
InkTag
Secure Applications on an Untrusted Operating System

Owen S. Hofmann, Sangman Kim, Alan M. Dunn,
Michael Z. Lee, Emmett Witchel

ASPLOS 2013

1 / 13

Motivation

OS: untrustworthy “root of trust”
Verification is easier than implementation
. . . even more so with paraverification

2 / 13

Design

Goals
Protect applications from untrusted OS
Secure use of (a subset of) OS services
Sharing of data among mutually trusting applications
Fine-grained and flexible access control

!""#$%&'$()

*+,-./).#

0)12&3,45"./6$7(/

4!8

4&/9:&/.

;5"./%&##7

;$3;<&77=/&)%.

'/=7'.9

=)'/=7'.9

Figure 1. InkTag design overview. In InkTag high-assurance processes
(HAPs) make hypercalls to the virtual machine hypervisor to verify the
runtime behavior of the operating system. The hypervisor istrusted.

of system calls (e.g.,mmap) to cause a trusted application to
harm itself.

Section2 gives an overview of InkTag, while Section3 explains
InkTag’s high-level design. Section4 introduces paraverification.
Section 5 describes access control in InkTag, followed by our
design for storage (§6), implementation (§7) and evaluation (§8).
Section9 covers related work and Section10 concludes.

2. Overview
InkTag is a hypervisor-based system that protects trusted applica-
tions from an untrusted OS, allowing trusted applications to se-
curely use untrusted OS services. The hypervisor protects applica-
tion code, data, and control flow from the OS, allowing applications
to execute in isolation. Mutually trusting secure applications can
securely and privately share data without interference from the OS
or other applications. Each secure application coordinates directly
with the InkTag hypervisor via hypercalls to detect OS misbehav-
ior.

Figure1 shows an overview of the InkTag architecture. Trusted
application code executes in ahigh-assurance process, or HAP,
which is isolated from the OS. Nearly all application-levelchanges
are contained in a small, 2000-line library (libinktag) theuse of
which is largely encapsulated in the standard C library. InkTag
extends a standard hypervisor to monitor the untrusted OS using
paravirtualized device drivers and virtualization hardware. InkTag
defines new hypercalls forHAPs to verify OS behavior.

InkTag shares its basic threat model and security guarantees
with previous work where a trusted hypervisor verifies an untrusted
operating system’s actions; such as SP3 [47], and especially Over-
shadow [11]. We first discuss issues generic to all approaches, then
starting with Section2.4discuss issues specific to InkTag.

2.1 Threat Model

InkTag assumes that the OS is completely untrusted and can behave
in arbitrarily malicious ways. Applications running on theOS have
both an untrusted context maintained by the OS used for requesting
OS services, and a trusted context used for executing code that must
be isolated from the OS. The developer trusts the InkTag hypervisor
and the trusted execution context of the application. The trusted
application context is isolated from the OS by the hypervisor.

InkTag does not address application-level bugs, and will not
stop an application that deliberately divulges secret data(e.g., by
putting it in the arguments of a system call that the OS handles).

InkTag cannot guarantee untrusted OS availability, but cande-
tect this class of misbehavior. Trivially, a malicious OS could sim-
ply shut down every time it was started, though the InkTag hyper-
visor will detect such misbehavior. More subtle availability attacks
are possible, such as deleting volatile data, which will be detected
in a timely manner, but may result in the loss of data between mis-
behavior and detection.

2.2 Size of trusted computing base (TCB)

The operating system consists of millions of lines of code, so its
elimination from the trusted computing base seems,prima facie, to
increase security. However, the KVM hypervisor includes anentire
OS (sometimes called a type 2 hypervisor). Eliminating trust in the
guest instance of Linux is of little security value if the hypervisor
contains its own instance.

However, simpler hypervisors (type 1) exist, and contain fewer
lines of code than a typical operating system. Additionally, the hy-
pervisor interface is a hardware interface, which is far simpler and
easier to make secure than the hundreds of semantically complex
system calls exported by a general-purpose operating system. For
example, from 2010 to 2012, a search of the National Vulnerabil-
ity Database [31] returns 12 exploits for Xen and 16 exploits for
KVM that have an impact worse than denial of service. By contrast,
there are 53 such vulnerabilities published for the Linux kernel in
2012, of which only 7 are driver vulnerabilities. These vulnerabil-
ities spanned many different core kernel services such as memory
management, file systems, network protocol implementations, and
syscalls. The situation is not much better for Windows 7: in 2012,
there were 9 privilege escalation and 31 remote code execution bul-
letins listed [1].

2.3 Security guarantees

Here we summarize the security guarantees provided to an InkTag
application. The InkTag hypervisor ensures that aHAP’s process
context (registers) and address space are isolated from thethe oper-
ating system. Then, InkTag ensures that aHAP can use a subset of
services provided by the untrusted OS to interact with secure files
(files with privacy and integrity managed by InkTag through en-
cryption and hashing), and verify that those services were provided
correctly. InkTag shares these basic security guarantees,as well
as implementation techniques, with previous work such as Over-
shadow.

In addition to the majority ofHAP code that executes in a trusted
context, eachHAP also contains a small amount ofuntrusted tram-
polinecode that interacts with the operating system (this is similar
to Overshadow’suncloaked shim). The InkTag hypervisor switches
control between secureHAP code and the untrusted trampoline,
while the untrusted operating system schedules among the un-
trusted trampoline and other contexts. This allows the InkTag hy-
pervisor to control switches into and out of a secure contextand
ensure control flow integrity. Then, the InkTag hypervisor encrypts
and hashesHAP pages to ensure privacy and integrity for theHAP’s
address space: this is analogous to Overshadow’smulti-shadowing
technique.

Control flow integrity As with traditional applications, aHAP
running in InkTag may be interrupted at any time by the operat-
ing system. InkTag must not allow the operating system to read or
modify the application’s processor registers. Doing so could leak
private data, or allow the operating system to modify the applica-
tion’s control flow or data by changing the instruction pointer, con-
dition flags, or a register value. The InkTag hypervisor interposes
on every context switch between a secure HAP and the operating
system. On context switches, the hypervisor saves processor regis-
ters, and overwrites their values before switching to the OS.

Address space integrity In addition to application registers, the
InkTag hypervisor must ensure privacy and integrity for code and
data in aHAP’s address space. When an untrusted operating system
attempts to read application memory, InkTag hashes memory and
encrypts it, ensuring that the untrusted operating system cannot
read application secrets. When theHAP accesses the memory again,
the InkTag hypervisor decrypts it and verifies the hash, to ensure
that the memory was not modified by the operating system.

3 / 13

Design

Goals
Protect applications from untrusted OS
Secure use of (a subset of) OS services
Sharing of data among mutually trusting applications
Fine-grained and flexible access control

!""#$%&'$()

*+,-./).#

0)12&3,45"./6$7(/

4!8

4&/9:&/.

;5"./%&##7

;$3;<&77=/&)%.

'/=7'.9

=)'/=7'.9

Figure 1. InkTag design overview. In InkTag high-assurance processes
(HAPs) make hypercalls to the virtual machine hypervisor to verify the
runtime behavior of the operating system. The hypervisor istrusted.

of system calls (e.g.,mmap) to cause a trusted application to
harm itself.

Section2 gives an overview of InkTag, while Section3 explains
InkTag’s high-level design. Section4 introduces paraverification.
Section 5 describes access control in InkTag, followed by our
design for storage (§6), implementation (§7) and evaluation (§8).
Section9 covers related work and Section10 concludes.

2. Overview
InkTag is a hypervisor-based system that protects trusted applica-
tions from an untrusted OS, allowing trusted applications to se-
curely use untrusted OS services. The hypervisor protects applica-
tion code, data, and control flow from the OS, allowing applications
to execute in isolation. Mutually trusting secure applications can
securely and privately share data without interference from the OS
or other applications. Each secure application coordinates directly
with the InkTag hypervisor via hypercalls to detect OS misbehav-
ior.

Figure1 shows an overview of the InkTag architecture. Trusted
application code executes in ahigh-assurance process, or HAP,
which is isolated from the OS. Nearly all application-levelchanges
are contained in a small, 2000-line library (libinktag) theuse of
which is largely encapsulated in the standard C library. InkTag
extends a standard hypervisor to monitor the untrusted OS using
paravirtualized device drivers and virtualization hardware. InkTag
defines new hypercalls forHAPs to verify OS behavior.

InkTag shares its basic threat model and security guarantees
with previous work where a trusted hypervisor verifies an untrusted
operating system’s actions; such as SP3 [47], and especially Over-
shadow [11]. We first discuss issues generic to all approaches, then
starting with Section2.4discuss issues specific to InkTag.

2.1 Threat Model

InkTag assumes that the OS is completely untrusted and can behave
in arbitrarily malicious ways. Applications running on theOS have
both an untrusted context maintained by the OS used for requesting
OS services, and a trusted context used for executing code that must
be isolated from the OS. The developer trusts the InkTag hypervisor
and the trusted execution context of the application. The trusted
application context is isolated from the OS by the hypervisor.

InkTag does not address application-level bugs, and will not
stop an application that deliberately divulges secret data(e.g., by
putting it in the arguments of a system call that the OS handles).

InkTag cannot guarantee untrusted OS availability, but cande-
tect this class of misbehavior. Trivially, a malicious OS could sim-
ply shut down every time it was started, though the InkTag hyper-
visor will detect such misbehavior. More subtle availability attacks
are possible, such as deleting volatile data, which will be detected
in a timely manner, but may result in the loss of data between mis-
behavior and detection.

2.2 Size of trusted computing base (TCB)

The operating system consists of millions of lines of code, so its
elimination from the trusted computing base seems,prima facie, to
increase security. However, the KVM hypervisor includes anentire
OS (sometimes called a type 2 hypervisor). Eliminating trust in the
guest instance of Linux is of little security value if the hypervisor
contains its own instance.

However, simpler hypervisors (type 1) exist, and contain fewer
lines of code than a typical operating system. Additionally, the hy-
pervisor interface is a hardware interface, which is far simpler and
easier to make secure than the hundreds of semantically complex
system calls exported by a general-purpose operating system. For
example, from 2010 to 2012, a search of the National Vulnerabil-
ity Database [31] returns 12 exploits for Xen and 16 exploits for
KVM that have an impact worse than denial of service. By contrast,
there are 53 such vulnerabilities published for the Linux kernel in
2012, of which only 7 are driver vulnerabilities. These vulnerabil-
ities spanned many different core kernel services such as memory
management, file systems, network protocol implementations, and
syscalls. The situation is not much better for Windows 7: in 2012,
there were 9 privilege escalation and 31 remote code execution bul-
letins listed [1].

2.3 Security guarantees

Here we summarize the security guarantees provided to an InkTag
application. The InkTag hypervisor ensures that aHAP’s process
context (registers) and address space are isolated from thethe oper-
ating system. Then, InkTag ensures that aHAP can use a subset of
services provided by the untrusted OS to interact with secure files
(files with privacy and integrity managed by InkTag through en-
cryption and hashing), and verify that those services were provided
correctly. InkTag shares these basic security guarantees,as well
as implementation techniques, with previous work such as Over-
shadow.

In addition to the majority ofHAP code that executes in a trusted
context, eachHAP also contains a small amount ofuntrusted tram-
polinecode that interacts with the operating system (this is similar
to Overshadow’suncloaked shim). The InkTag hypervisor switches
control between secureHAP code and the untrusted trampoline,
while the untrusted operating system schedules among the un-
trusted trampoline and other contexts. This allows the InkTag hy-
pervisor to control switches into and out of a secure contextand
ensure control flow integrity. Then, the InkTag hypervisor encrypts
and hashesHAP pages to ensure privacy and integrity for theHAP’s
address space: this is analogous to Overshadow’smulti-shadowing
technique.

Control flow integrity As with traditional applications, aHAP
running in InkTag may be interrupted at any time by the operat-
ing system. InkTag must not allow the operating system to read or
modify the application’s processor registers. Doing so could leak
private data, or allow the operating system to modify the applica-
tion’s control flow or data by changing the instruction pointer, con-
dition flags, or a register value. The InkTag hypervisor interposes
on every context switch between a secure HAP and the operating
system. On context switches, the hypervisor saves processor regis-
ters, and overwrites their values before switching to the OS.

Address space integrity In addition to application registers, the
InkTag hypervisor must ensure privacy and integrity for code and
data in aHAP’s address space. When an untrusted operating system
attempts to read application memory, InkTag hashes memory and
encrypts it, ensuring that the untrusted operating system cannot
read application secrets. When theHAP accesses the memory again,
the InkTag hypervisor decrypts it and verifies the hash, to ensure
that the memory was not modified by the operating system.

3 / 13

Building Blocks

Object
File or memory region
Comprised of S-pages
64-bit object identifier (OID)

S-page
Data (4 kB on x86)
Metadata: <OID, offset>, hash, crypto IV

Nested Paging
PT: guest-virtual → guest-physical (OS)
EPT: guest-physical → host-physical (Hypervisor)
Independent EPTs for un-/trusted execution

4 / 13

Secure Memory Management

Figure 2. Address space protection using both EPT and management of
HAP page tables. The InkTag hypervisor uses two EPTs to divide access
between physical frames containing cleartextS-pages, and those containing
untrusted data or encryptedS-pages. Then, it managesHAP page tables to
restrict access within the set of secure frames.

and installing modified page tables for the guest OS that contain
the transformed mappings.

Hardware MMU virtualization As might be expected, virtual-
izing memory in this manner adversely affects both hypervisor
complexity and hypervisor performance. In response, more recent
x86 processors have supportednested paging. With nested pag-
ing, guest memory accesses are translated through two separate
page tables. First, guest-virtual addresses are translated into guest-
physical addresses by traditional page tables managed entirely by
the guest OS. Then, guest-physical addresses are translated into
host-physical addresses by theextended page table(EPT)1. The
EPT is managed by the hypervisor, but does not need to be up-
dated in response to changes to guest page tables, as it only maps
between guest-physical and host-physical address spaces.Mean-
while, the guest OS is free to perform arbitrary modifications to
its own page tables, as all accesses will be restricted by EPTs to
memory explicitly approved by the hypervisor.

Nested paging is a significant step forward for hypervisors.
However, as discussed in section3.1, the InkTag hypervisor’s pri-
mary means of enforcing privacy, integrity, and access control is
through detailed management of OS page table updates. A key goal
for designing the InkTag hypervisor is to retain the necessary con-
trol over guest OS page table updates, while still being ableto har-
ness the performance benefits of modern virtualization hardware.

Nested isolation InkTag takes advantage of hardware MMU vir-
tualization by using a combination of hardware EPT support and

1 EPT is the terminology used for nested paging on Intel processors. Al-
though InkTag was designed for Intel processors, we believethe design to
be equally applicable to AMD processors.

management of individual OS page table updates. Rather thanuse
a single EPT for all of guest execution, the InkTag hypervisor uses
two separate EPT trees. Thetrusted EPTis installed during isolated
HAP execution, while theuntrusted EPTis used during execution
of the operating system and other applications (Figure2). The con-
tents of both EPTs are entirely managed by the hypervisor, and are
therefore trustworthy. The trusted/untrusted label refers to the con-
tents of the physical frames they map. The trusted EPT primarily
maps physical frames that contain cleartextS-pages, while the un-
trusted EPT maps all other frames, including encryptedS-pages,
data belonging to the OS, and untrusted applications.

Using separate EPTs for trusted and untrusted contexts allows
InkTag to coarsely control access to secure pages. Physicalframes
holding cleartextS-pages are not mapped in the untrusted EPT
If the OS or an untrusted application accesses a cleartextS-page
frame, the access causes a fault that is handled by the hypervisor.
InkTag hashes the contents of the frame, encrypts the frame’s con-
tents, maps it in the untrusted EPT, and unmaps it from the trusted
EPT. If the trustedHAP accesses the frame again, the hypervisor
decrypts the frame, verifies the contents against the hash, maps it
in the trusted EPT, and unmaps it from the untrusted EPT.

In addition to the coarse access control provided by EPTs,
InkTag must subdivide access to physical frames among executing
HAPs. When executing in trusted mode, everyHAP can potentially
access any physical frame holding a cleartextS-page. However,
not every HAP should have access to allS-pages. The InkTag
hypervisor restricts access for an individualHAP to a subset of
physical frames by managing OS page table updates for theHAP
address space. Importantly, the InkTag hypervisor is only required
to manageHAP page tables, and only for the part of the address
space accessible in user mode (the lower half of the address space
in the x86-64 architecture). All other page tables (including the
kernel address space forHAPs) can be managed by the OS without
hypervisor intervention.

By combining the access control for physical frames provided
by EPT with management of guest page tables only when nec-
essary, InkTag isolatesHAPs from an untrusted operating system
while still taking advantage of modern virtualization hardware.

4. Paraverification
The task of managingS-pages requires that the InkTag hypervi-
sor have deep visibility into low-level OS operations, suchas up-
dating page tables. This kind of detailed introspection introduces
complexity into the hypervisor that can impede efforts to reason
about its correctness. In addition, interposing on low-level opera-
tions harms performance with needless traps into the hypervisor.

Previous systems have attempted to remove trust from the op-
erating system in a way that is largely transparent toboth the ap-
plication and operating system. This section highlights the signif-
icant challenges to application security and system performance
presented by this approach.

4.1 Verification challenges

InkTag creates a secure address space forHAPs by managing only
the user mode portions ofHAP page tables, as described in Sec-
tion 3.2. Here we explain all the steps necessary for the InkTag
hypervisor to detect and interpret a page table update. InkTag must
intercept low-level page table updates (“Set page table entry at ad-
dressA to x.”), determine their high-level effects (“Map physical
frameP at virtual addressV .”), and compare those effects against
the address space specified by an application (“The application
wants to map theS-pageS at addressV , do the contents of the
physical frame have the same hash asS?”).

5 / 13

Paraverification

HAP
Maintains array: <address range, OID, offset>
Hands token to OS with each mapping request

Figure 5. Paraverified isolation. AHAP maintains a list of memory map-
pings in its secure address space, providing the untrusted OS indices into the
list. The untrusted OS must pass the same index to the InkTag hypervisor in
order to handle page faults.

OS, and trying to re-verify address space integrity, the InkTag hy-
pervisor protects application page tables and then considers any
access to be malicious. The OS cannot update the tables directly, it
must use the paravirtual interface, and the hypervisor willrespond
to unexpected accesses by taking corrective action (such askilling
the OS).

4.3 Paraverified isolation

InkTag isolates aHAP’s address space using paraverified operations
on secure pages. As described in section4.1, InkTag must validate
OS page table updates to ensure thatHAP virtual addresses map
the correct, unmodifiedS-page. To do so, the untrusted operating
system must pair each page table update with data proving that the
update reflects the application’s intent.

When aHAP maps a region of memory to a file, it provides
the untrusted OS kernel a securetokenthat describes the mapping.
The token is an unforgeable statement from the application to
the hypervisor that fully describes the requested mapping.One
possibility for a token would be an HMAC on a description of the
desired mapping, using a secret key shared between theHAP and
the hypervisor. InkTag does not use an HMAC, but a simple integer,
which we now explain.

Because InkTag isolates aHAP from the operating system and
must manageHAP page tables, it can optimize the communication
of tokens from application to the untrusted OS to the hypervisor.
All InkTag HAPs maintain a list of the mappings that make up their
address space, in the form of a list with nodes allocated froma
single array at a known virtual address in the application’saddress
space. The untrusted OS cannot forge or modify entries in thearray,
as it does not have access to theHAP’s address space. Because
the hypervisor intercepts all page table updates for theHAP, it
can trivially keep a small translation lookaside buffer forjust the
virtual addresses that map the array of nodes. In InkTag, a token to
describe a memory mapping consists of a simple integer indexinto
its list of maps.

On initialization, aHAP invokes a hypercall to inform the hy-
pervisor about the base and limit of its mapping list. When the HAP
creates a new memory mapping, it allocates a new entry from its
array of nodes, initializes it with information about the mapping:
the address range, OID and offset theHAP intends to map, as well
as a marker to indicate that this entry is now valid. TheHAP then
sends the index of the entry to the untrusted OS as a token. When
the OS incurs a page fault, it uses its existing structures for index-
ing memory mappings (already in service to handle the page fault)
to locate the token and sends it to the hypervisor along with the re-
maining information describing the page table update: the address
of the page table entry, the updated page table value, and theaf-
fected virtual address.

Upon receiving the page table update and token, the hypervisor
ensures the token describes a valid index in theHAP’s array. If
so, it uses its lookaside buffer to translate the virtual address and
retrieves the mapping information. If the described address range

matches the fault, the hypervisor uses the provided object and offset
information to verify the contents of the newly mapped physical
frame. If the address range does not match the fault, the index is
not contained within theHAP’s array, or the index does not specify
a valid entry, the hypervisor will not install the new mapping. In
the rare event that the virtual address corresponding to theentry
is not mapped, the hypervisor does not install the mapping and
injects a page fault into the application when it is next scheduled.
The page fault, if correctly handled by the untrusted OS, will cause
the hypervisor to refill its lookaside buffer, the application retries
the original access and faults again, and the hypervisor maynow
access the entry for the token.

Paraverification forHAP address spaces significantly reduces
the complexity of the InkTag hypervisor. Significant OS codeis
dedicated to efficiently looking up memory ranges during memory
management. Without paraverification, InkTag must duplicate this
code so that it may efficiently respond to changes in theHAP’s page
tables. Instead, InkTag leverages the existing OS index structures
by requiring that the OS look up the relevant token for a new
mapping.

4.4 Verification of address space invariants

An Iago attack subverts application security by violating invariants
that the application assumes are true about its address space: that
mappings returned by the operating system do not overlap. How-
ever, an untrusted OS may violate this invariant at any time.In
response, aHAP could take on the responsibility of allocating re-
gions of its address space, only requesting new mappings at fixed
addresses, and not accepting any variation from the untrusted OS.
However, we wish to avoid importing significant OS functional-
ity into either the hypervisor or application. Alternately, a HAP
may verify that each mapping allocated on its behalf by the OS
respects necessary invariants. We take this approach with InkTag,
while shifting the burden of proving that mappings respect invari-
ants from theHAP to the untrusted operating system.

InkTag HAPs use an array of descriptors to enumerate the con-
tents of their address space. They maintain a linked list of entries,
sorted in address order, with integer indices serving as previous and
next pointers. When aHAP requests a new mapping from the OS, in
addition to returning the newly allocated address, the OS also must
return a token to the application: the index of the application’s entry
in its list of maps that is immediately previous to the new address
allocated by the untrusted OS. As a result, theHAP can trivially
both validate that the new map does not overlap any existing maps,
and insert it into the list in the proper location, without needing to
maintain its own sorting structures.

As with page table updates, paraverification for address space
invariants allows applications to defend against a duplicitous oper-
ating system, while relying on existing indexing structures within
the untrusted OS to perform most verification tasks.

5. Access control
Isolation and address space integrity provide the buildingblocks
for secureHAP execution under an untrusted operating system.
However, real systems require usable mechanisms for securely
sharing data. InkTag is the first system to provide access control
under an untrusted OS.

Access control mechanisms in InkTag should meet the follow-
ing criteria:
• Efficiency. Ultimately, the hypervisor will be responsible for

enforcing access control, and must do so on performance-
critical events, such as updating page tables. In addition,we
wish to avoid bloating the trusted computing base by requiring
the hypervisor to evaluate complex policy decisions. A good

Hypervisor
OS provides page table update + token
Look up OID associated with virtual address using token
Check access permissions and integrity of frame

6 / 13

Paraverification

HAP
Maintains array: <address range, OID, offset>
Hands token to OS with each mapping request

Figure 5. Paraverified isolation. AHAP maintains a list of memory map-
pings in its secure address space, providing the untrusted OS indices into the
list. The untrusted OS must pass the same index to the InkTag hypervisor in
order to handle page faults.

OS, and trying to re-verify address space integrity, the InkTag hy-
pervisor protects application page tables and then considers any
access to be malicious. The OS cannot update the tables directly, it
must use the paravirtual interface, and the hypervisor willrespond
to unexpected accesses by taking corrective action (such askilling
the OS).

4.3 Paraverified isolation

InkTag isolates aHAP’s address space using paraverified operations
on secure pages. As described in section4.1, InkTag must validate
OS page table updates to ensure thatHAP virtual addresses map
the correct, unmodifiedS-page. To do so, the untrusted operating
system must pair each page table update with data proving that the
update reflects the application’s intent.

When aHAP maps a region of memory to a file, it provides
the untrusted OS kernel a securetokenthat describes the mapping.
The token is an unforgeable statement from the application to
the hypervisor that fully describes the requested mapping.One
possibility for a token would be an HMAC on a description of the
desired mapping, using a secret key shared between theHAP and
the hypervisor. InkTag does not use an HMAC, but a simple integer,
which we now explain.

Because InkTag isolates aHAP from the operating system and
must manageHAP page tables, it can optimize the communication
of tokens from application to the untrusted OS to the hypervisor.
All InkTag HAPs maintain a list of the mappings that make up their
address space, in the form of a list with nodes allocated froma
single array at a known virtual address in the application’saddress
space. The untrusted OS cannot forge or modify entries in thearray,
as it does not have access to theHAP’s address space. Because
the hypervisor intercepts all page table updates for theHAP, it
can trivially keep a small translation lookaside buffer forjust the
virtual addresses that map the array of nodes. In InkTag, a token to
describe a memory mapping consists of a simple integer indexinto
its list of maps.

On initialization, aHAP invokes a hypercall to inform the hy-
pervisor about the base and limit of its mapping list. When the HAP
creates a new memory mapping, it allocates a new entry from its
array of nodes, initializes it with information about the mapping:
the address range, OID and offset theHAP intends to map, as well
as a marker to indicate that this entry is now valid. TheHAP then
sends the index of the entry to the untrusted OS as a token. When
the OS incurs a page fault, it uses its existing structures for index-
ing memory mappings (already in service to handle the page fault)
to locate the token and sends it to the hypervisor along with the re-
maining information describing the page table update: the address
of the page table entry, the updated page table value, and theaf-
fected virtual address.

Upon receiving the page table update and token, the hypervisor
ensures the token describes a valid index in theHAP’s array. If
so, it uses its lookaside buffer to translate the virtual address and
retrieves the mapping information. If the described address range

matches the fault, the hypervisor uses the provided object and offset
information to verify the contents of the newly mapped physical
frame. If the address range does not match the fault, the index is
not contained within theHAP’s array, or the index does not specify
a valid entry, the hypervisor will not install the new mapping. In
the rare event that the virtual address corresponding to theentry
is not mapped, the hypervisor does not install the mapping and
injects a page fault into the application when it is next scheduled.
The page fault, if correctly handled by the untrusted OS, will cause
the hypervisor to refill its lookaside buffer, the application retries
the original access and faults again, and the hypervisor maynow
access the entry for the token.

Paraverification forHAP address spaces significantly reduces
the complexity of the InkTag hypervisor. Significant OS codeis
dedicated to efficiently looking up memory ranges during memory
management. Without paraverification, InkTag must duplicate this
code so that it may efficiently respond to changes in theHAP’s page
tables. Instead, InkTag leverages the existing OS index structures
by requiring that the OS look up the relevant token for a new
mapping.

4.4 Verification of address space invariants

An Iago attack subverts application security by violating invariants
that the application assumes are true about its address space: that
mappings returned by the operating system do not overlap. How-
ever, an untrusted OS may violate this invariant at any time.In
response, aHAP could take on the responsibility of allocating re-
gions of its address space, only requesting new mappings at fixed
addresses, and not accepting any variation from the untrusted OS.
However, we wish to avoid importing significant OS functional-
ity into either the hypervisor or application. Alternately, a HAP
may verify that each mapping allocated on its behalf by the OS
respects necessary invariants. We take this approach with InkTag,
while shifting the burden of proving that mappings respect invari-
ants from theHAP to the untrusted operating system.

InkTag HAPs use an array of descriptors to enumerate the con-
tents of their address space. They maintain a linked list of entries,
sorted in address order, with integer indices serving as previous and
next pointers. When aHAP requests a new mapping from the OS, in
addition to returning the newly allocated address, the OS also must
return a token to the application: the index of the application’s entry
in its list of maps that is immediately previous to the new address
allocated by the untrusted OS. As a result, theHAP can trivially
both validate that the new map does not overlap any existing maps,
and insert it into the list in the proper location, without needing to
maintain its own sorting structures.

As with page table updates, paraverification for address space
invariants allows applications to defend against a duplicitous oper-
ating system, while relying on existing indexing structures within
the untrusted OS to perform most verification tasks.

5. Access control
Isolation and address space integrity provide the buildingblocks
for secureHAP execution under an untrusted operating system.
However, real systems require usable mechanisms for securely
sharing data. InkTag is the first system to provide access control
under an untrusted OS.

Access control mechanisms in InkTag should meet the follow-
ing criteria:
• Efficiency. Ultimately, the hypervisor will be responsible for

enforcing access control, and must do so on performance-
critical events, such as updating page tables. In addition,we
wish to avoid bloating the trusted computing base by requiring
the hypervisor to evaluate complex policy decisions. A good

Hypervisor
OS provides page table update + token
Look up OID associated with virtual address using token
Check access permissions and integrity of frame

6 / 13

Access Control

Attribute
Hierarchically composed string (.user.alice)
Attached to HAPs, kept across fork and exec

Access control lists on OIDs (read, write, modify) and
attributes (add, modify)

Namespace
Attribute used to model directory (.ns.etc)
OID = hash(namespace + file name)
HAP needs namespace in its attribute list for file creation

HAP startup
Hypercall: OID of binary + memory layout
Hypervisor sets up HAP context and adds (.bin.<oid>)

7 / 13

Access Control

Attribute
Hierarchically composed string (.user.alice)
Attached to HAPs, kept across fork and exec

Access control lists on OIDs (read, write, modify) and
attributes (add, modify)

Namespace
Attribute used to model directory (.ns.etc)
OID = hash(namespace + file name)
HAP needs namespace in its attribute list for file creation

HAP startup
Hypercall: OID of binary + memory layout
Hypervisor sets up HAP context and adds (.bin.<oid>)

7 / 13

Access Control

Attribute
Hierarchically composed string (.user.alice)
Attached to HAPs, kept across fork and exec

Access control lists on OIDs (read, write, modify) and
attributes (add, modify)

Namespace
Attribute used to model directory (.ns.etc)
OID = hash(namespace + file name)
HAP needs namespace in its attribute list for file creation

HAP startup
Hypercall: OID of binary + memory layout
Hypervisor sets up HAP context and adds (.bin.<oid>)

7 / 13

Storage

Metadata interleaved with S-pages
OS presented with virtual disk lacking metadata blocks
Keep two hashes for S-pages during update

5.4 Naming and integrity

InkTag does not currently support sets of OIDS (i.e., directories).
However, the hierarchical layout of traditional file systems does
convey an important property that is essential for application se-
curity: file integrity. Consider the standard Unix/etc directory.
Applications rely on the property that only trusted system admin-
istrators can create or modify files in/etc, because those config-
uration files can dramatically change application behavior. InkTag
must provide some mechanism to convey similar security-essential
information.

InkTag provides integrity guarantees for files with specialized
attributes callednamespaces. Namespaces are strings created hi-
erarchically, as attributes, and have access control liststhat allow
a HAP to add the namespace to its list of attributes. Although we
consider attributes for access control and namespaces to becon-
ceptually distinct, they are functionally identical.

Namespaces convey integrity information by acting as gate-
keepers to file creation. When an application creates a new file, the
InkTag hypervisor must assign the file an OID. Each OID is gen-
erated from two components: a namespace and an arbitrary string,
similarly to the way in which a file is created within a directory,
with a given file name. To generate an OID, the application must
carry the desired namespace in its list of attributes. The hypervisor
hashes the two components, and uses the result as the new OID.
Any HAP that later accesses the file knows that it was created by a
HAP that carried the associated namespace.

Note that namespaces do not restrict file access—aHAP may
open a file created within a namespace regardless of whether it car-
ries that namespace in its list. Consider a configuration directory
similar to/etc. In InkTag, there would exist a.ns.etc namespace,
with the add access modeA = .group.sysadmin . A HAP run by
a system administrator (member of the sysadmin group, thus car-
rying the .group.sysadmin attribute) may create a file by adding
the .ns.etc attribute, specifying a name (e.g. “passwd”), and pass-
ing both components to the hypervisor, which permits the OID’s
creation.

A HAP opening the file generates the OID by hashing.ns.etc
and “passwd,” though it is not required to carry the.ns.etc names-
pace, only to know of its existence. TheHAP can trust that the con-
tents of the file were generated by a system administrator, because
only a member of of the sysadmin group could create the file ini-
tially (as checked by the hypervisor), and it trusts such principals
to correctly manage access control for files they create.

6. Storage and consistency
InkTag stores secure page metadata in memory for any secure pages
whose data segments also reside in memory. The untrusted operat-
ing system is responsible for placing the data segments of secure
pages on the virtual disk. For secure pages to be durable, InkTag
must also store secure metadata: the OID and offset correspond-
ing to each block of data, its hash, and the encryption initialization
vector (IV) necessary to decrypt the data. This section addresses
a number of practical challenges in persistently and transparently
storingS-page metadata, including addressing consistency between
OS and InkTag storage.

Data layout InkTag must synchronize updates toS-pages and
metadata, and should store secure metadata efficiently. When the
OS issues a read request for secure page data, the hypervisorshould
not require significant additional lookup work in order to also read
in secure page metadata. Also, storing secure metadata should not
confound OS disk scheduling by adding disk seeks to store or
retrieve secure metadata.

InkTag addresses these goals by interspersing storage of secure
page data and metadata on the physical disk, then presentingthe

Figure 6. InkTag disk layout. Data and metadata are interleaved to opti-
mize disk scheduling.

data storage to the untrusted OS as a contiguous virtual diskwithout
the sectors employed to store secure metadata. The size of the
media, as seen by the untrusted OS, is smaller than the size ofthe
physical drive or backing file. When reading or writing a secure
page, the secure InkTag metadata will always reside in the closest
metadata storage block, causing limited performance overheads.

Synchronizing storage of secure data and metadataInkTag em-
ploys paraverification techniques to properly synchronizestorage
of secure data and metadata. Before the untrusted OS may write
out a page via the virtual disk, it must notify the InkTag hypervi-
sor. If the physical frame being written contains data for anS-page,
InkTag ensures that the page is encrypted, and passes the relevant
metadata to the backend driver for the virtual disk. The backend
consumes this metadata while writing pages to the physical disk,
placing each piece of secure metadata in the metadata block closest
to disk block containing the data for theS-page.

Providing guarantees on data availability Although InkTag is
unable to provide availability guarantees in many cases, the hy-
pervisor can enforce OS deadlines for writing out dirty data. For
example, if a reasonable upper bound for dirty data residingin the
OS is 30 seconds, InkTag may suspect OS malfeasance if it has not
detected a write of a particular secure page after 45 seconds. Al-
though the hypervisor may not be able to retrieveS-pages in mem-
ory that the OS has simply erased, it can prevent applications from
proceeding under the incorrect assumption thatS-pages are safely
on disk. Similarly, aHAP may notify the InkTag hypervisor when
it explicitly requests that dirty pages be written out (suchas when
invoking themsync system call), and receive confirmation when
the writeback actually occurs, or a warning that the OS has not
complied.

Preventing deletion or loss of high-assurance dataBecause
filesystem indexing structures vary widely between file systems,
it is difficult to verify their correctness at hypervisor level. As a re-
sult, a malicious OS could appear to comply with InkTag policy by
writing out file data blocks but not updating filesystem metadata,
leaving file data blocks inaccessible.

InkTag provides a securefsck mechanism forconservation of
high-assurance datain the face of this threat. Secure page metadata
includes file and offset information, allowing InkTag to reconstruct
secure files independently of OS indexing structures. In addition,
InkTag may prevent the OS from overwriting a secure page, unless
the OS is replacing the page with a newer version of the same
secure page, or if a newer version of the page has previously been
written elsewhere on disk.

Consistency for secure pages in the face of crashesInkTag is the
first system to address consistency requirements for an untrusted
operating system. Without proper filesystem consistency, file data
may become unavailable, file updates may be lost, and access
control changes may not be honored.

When the OS writes anS-page to disk on behalf of aHAP, both
the newS-page and its hash must be stored. If the system crashes

8 / 13

Prototype

Linux 2.6.36 + extension to KVM
QEMU block driver for virtual disk
libinktag (2000 SLOC) wrapped by libC

9 / 13

LMbench

Linux InkTag Overhead
null 0.04 2.23 55.80×

open/close 0.87 6.90 7.95×
ctxsw 2p/0k 0.71 1.01 1.41×

File create 5.46 12.92 2.36×
File delete 3.40 7.56 2.23×

mmap 4059.20 40360.00 9.94×
pagefault 0.89 6.68 7.50×

fork 99.00 567.80 5.74×
fork+exec 290.60 882.60 3.04×

Table 2. LMbench latency microbenchmark results (in microseconds.)

We automateHAP interaction with the InkTag hypervisor by
interposing on system calls in the standard C library. For example,
when an application callsmmap(), the system call is intercepted
by our trusted InkTag library. The library performs the system call,
validates the result to ensure that the untrusted OS does notviolate
invariants for the address space (§4.4), and passes a token to the
untrusted OS for handling page faults in the newly mapped region
(§4.3).

InkTag does not expose information about hashes and encryp-
tion keys forS-pages to applications. ThusHAPs must interact with
secure files by mapping them into their address space. We imple-
mentmmap()-based versions of standardread() andwrite()
system calls to support applications that rely on those calls for file
I/O.

7.4 Block Driver

To implement transparent loading ofS-page metadata, we add a
new block driver implementation to the QEMU (the userspace
portion of KVM) block driver interface. The new block driver
transparently translates read and write requests from the hardware
emulation layer. Doing the translation at this level puts usat the
lowest layer before the actual hardware allowing us to better adjust
and handle the block requests.

Our secure metadata consists of two 32-byte hashes, an OID,
and an offset. We place secure page metadata once every 32 pages
of normal data. We track which disk sectors contain validS-pages
using a bitmap. This bitmap is mapped and updated asHAPs exe-
cute, and is written to disk only upon shutdown. This policy is safe
even in the event of a crash: there will be enough data on disk to be
able to recover the bitmap.

8. Evaluation
In this section we evaluate the performance overhead imposed by
our InkTag prototype built in the KVM hypervisor. We evaluated
InkTag’s performance using two different machines: we run latency
and SPEC CPU benchmarks on an i7 860 running at 2.80GHz, and
InkTag block storage and application benchmarks on an Inteli7
870 at 2.93GHz. Both machines have quad-core processors, 8GB
of memory, and run Ubuntu 10.04.4.

We modify the 2.6.36 Linux kernel and QEMU 0.12.5 for Ink-
Tag, and run unmodified versions for the baseline. VM guests run
with a single virtual CPU, 2GB of memory, and the same kernel as
the host. In the InkTag guest, all benchmark binaries run as HAPs.

8.1 Microbenchmarks

Table 2 shows results from the LMBench [30] suite of OS mi-
crobenchmarks. LMBench is a series of portable microbenchmarks
focused on measuring individual OS operations in isolation. We
restrict our evaluation to focus on file operations, memory manip-
ulation, and process creation, as these are the areas that will be
affected by running as an InkTagHAP. We modify LMBench only

Figure 7. InkTag storage backend performance as measured by sequential
or random msync()s on a memory-resident file.

enough to turn its components intoHAPs: 68 lines of modifications
to the build system and 5 lines of configuration changes.

The null syscall benchmark primarily measures the latency of
switching between an application and the OS, and representsthe
worst case for InkTag. AHAP must context switch from user con-
text, to the virtual machine, then into the operating system, and
then return along the opposite path. The high latency for switching
between application and OS directly impacts the performance of
nearly all of the LMBench microbenchmarks, as they measure in-
teractions between an application and the operating system. Addi-
tionally, operations that involve any kind of page table update, such
asmmap,fork, andfork+exec, are also affected due to the Ink-
Tag hypervisor validating each page table update. These overheads
appear large in isolation; however, most applications are signifi-
cantly less sensitive to system call latency than microbenchmarks.
Most of the LMBench benchmarks show a difference in latency
that is 10s of microseconds or less.

8.2 Storage

We evaluate InkTag’s storage backend with a benchmark that syn-
chronizes regions varying in size from a 256MB secure file cached
in memory to the virtual disk. We disable host OS caching for our
virtual disk, to best simulate the effect of actual disk scheduling on
I/O throughput. Figure7 shows the performance of syncing vary-
ing window sizes, from 4KB to 1MB, either sequentially through
the file or in random order. In addition, we show numbers for a ver-
sion of InkTag in which we have disabled encryption and hashing,
in order to isolate the effect of disk scheduling on performance.
The encryption and hashing occur when the OS touchesS-pages
to sync them to disk. Our InkTag prototype interleavesS-page data
and metadata at an interval of 32 pages (128KB). For window sizes
above 128KB, InkTag approaches the performance of a standard
block device, as the InkTag block driver can combine a page of
metadata with 32 data pages in a single write to the backing de-
vice. Beneath that threshold, InkTag’s performance suffers, espe-
cially for sequential writes. This is due to InkTag’s metadata lay-

10 / 13

Storage

Linux InkTag Overhead
null 0.04 2.23 55.80×

open/close 0.87 6.90 7.95×
ctxsw 2p/0k 0.71 1.01 1.41×

File create 5.46 12.92 2.36×
File delete 3.40 7.56 2.23×

mmap 4059.20 40360.00 9.94×
pagefault 0.89 6.68 7.50×

fork 99.00 567.80 5.74×
fork+exec 290.60 882.60 3.04×

Table 2. LMbench latency microbenchmark results (in microseconds.)

We automateHAP interaction with the InkTag hypervisor by
interposing on system calls in the standard C library. For example,
when an application callsmmap(), the system call is intercepted
by our trusted InkTag library. The library performs the system call,
validates the result to ensure that the untrusted OS does notviolate
invariants for the address space (§4.4), and passes a token to the
untrusted OS for handling page faults in the newly mapped region
(§4.3).

InkTag does not expose information about hashes and encryp-
tion keys forS-pages to applications. ThusHAPs must interact with
secure files by mapping them into their address space. We imple-
mentmmap()-based versions of standardread() andwrite()
system calls to support applications that rely on those calls for file
I/O.

7.4 Block Driver

To implement transparent loading ofS-page metadata, we add a
new block driver implementation to the QEMU (the userspace
portion of KVM) block driver interface. The new block driver
transparently translates read and write requests from the hardware
emulation layer. Doing the translation at this level puts usat the
lowest layer before the actual hardware allowing us to better adjust
and handle the block requests.

Our secure metadata consists of two 32-byte hashes, an OID,
and an offset. We place secure page metadata once every 32 pages
of normal data. We track which disk sectors contain validS-pages
using a bitmap. This bitmap is mapped and updated asHAPs exe-
cute, and is written to disk only upon shutdown. This policy is safe
even in the event of a crash: there will be enough data on disk to be
able to recover the bitmap.

8. Evaluation
In this section we evaluate the performance overhead imposed by
our InkTag prototype built in the KVM hypervisor. We evaluated
InkTag’s performance using two different machines: we run latency
and SPEC CPU benchmarks on an i7 860 running at 2.80GHz, and
InkTag block storage and application benchmarks on an Inteli7
870 at 2.93GHz. Both machines have quad-core processors, 8GB
of memory, and run Ubuntu 10.04.4.

We modify the 2.6.36 Linux kernel and QEMU 0.12.5 for Ink-
Tag, and run unmodified versions for the baseline. VM guests run
with a single virtual CPU, 2GB of memory, and the same kernel as
the host. In the InkTag guest, all benchmark binaries run as HAPs.

8.1 Microbenchmarks

Table 2 shows results from the LMBench [30] suite of OS mi-
crobenchmarks. LMBench is a series of portable microbenchmarks
focused on measuring individual OS operations in isolation. We
restrict our evaluation to focus on file operations, memory manip-
ulation, and process creation, as these are the areas that will be
affected by running as an InkTagHAP. We modify LMBench only

Figure 7. InkTag storage backend performance as measured by sequential
or random msync()s on a memory-resident file.

enough to turn its components intoHAPs: 68 lines of modifications
to the build system and 5 lines of configuration changes.

The null syscall benchmark primarily measures the latency of
switching between an application and the OS, and representsthe
worst case for InkTag. AHAP must context switch from user con-
text, to the virtual machine, then into the operating system, and
then return along the opposite path. The high latency for switching
between application and OS directly impacts the performance of
nearly all of the LMBench microbenchmarks, as they measure in-
teractions between an application and the operating system. Addi-
tionally, operations that involve any kind of page table update, such
asmmap,fork, andfork+exec, are also affected due to the Ink-
Tag hypervisor validating each page table update. These overheads
appear large in isolation; however, most applications are signifi-
cantly less sensitive to system call latency than microbenchmarks.
Most of the LMBench benchmarks show a difference in latency
that is 10s of microseconds or less.

8.2 Storage

We evaluate InkTag’s storage backend with a benchmark that syn-
chronizes regions varying in size from a 256MB secure file cached
in memory to the virtual disk. We disable host OS caching for our
virtual disk, to best simulate the effect of actual disk scheduling on
I/O throughput. Figure7 shows the performance of syncing vary-
ing window sizes, from 4KB to 1MB, either sequentially through
the file or in random order. In addition, we show numbers for a ver-
sion of InkTag in which we have disabled encryption and hashing,
in order to isolate the effect of disk scheduling on performance.
The encryption and hashing occur when the OS touchesS-pages
to sync them to disk. Our InkTag prototype interleavesS-page data
and metadata at an interval of 32 pages (128KB). For window sizes
above 128KB, InkTag approaches the performance of a standard
block device, as the InkTag block driver can combine a page of
metadata with 32 data pages in a single write to the backing de-
vice. Beneath that threshold, InkTag’s performance suffers, espe-
cially for sequential writes. This is due to InkTag’s metadata lay-

Linux InkTag Overhead
null 0.04 2.23 55.80×

open/close 0.87 6.90 7.95×
ctxsw 2p/0k 0.71 1.01 1.41×

File create 5.46 12.92 2.36×
File delete 3.40 7.56 2.23×

mmap 4059.20 40360.00 9.94×
pagefault 0.89 6.68 7.50×

fork 99.00 567.80 5.74×
fork+exec 290.60 882.60 3.04×

Table 2. LMbench latency microbenchmark results (in microseconds.)

We automateHAP interaction with the InkTag hypervisor by
interposing on system calls in the standard C library. For example,
when an application callsmmap(), the system call is intercepted
by our trusted InkTag library. The library performs the system call,
validates the result to ensure that the untrusted OS does notviolate
invariants for the address space (§4.4), and passes a token to the
untrusted OS for handling page faults in the newly mapped region
(§4.3).

InkTag does not expose information about hashes and encryp-
tion keys forS-pages to applications. ThusHAPs must interact with
secure files by mapping them into their address space. We imple-
mentmmap()-based versions of standardread() andwrite()
system calls to support applications that rely on those calls for file
I/O.

7.4 Block Driver

To implement transparent loading ofS-page metadata, we add a
new block driver implementation to the QEMU (the userspace
portion of KVM) block driver interface. The new block driver
transparently translates read and write requests from the hardware
emulation layer. Doing the translation at this level puts usat the
lowest layer before the actual hardware allowing us to better adjust
and handle the block requests.

Our secure metadata consists of two 32-byte hashes, an OID,
and an offset. We place secure page metadata once every 32 pages
of normal data. We track which disk sectors contain validS-pages
using a bitmap. This bitmap is mapped and updated asHAPs exe-
cute, and is written to disk only upon shutdown. This policy is safe
even in the event of a crash: there will be enough data on disk to be
able to recover the bitmap.

8. Evaluation
In this section we evaluate the performance overhead imposed by
our InkTag prototype built in the KVM hypervisor. We evaluated
InkTag’s performance using two different machines: we run latency
and SPEC CPU benchmarks on an i7 860 running at 2.80GHz, and
InkTag block storage and application benchmarks on an Inteli7
870 at 2.93GHz. Both machines have quad-core processors, 8GB
of memory, and run Ubuntu 10.04.4.

We modify the 2.6.36 Linux kernel and QEMU 0.12.5 for Ink-
Tag, and run unmodified versions for the baseline. VM guests run
with a single virtual CPU, 2GB of memory, and the same kernel as
the host. In the InkTag guest, all benchmark binaries run as HAPs.

8.1 Microbenchmarks

Table 2 shows results from the LMBench [30] suite of OS mi-
crobenchmarks. LMBench is a series of portable microbenchmarks
focused on measuring individual OS operations in isolation. We
restrict our evaluation to focus on file operations, memory manip-
ulation, and process creation, as these are the areas that will be
affected by running as an InkTagHAP. We modify LMBench only

Figure 7. InkTag storage backend performance as measured by sequential
or random msync()s on a memory-resident file.

enough to turn its components intoHAPs: 68 lines of modifications
to the build system and 5 lines of configuration changes.

The null syscall benchmark primarily measures the latency of
switching between an application and the OS, and representsthe
worst case for InkTag. AHAP must context switch from user con-
text, to the virtual machine, then into the operating system, and
then return along the opposite path. The high latency for switching
between application and OS directly impacts the performance of
nearly all of the LMBench microbenchmarks, as they measure in-
teractions between an application and the operating system. Addi-
tionally, operations that involve any kind of page table update, such
asmmap,fork, andfork+exec, are also affected due to the Ink-
Tag hypervisor validating each page table update. These overheads
appear large in isolation; however, most applications are signifi-
cantly less sensitive to system call latency than microbenchmarks.
Most of the LMBench benchmarks show a difference in latency
that is 10s of microseconds or less.

8.2 Storage

We evaluate InkTag’s storage backend with a benchmark that syn-
chronizes regions varying in size from a 256MB secure file cached
in memory to the virtual disk. We disable host OS caching for our
virtual disk, to best simulate the effect of actual disk scheduling on
I/O throughput. Figure7 shows the performance of syncing vary-
ing window sizes, from 4KB to 1MB, either sequentially through
the file or in random order. In addition, we show numbers for a ver-
sion of InkTag in which we have disabled encryption and hashing,
in order to isolate the effect of disk scheduling on performance.
The encryption and hashing occur when the OS touchesS-pages
to sync them to disk. Our InkTag prototype interleavesS-page data
and metadata at an interval of 32 pages (128KB). For window sizes
above 128KB, InkTag approaches the performance of a standard
block device, as the InkTag block driver can combine a page of
metadata with 32 data pages in a single write to the backing de-
vice. Beneath that threshold, InkTag’s performance suffers, espe-
cially for sequential writes. This is due to InkTag’s metadata lay-

11 / 13

SPEC 2006 (C only)

1.1

0.99

1.14

1.02 0.99 1 1.01 1.01 0.99

1.1

0.99
1.02 1.03

0.0

0.2

0.4

0.6

0.8

1.0

1.2

pe
rlb

en
ch

bz
ip

2

gc
c

m
cf

m
ilc

go
bm

k

hm
m

er

sj
en

g

lib
qu

an
tu

m

h2
64

re
f

lb
m

sp
hi

nx
3

G
eo

m
ea

n

Benchmark

R
el

at
iv

e
pe

rf
or

m
an

ce

Figure 8. SPEC CPU2006 benchmark performance. “Geomean” indicates
the geometric mean of relative performance.

Linux InkTag
Apache latency 195 ms 220 ms (1.13×)
Apache throughput 462.42 req/s 453.93 req/s (1.02×)
Dokuwiki throughput 13.6 req/s 8.83 req/s (1.54×)

Table 3. InkTag performance for large applications.

Apache DokuWiki
Linux InkTag Linux InkTag

Check hash - 209 - 2,911,649
Check zero hash - 57 - 2,893,517
Update hash - 82 - 1,029
EPT fault 689 1,131 10,668 78,055
VM-exit 171,145 1,217,042 138,801 11,216,363

Table 4. Counts of performance-critical events during benchmark execu-
tion. We count the number of times InkTag must hash a data page(“Check
hash”), hash a data page that should be zero-initialized (“Check zero hash”),
encrypt a page and update its hash (“Update hash”), fault on anested page
table (“EPT fault”), and context-switch out of the guest (“VM-exit”).

out. For example, sequential writes to each of the 4KB pages in a
single cluster of data pages represents a good case for disk schedul-
ing. InkTag, however, must write the metadata page followedby the
data page for each of these writes, causing the disk to seek back and
forth instead of writing sectors in sequential order.

8.3 Application benchmarks

We measure the overhead imposed by InkTag with three different
types of applications: CPU-bound SPEC benchmarks, the Apache
web server, and DokuWiki, a complete wiki application converted
to use InkTag attributes for authentication.

SPEC With little OS interaction, CPU-bound applications exhibit
little performance overhead when running asHAPs. Figure8 shows
results for selected benchmarks from the SPEC 2006 [19] suite
(InkTag does not support Fortran). Out of twelve benchmarks, nine
benchmarks run within a 3% performance overhead of unmodified
KVM, andgcc benchmark has the largest overhead of 14%.

Apache Table 3 shows results for our evaluation of the perfor-
mance of the Apache webserver when compiled as aHAP. We run
the standardab benchmarking tool included with Apache on the
machine hosting the virtualized guest, providing nearly unlimited
bandwidth from the web server to client. We execute 10,000 re-
quests from client to server, at a concurrency level of 100. The
Apache web server serves requests with a 13% overhead in la-

tency, and a 2% overhead in throughput relative to normal virtu-
alized execution. Apache represents a relatively good casefor Ink-
Tag: with several long-lived processes, Apache rarely has to pay
the increased costs imposed by InkTag for application initialization
and teardown.

DokuWiki In order to demonstrate the ability of InkTag to pro-
vide security for realistic workloads, we modified the DokuWiki 2

wiki server to take advantage of InkTag secure files and access con-
trol. DokuWiki is a wiki written in PHP that stores wiki pagesas
files in the server filesystem. We recompiled the PHP CGI binary to
work with InkTag and ran DokuWiki as a CGI script. We added an
InkTag authentication module to DokuWiki to allow a user to log
in with their system credentials (similar to the decentralized login
process described in§5.3) and to restrict access to wiki content via
InkTag access control.

To test the effect of InkTag on a representative set of modifi-
cations to a representative DokuWiki installation, we downloaded
a set of 6,430 revisions of 765 pages from the DokuWiki website
(which is itself run using DokuWiki) to simulate wiki activity. We
evaluate DokuWiki with a 90% read workload, which we believe
a reasonable characterization of a wiki workload. Each write re-
places a page with the subsequent revision of a page in the down-
loaded DokuWiki corpus. We measured the total wallclock time for
10 clients to perform a collective 1,000 requests on the wiki. Our
wiki client makes use of an XML RPC interface that DokuWiki
provides to avoid the need for programmatically interfacing with
DokuWiki forms.

As a HAP with InkTag authentication, DokuWiki runs with a
1.54× overhead over a baseline virtualized execution. As a PHP
application, DokuWiki maps a large number of scripts (with in-
tegrity assured by the InkTag hypervisor) into memory and exer-
cises a significant amount of anonymous temporary memory. As
with OS users, InkTag’s authentication aligns along process bound-
aries. Thus, we must run DokuWiki as an inefficient CGI applica-
tion, not as an Apache module. CGI is a performance worst casefor
InkTag: each request initializes and destroys an entire application
address space.

Virtualization metrics Table 4 shows counts for a number of
performance-critical events during the execution of our large ap-
plication benchmarks. Specific to InkTag execution are the number
of times physical frames are hashed, as well the number of times
the hash of the associatedS-page is updated (this event also counts
the number of times anS-page must be encrypted). With a few
long-lived processes, most of the address space for the Apache web
server remains mapped in the trusted EPT, requiring relatively few
hash updates. DokuWiki, which constructs and destroys an address
space for each request, has a large number of hash operations.

Of particular note are the number of times InkTag is requested to
verify the hash for a page consisting entirely of zeroes. In fact, the
vast majority of hash operations are invoked to determine ifa page
is initialized to zero (2.8 out of 2.9 million hash operations for the
DokuWiki benchmark). InkTag optimizes this case: when asked to
verify the hash of a physical frame, InkTag compares the hashvalue
with the hash of a zero page. If the page should contain only zero,
InkTag simply verifies that property, rather than computinga full
digest. As a result, computation of hashes is not a significant factor
in InkTag’s performance overhead. Similarly, while encryption is
necessary for privacy, it does not significantly affect running time:
the majority of pages that would otherwise be encrypted due to
access by the operating system are in fact anonymous memory
regions that have been unmapped by an application. The entire

2http://www.dokuwiki.org

12 / 13

Benchmark II
Large Applications

1.1

0.99

1.14

1.02 0.99 1 1.01 1.01 0.99

1.1

0.99
1.02 1.03

0.0

0.2

0.4

0.6

0.8

1.0

1.2

pe
rlb

en
ch

bz
ip

2

gc
c

m
cf

m
ilc

go
bm

k

hm
m

er

sj
en

g

lib
qu

an
tu

m

h2
64

re
f

lb
m

sp
hi

nx
3

G
eo

m
ea

n

Benchmark

R
el

at
iv

e
pe

rf
or

m
an

ce

Figure 8. SPEC CPU2006 benchmark performance. “Geomean” indicates
the geometric mean of relative performance.

Linux InkTag
Apache latency 195 ms 220 ms (1.13×)
Apache throughput 462.42 req/s 453.93 req/s (1.02×)
Dokuwiki throughput 13.6 req/s 8.83 req/s (1.54×)

Table 3. InkTag performance for large applications.

Apache DokuWiki
Linux InkTag Linux InkTag

Check hash - 209 - 2,911,649
Check zero hash - 57 - 2,893,517
Update hash - 82 - 1,029
EPT fault 689 1,131 10,668 78,055
VM-exit 171,145 1,217,042 138,801 11,216,363

Table 4. Counts of performance-critical events during benchmark execu-
tion. We count the number of times InkTag must hash a data page(“Check
hash”), hash a data page that should be zero-initialized (“Check zero hash”),
encrypt a page and update its hash (“Update hash”), fault on anested page
table (“EPT fault”), and context-switch out of the guest (“VM-exit”).

out. For example, sequential writes to each of the 4KB pages in a
single cluster of data pages represents a good case for disk schedul-
ing. InkTag, however, must write the metadata page followedby the
data page for each of these writes, causing the disk to seek back and
forth instead of writing sectors in sequential order.

8.3 Application benchmarks

We measure the overhead imposed by InkTag with three different
types of applications: CPU-bound SPEC benchmarks, the Apache
web server, and DokuWiki, a complete wiki application converted
to use InkTag attributes for authentication.

SPEC With little OS interaction, CPU-bound applications exhibit
little performance overhead when running asHAPs. Figure8 shows
results for selected benchmarks from the SPEC 2006 [19] suite
(InkTag does not support Fortran). Out of twelve benchmarks, nine
benchmarks run within a 3% performance overhead of unmodified
KVM, andgcc benchmark has the largest overhead of 14%.

Apache Table 3 shows results for our evaluation of the perfor-
mance of the Apache webserver when compiled as aHAP. We run
the standardab benchmarking tool included with Apache on the
machine hosting the virtualized guest, providing nearly unlimited
bandwidth from the web server to client. We execute 10,000 re-
quests from client to server, at a concurrency level of 100. The
Apache web server serves requests with a 13% overhead in la-

tency, and a 2% overhead in throughput relative to normal virtu-
alized execution. Apache represents a relatively good casefor Ink-
Tag: with several long-lived processes, Apache rarely has to pay
the increased costs imposed by InkTag for application initialization
and teardown.

DokuWiki In order to demonstrate the ability of InkTag to pro-
vide security for realistic workloads, we modified the DokuWiki 2

wiki server to take advantage of InkTag secure files and access con-
trol. DokuWiki is a wiki written in PHP that stores wiki pagesas
files in the server filesystem. We recompiled the PHP CGI binary to
work with InkTag and ran DokuWiki as a CGI script. We added an
InkTag authentication module to DokuWiki to allow a user to log
in with their system credentials (similar to the decentralized login
process described in§5.3) and to restrict access to wiki content via
InkTag access control.

To test the effect of InkTag on a representative set of modifi-
cations to a representative DokuWiki installation, we downloaded
a set of 6,430 revisions of 765 pages from the DokuWiki website
(which is itself run using DokuWiki) to simulate wiki activity. We
evaluate DokuWiki with a 90% read workload, which we believe
a reasonable characterization of a wiki workload. Each write re-
places a page with the subsequent revision of a page in the down-
loaded DokuWiki corpus. We measured the total wallclock time for
10 clients to perform a collective 1,000 requests on the wiki. Our
wiki client makes use of an XML RPC interface that DokuWiki
provides to avoid the need for programmatically interfacing with
DokuWiki forms.

As a HAP with InkTag authentication, DokuWiki runs with a
1.54× overhead over a baseline virtualized execution. As a PHP
application, DokuWiki maps a large number of scripts (with in-
tegrity assured by the InkTag hypervisor) into memory and exer-
cises a significant amount of anonymous temporary memory. As
with OS users, InkTag’s authentication aligns along process bound-
aries. Thus, we must run DokuWiki as an inefficient CGI applica-
tion, not as an Apache module. CGI is a performance worst casefor
InkTag: each request initializes and destroys an entire application
address space.

Virtualization metrics Table 4 shows counts for a number of
performance-critical events during the execution of our large ap-
plication benchmarks. Specific to InkTag execution are the number
of times physical frames are hashed, as well the number of times
the hash of the associatedS-page is updated (this event also counts
the number of times anS-page must be encrypted). With a few
long-lived processes, most of the address space for the Apache web
server remains mapped in the trusted EPT, requiring relatively few
hash updates. DokuWiki, which constructs and destroys an address
space for each request, has a large number of hash operations.

Of particular note are the number of times InkTag is requested to
verify the hash for a page consisting entirely of zeroes. In fact, the
vast majority of hash operations are invoked to determine ifa page
is initialized to zero (2.8 out of 2.9 million hash operations for the
DokuWiki benchmark). InkTag optimizes this case: when asked to
verify the hash of a physical frame, InkTag compares the hashvalue
with the hash of a zero page. If the page should contain only zero,
InkTag simply verifies that property, rather than computinga full
digest. As a result, computation of hashes is not a significant factor
in InkTag’s performance overhead. Similarly, while encryption is
necessary for privacy, it does not significantly affect running time:
the majority of pages that would otherwise be encrypted due to
access by the operating system are in fact anonymous memory
regions that have been unmapped by an application. The entire

2http://www.dokuwiki.org

1.1

0.99

1.14

1.02 0.99 1 1.01 1.01 0.99

1.1

0.99
1.02 1.03

0.0

0.2

0.4

0.6

0.8

1.0

1.2

pe
rlb

en
ch

bz
ip

2

gc
c

m
cf

m
ilc

go
bm

k

hm
m

er

sj
en

g

lib
qu

an
tu

m

h2
64

re
f

lb
m

sp
hi

nx
3

G
eo

m
ea

n

Benchmark

R
el

at
iv

e
pe

rf
or

m
an

ce

Figure 8. SPEC CPU2006 benchmark performance. “Geomean” indicates
the geometric mean of relative performance.

Linux InkTag
Apache latency 195 ms 220 ms (1.13×)
Apache throughput 462.42 req/s 453.93 req/s (1.02×)
Dokuwiki throughput 13.6 req/s 8.83 req/s (1.54×)

Table 3. InkTag performance for large applications.

Apache DokuWiki
Linux InkTag Linux InkTag

Check hash - 209 - 2,911,649
Check zero hash - 57 - 2,893,517
Update hash - 82 - 1,029
EPT fault 689 1,131 10,668 78,055
VM-exit 171,145 1,217,042 138,801 11,216,363

Table 4. Counts of performance-critical events during benchmark execu-
tion. We count the number of times InkTag must hash a data page(“Check
hash”), hash a data page that should be zero-initialized (“Check zero hash”),
encrypt a page and update its hash (“Update hash”), fault on anested page
table (“EPT fault”), and context-switch out of the guest (“VM-exit”).

out. For example, sequential writes to each of the 4KB pages in a
single cluster of data pages represents a good case for disk schedul-
ing. InkTag, however, must write the metadata page followedby the
data page for each of these writes, causing the disk to seek back and
forth instead of writing sectors in sequential order.

8.3 Application benchmarks

We measure the overhead imposed by InkTag with three different
types of applications: CPU-bound SPEC benchmarks, the Apache
web server, and DokuWiki, a complete wiki application converted
to use InkTag attributes for authentication.

SPEC With little OS interaction, CPU-bound applications exhibit
little performance overhead when running asHAPs. Figure8 shows
results for selected benchmarks from the SPEC 2006 [19] suite
(InkTag does not support Fortran). Out of twelve benchmarks, nine
benchmarks run within a 3% performance overhead of unmodified
KVM, andgcc benchmark has the largest overhead of 14%.

Apache Table 3 shows results for our evaluation of the perfor-
mance of the Apache webserver when compiled as aHAP. We run
the standardab benchmarking tool included with Apache on the
machine hosting the virtualized guest, providing nearly unlimited
bandwidth from the web server to client. We execute 10,000 re-
quests from client to server, at a concurrency level of 100. The
Apache web server serves requests with a 13% overhead in la-

tency, and a 2% overhead in throughput relative to normal virtu-
alized execution. Apache represents a relatively good casefor Ink-
Tag: with several long-lived processes, Apache rarely has to pay
the increased costs imposed by InkTag for application initialization
and teardown.

DokuWiki In order to demonstrate the ability of InkTag to pro-
vide security for realistic workloads, we modified the DokuWiki 2

wiki server to take advantage of InkTag secure files and access con-
trol. DokuWiki is a wiki written in PHP that stores wiki pagesas
files in the server filesystem. We recompiled the PHP CGI binary to
work with InkTag and ran DokuWiki as a CGI script. We added an
InkTag authentication module to DokuWiki to allow a user to log
in with their system credentials (similar to the decentralized login
process described in§5.3) and to restrict access to wiki content via
InkTag access control.

To test the effect of InkTag on a representative set of modifi-
cations to a representative DokuWiki installation, we downloaded
a set of 6,430 revisions of 765 pages from the DokuWiki website
(which is itself run using DokuWiki) to simulate wiki activity. We
evaluate DokuWiki with a 90% read workload, which we believe
a reasonable characterization of a wiki workload. Each write re-
places a page with the subsequent revision of a page in the down-
loaded DokuWiki corpus. We measured the total wallclock time for
10 clients to perform a collective 1,000 requests on the wiki. Our
wiki client makes use of an XML RPC interface that DokuWiki
provides to avoid the need for programmatically interfacing with
DokuWiki forms.

As a HAP with InkTag authentication, DokuWiki runs with a
1.54× overhead over a baseline virtualized execution. As a PHP
application, DokuWiki maps a large number of scripts (with in-
tegrity assured by the InkTag hypervisor) into memory and exer-
cises a significant amount of anonymous temporary memory. As
with OS users, InkTag’s authentication aligns along process bound-
aries. Thus, we must run DokuWiki as an inefficient CGI applica-
tion, not as an Apache module. CGI is a performance worst casefor
InkTag: each request initializes and destroys an entire application
address space.

Virtualization metrics Table 4 shows counts for a number of
performance-critical events during the execution of our large ap-
plication benchmarks. Specific to InkTag execution are the number
of times physical frames are hashed, as well the number of times
the hash of the associatedS-page is updated (this event also counts
the number of times anS-page must be encrypted). With a few
long-lived processes, most of the address space for the Apache web
server remains mapped in the trusted EPT, requiring relatively few
hash updates. DokuWiki, which constructs and destroys an address
space for each request, has a large number of hash operations.

Of particular note are the number of times InkTag is requested to
verify the hash for a page consisting entirely of zeroes. In fact, the
vast majority of hash operations are invoked to determine ifa page
is initialized to zero (2.8 out of 2.9 million hash operations for the
DokuWiki benchmark). InkTag optimizes this case: when asked to
verify the hash of a physical frame, InkTag compares the hashvalue
with the hash of a zero page. If the page should contain only zero,
InkTag simply verifies that property, rather than computinga full
digest. As a result, computation of hashes is not a significant factor
in InkTag’s performance overhead. Similarly, while encryption is
necessary for privacy, it does not significantly affect running time:
the majority of pages that would otherwise be encrypted due to
access by the operating system are in fact anonymous memory
regions that have been unmapped by an application. The entire

2http://www.dokuwiki.org

13 / 13

