), others
included advertisement banners, embedded Flash,
multimedia content, JavaScript, and pop-ups (e.g.,
www.bbc.co.uk).

Wikipedia
In this test, we visited 50 Wikipedia articles. As
is typical of Wikipedia, these web pages mostly
included text and images.

CNN
In this test, we navigated within the CNN web
site by clicking on different news categories and
articles. We cycled 5 times through 10 CNN pages
with many embedded images, videos and Flash
content in order to exercise the browser’s cache.

Gmail
In this test, we navigated to and logged into Gmail,
composed and sent 5 emails, and then logged out
of the web site.

To execute these tests, we used Selenium WebDriver [8],
a popular browser automation framework. Selenium com-
mands browsers natively through browser-specific drivers,
and is able to detect when the page elements are fully
loaded without requiring the user to introduce fixed delays.
We repeated each test 10 times, and calculated the average

Table VI
RUNTIME PERFORMANCE OVERHEAD OF PRIVEXEC FOR VARIOUS

DESKTOP AND CONSOLE APPLICATIONS.

Orig. Runtime (s) PRIVEXEC Runtime (s) Overhead

Audacious 61.27 62.30 1.68 %
Feh 51.86 52.52 1.27 %
FFmpeg 105.47 111.31 5.54 %
grep 245.37 253.82 3.44 %
ImageMagick 96.16 101.41 5.46 %
LibreOffice 99.64 100.62 0.98 %
MPlayer 122.98 129.39 5.21 %
Pidgin 116.49 117.87 1.19 %
Thunderbird 75.45 78.78 4.41 %
Wget 71.48 71.89 0.57 %

runtime over all the runs. We present a summary of the
results in Table V.

Next, we tested 10 popular Linux applications, including
media players, an email client, an instant messenger, and
an office suite. These applications and their corresponding
test cases are described below.

Audacious
We configured Audacious, a desktop audio player,
to iterate through a playlist of 2500 MP3 audio files
totaling 15 GB, load each file, and immediately
skip to the next file without playing them.

Feh
Feh is a console-based image viewer. We config-
ured Feh to load and cycle through 1000 JPEG
images, totaling 1.5 GB.

FFmpeg
FFmpeg, a video and audio converter, was config-
ured together with libmp3lame to convert 25 AAC
formatted audio files to the MP3 format.

grep
grep is the standard Linux command-line utility for
searching files for matching regular expressions.
We used grep to search the entire root filesystem
for the string “linux”, and dumped the matching
lines into a text file. This process resulted in 16186
matching lines, leading to a 3 MB dump.

ImageMagick
ImageMagick is a software suite for creating,
editing and viewing various image formats. Using

8 / 11



Prototype Evaluation Conclusion

Runtime Performance Overhead II

Table V
RUNTIME PERFORMANCE OVERHEAD OF PRIVEXEC FOR TWO POPULAR WEB BROWSERS.

Firefox Chromium

Orig. Runtime (s) PRIVEXEC Runtime (s) Overhead Orig. Runtime (s) PRIVEXEC Runtime (s) Overhead

Alexa 98.43 103.56 5.21 % 91.63 94.69 3.34 %
Wikipedia 37.80 39.96 5.71 % 39.25 40.12 2.22 %
CNN 66.61 69.15 3.81 % 49.21 50.83 3.29 %
Gmail 58.43 61.36 5.02 % 30.61 30.98 1.21 %

the application enough time to respond to the issued events.
For instance, consider a test that involves opening a menu
by clicking on it with the mouse, and then clicking on a
menu item. When performing this task automatically using
a tool that issues X events, the developer must insert a delay
between the two automated click events. After the first click
on the menu, the second click must be delayed until the
tested application can open and display the menu on the
screen. This technique works well for simple automation
tasks, but for runtime measurements, long delays can easily
mask the incurred overhead and lead to inaccurate results.
Taking this into consideration, in our tests, we refrained from
using any artificial delays, or employing tools that operate
in this way.

First, we tested PRIVEXEC with two popular web
browsers, Firefox and Chromium. We designed four test
cases that represent different browsing scenarios.

Alexa
In this test, we directed the browsers to visit the top
50 Alexa domains. While some of these sites were
relatively simple (e.g., www.google.com), others
included advertisement banners, embedded Flash,
multimedia content, JavaScript, and pop-ups (e.g.,
www.bbc.co.uk).

Wikipedia
In this test, we visited 50 Wikipedia articles. As
is typical of Wikipedia, these web pages mostly
included text and images.

CNN
In this test, we navigated within the CNN web
site by clicking on different news categories and
articles. We cycled 5 times through 10 CNN pages
with many embedded images, videos and Flash
content in order to exercise the browser’s cache.

Gmail
In this test, we navigated to and logged into Gmail,
composed and sent 5 emails, and then logged out
of the web site.

To execute these tests, we used Selenium WebDriver [8],
a popular browser automation framework. Selenium com-
mands browsers natively through browser-specific drivers,
and is able to detect when the page elements are fully
loaded without requiring the user to introduce fixed delays.
We repeated each test 10 times, and calculated the average

Table VI
RUNTIME PERFORMANCE OVERHEAD OF PRIVEXEC FOR VARIOUS

DESKTOP AND CONSOLE APPLICATIONS.

Orig. Runtime (s) PRIVEXEC Runtime (s) Overhead

Audacious 61.27 62.30 1.68 %
Feh 51.86 52.52 1.27 %
FFmpeg 105.47 111.31 5.54 %
grep 245.37 253.82 3.44 %
ImageMagick 96.16 101.41 5.46 %
LibreOffice 99.64 100.62 0.98 %
MPlayer 122.98 129.39 5.21 %
Pidgin 116.49 117.87 1.19 %
Thunderbird 75.45 78.78 4.41 %
Wget 71.48 71.89 0.57 %

runtime over all the runs. We present a summary of the
results in Table V.

Next, we tested 10 popular Linux applications, including
media players, an email client, an instant messenger, and
an office suite. These applications and their corresponding
test cases are described below.

Audacious
We configured Audacious, a desktop audio player,
to iterate through a playlist of 2500 MP3 audio files
totaling 15 GB, load each file, and immediately
skip to the next file without playing them.

Feh
Feh is a console-based image viewer. We config-
ured Feh to load and cycle through 1000 JPEG
images, totaling 1.5 GB.

FFmpeg
FFmpeg, a video and audio converter, was config-
ured together with libmp3lame to convert 25 AAC
formatted audio files to the MP3 format.

grep
grep is the standard Linux command-line utility for
searching files for matching regular expressions.
We used grep to search the entire root filesystem
for the string “linux”, and dumped the matching
lines into a text file. This process resulted in 16186
matching lines, leading to a 3 MB dump.

ImageMagick
ImageMagick is a software suite for creating,
editing and viewing various image formats. Using

9 / 11



Prototype Evaluation Conclusion

Conclusion

Summary
Few modifications of Linux
Runs existing applications
Small (< 6%, 3.31% avg) impact on performance
Safe according to threat model

Limitations
System hibernation
Priviledged users
X applications

⇒ Code available at http://www.onarlioglu.com/privexec/

10 / 11

http://www.onarlioglu.com/privexec/


Prototype Evaluation Conclusion

Discussion

How does encryption of swapped pages work?
Does privacy really gain importance?
Usability? (e.g. downloads)
Bugs?

11 / 11


	Prototype
	Evaluation
	Conclusion

