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multi Operating System (mOS) = LWK + FWK

Goals
Symbiosis of LWK and FWK: “best of both worlds”
Minimal modifications to Linux
Testbed for new technologies
Hierarchical syscall mechanism (LWK > FWK > OS node)

System Architecture

Figure 1: mOS architecture c©Intel

an FWK approach, an OS, typically Linux, forms the start-
ing point, and work is undertaken to remove features from
the environment so that it will scale across more cores and
out across more nodes in a large cluster. An LWK approach
often starts with a new kernel and work is undertaken to
add functionality to provide a familiar API, typically some-
thing close to that of a general purpose operating system
such as Linux. Either approach’s end point however, is
an environment that is not fully Linux compatible. The
LWK approaches Linux, but some Linux functionality, ei-
ther because of time constraints or intentionally, is not im-
plemented. An FWK approach, strips enough from Linux so
that it too, no longer supports generic Linux applications.
Thus, some vendors offer two solutions: a fully compatible
cluster HPC Linux that performs well but not at extreme
scale, and a configured patched offering for extreme scale,
but that does not provide full Linux compatibility. As an
example, the Cray R©Linux Environment provides extreme
scale and cluster compatibility capability [3]. mOS runs
both Linux and an LWK simultaneously. Therefore, Linux
can be more Linux, it does not need to be stripped down.
And the LWK can be more lightweight, it does not need to
include support for services that should be supported on the
compute node, but would be better left out of an LWK, e.g.,
Java, Python. Further, mOS allows Linux functionality to
be achieved with minimal or no patching of Linux. The goal
of upstreaming modifications can be achieved due to the nar-
row interface needed to interact with Linux, and provides for
better sustainability due to not needing to maintain Linux
patches.

Nimbly support new hardware and software needs
A primary motivation for including an LWK in mOS is

that the LWK portion of mOS is a small piece of code that
is easily modifiable for the needs of a targeted class of appli-
cations. Because it is a small, a single developer can internal-
ize the whole code base. That improves reliability because
there are reduced misunderstandings about component in-
teractions and simply because there is less code. LWKs have
been shown to have low noise, high performance, and scale
well. An LWK also allows easier implementation of special-
ized features. One example that Linux probably would not
entertain, but can be done in an LWK, is to remove all dy-
namic memory mapping and statically map in all memory.
Other examples include specialized placement of MPI com-
municating threads nearest the network, having zero ticks,
and automatic use of large pages.

In the long term, as frequency is not increasing and spe-
cialized cores proliferate, we contend the right way to man-
age the other cores is with an LWK on them where that
“kernel” is targeted to that special application or device.
In particular, HPC systems are increasingly heterogeneous,
with nodes containing a combination of cores optimized for

single thread performance, ones optimized for power effi-
ciency, ones designed for special purposes but being used
more generally, e.g., GPUs, programmable logic (FPGAs),
and fixed-function application-specific hardware. Thus, an
mOS-like approach will be increasingly important compared
to either FWK or traditional LWK approaches, as mOS’s
architecture is suited to leverage special cores. It allows
placing key services as close as possible to raw hardware,
while at the same time keeping jittery and other system ser-
vices isolated. Further, because mOS provides non-critical
services by calling Linux, the mOS LWK is smaller than a
conventional LWK; in turn, this makes it simpler to port
and target mOS to novel hardware.

Provide a hierarchy for system calls
As machines increase in size – both node count across the

machine, and core count per node – a scalable method for
handling the proliferation is to move to hierarchical mecha-
nisms. This has been done for scalable job launch, and I/O.
Cray’s Linux [3] and the IBM R©CNK [9] use a hierarchy for
I/O. By design, mOS leverages a hierarchy of places to im-
plement system calls. First, performance critical calls are
serviced by the LWK on the compute cores running mOS.
Second, calls that benefit from a short latency, require node-
local information, or require a Linux kernel, are serviced on
the Linux running on the compute node. Third, calls with
higher-latency or those requiring resources not available on
the compute node, are off-loaded to an OS node. While we
describe three levels of hierarchy for simplicity, we envision
offload can be to more than just a single node.

This paper is an architectural description of mOS. As a
prototype is not fully implemented, the contributions of this
work are 1) a description of mOS’s architecture, 2) an ex-
ploration of the tradeoffs we considered and the value of the
mOS approach as a way to satisfy the above listed motiva-
tions. The motivations and requirements are representative
of the needs for OS kernels for high-end HPC systems, and
3) a description of mOS’s six components and the tradeoffs
we considered.

There was significant operating system research in the
1990s, and then in the 2000s there was less emphasis on new
operating structure and more work on Linux enhancements.
More recently there has been resurgence of OS work [6, 7, 5,
15, 8, 16, 17, 14]. Thus, most importantly, the goal of this
paper is to provide a basis for a timely and active discussion
in this area at the workshop.

The rest of the paper is structured as follows. In Sections 2
and 3, we start by describing the design space for mOS and
then describe the related work. Section 4 describes the ar-
chitecture of mOS. It is broken into six subsections corre-
sponding to each of the components in mOS. We provide
concluding remarks in Section 5.

2. DESIGN SPACE
Designing an OS involves trade-offs, consideration of the

target system, and the OS’s use. This is particularly true for
extreme-scale OSes where seemingly insignificant features
may render the final product unusable at scale or too slow.
For the mOS project, we identified three competing require-
ments as depicted in Figure 2. Each corner of the triangle
represents one of the key design parameters of mOS: Linux
compatibility, limited changes to Linux, and full LWK scal-
ability and performance.

We are trying to achieve all three, but prioritize perfor-
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Design Space

Figure 2: Design space for mOS c©Intel

mance and scalability, followed by compatibility, then mini-
mizing Linux changes for sustainability. Because mOS con-
sists of two different kernels, it is depicted in an area with
two target symbols: a Linux kernel in the upper part to give
us Linux compatibility, and an LWK in the lower part to
provide performance and scalability.

To evaluate and compare mOS with other approaches, we
placed more markers in Figure 2. They indicate where we
believe other projects place their priorities and efforts given
the triumvirate design space. Research projects like Hobbes
and Argo cover a larger area in our design space triangle than
a single OS “point” because these projects encompass more
than just an OS kernel. For example, Hobbes contains a
hypervisor specialized for extreme-scale systems. This node
virtualization layer can run OSes and kernels, such as Linux
or Kitten, alongside each other and allows to combine OS
capabilities to adapt the system software environment to an
application’s needs.

The primary goal of Figure 2 is to convey the tensions in
the design space. Being positioned closer to a vertex indi-
cates a greater capability in that dimension. A pure LWK
would be located near the lower right vertex. That implies
that it would have little Linux compatibility. Since it is not
Linux, there are also no changes to Linux. Placement of
projects and OSes is subjective, but it helps with compar-
isons by showing where project teams place their priorities.

When we refer to Linux compatibility, it is from the ap-
plication’s perspective. System tools written specifically for
Linux would need to be adapted to work with the LWK.
However, for other administrative calls, our goal is to han-
dle those in Linux to provide compatibility. For example,
administrative calls that support clock manipulation for an
NTP daemon will not be supported by the LWK. Neverthe-
less, these calls are in Linux, so NTP will continue to operate
unmodified on mOS.

To avoid maintaining patches, which is costly and error
prone, any modifications need to be sufficiently non-invasive
and have broad appeal to the Linux community, so they are
upstreamed. One approach to achieve this is inspired by
FUSE. We call it “Cooperative Agent Kernel Extensions”
or CAKE. Its goal is to provide internal APIs for resources
that Linux manages and to coordinate resource management
between Linux and LWKs. Using clean resource partition-
ing allows Linux and the LWKs each to manage their own

partitions, yet safely share the managed resources. At any
given time, a sharable resource is either private to Linux or
the LWK, so that that it can be managed directly by the
current owner.

3. RELATED WORK
As mOS is a combination of techniques, there are several

areas of related work pertinent to understanding where mOS
fits it. The first is the tradeoff of LWK versus FWK for
delivering HPC functionality and performance. The second
area is that of providing an infrastructure to allow targeted
HPC services to be instantiated either through a microkernel
or virtualized environment. The third is work that looks at
combining multiple kernels to provide full OS functionality.

LWK versus FWK approach
Work on a lightweight design at Sandia and the University

of New Mexico has been ongoing for over two decades [18].
That collaboration produced operating systems for several
top computer systems including Catamount [12] for Red
Storm. Catamount was designed to be lightweight to facil-
itate scalability. Its strategy of providing only the features
necessary to support the application, and then giving con-
trol of the processor and hardware to the application yields
a low-noise kernel. Over three generations, CNK [9] on Blue
Gene R©, provided an increasingly enriched operating envi-
ronment, with more flexibility and functionality, by leverag-
ing and integrating Linux code e.g., glibc, NPTL. On-going
work on Kitten [17] in combination with Palacios [14] has
similar goals of providing a richer environment that more
easily supports existing codes.

Another approach, taken by ZeptoOS [2], is to start with
a Linux image and make modifications such as reserving
memory during boot before Linux accesses it, and removing
auxiliary daemons to reduce the noise. By doing so, Zep-
toOS achieved good performance results and scaled well. A
similar study undertaken by Shmueli et al. [19] looked at the
issues that caused Linux not to scale to tens of thousands
of nodes. They too observed that by modifying the mem-
ory management system of Linux, reducing the number of
daemons, and synchronizing the remaining daemons, it was
possible to get Linux to scale. Both of these approaches
inherit the structure and algorithms of Linux, and though
they can be modified, Linux is a moving target and is not
focused on the high-end HPC space.

Other groups have taken the approach of providing a full-
feature Linux. Both the SGI R©Altix R©ICETMPleiades Linux
machine installed at NASA [1], and the Cray Compute-Node
Linux (CNL) [11, 21] on Titan at ORNL, take this approach.
The goal behind a full CNL approach is to provide the rich
set of operating system services and system calls that users
and developers expect, and that their applications may re-
quire. These groups provide this functionality by reducing
daemons and working on memory allocation issues, and try
to upstream their work so the end system can be built by
config options. However, the modifications to Linux, such
as Cray’s Extreme Scale Linux [10, 3] needed to scale to ma-
chines the size of Titan, break full Linux compatibility and
cause challenges with upstreaming. HPC has tended to lead
the technology trend, often actively employing new hard-
ware mechanisms sooner than the mass workstation commu-
nity. Because the Linux community focuses on the latter, it
is not always receptive to all the changes needed for HPC, so
the Linux approach often requires maintenance of patches.

Microkernels and virtualization for targeted HPC
system services

Argo ServiceOS for setup + specialized ComputeOS instances
McKernel Linux + LWK, originally for CPU + Xeon Phi, no OS nodes
Hobbes Virtualization for collocation of dependent applications
Kitten LWK with embedded VMM Palacios
CNK Compute Node Kernel, minimalistic LWK used on Blue Gene

4 / 11



Architecture

Linux + LWK on each compute node
Leverage Linux to simplify LWK
Configurable resource partitions
Cooperative Agent Kernel Extensions (CAKE), cp. FUSE

Linux
Booting + hardware setup
Linux functionality (e.g. TCP/IP sockets, signaling mechanisms, . . . )
Infrastructure services (e.g. job launch and monitoring)

LWK
Memory management: physically contiguous regions
Scheduling: cooperative multitasking
System call forwarding to local FWK or OSN
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System Calls

Handled by different parts of the system—LWK, FWK, OSN
Hierarchical triage

User-level interception (and aggregation) in glibc via LD_PRELOAD
Offload to OS node or forward to LWK
LWK: forward syscall to FWK if not performance critical
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out across more nodes in a large cluster. An LWK approach
often starts with a new kernel and work is undertaken to
add functionality to provide a familiar API, typically some-
thing close to that of a general purpose operating system
such as Linux. Either approach’s end point however, is
an environment that is not fully Linux compatible. The
LWK approaches Linux, but some Linux functionality, ei-
ther because of time constraints or intentionally, is not im-
plemented. An FWK approach, strips enough from Linux so
that it too, no longer supports generic Linux applications.
Thus, some vendors offer two solutions: a fully compatible
cluster HPC Linux that performs well but not at extreme
scale, and a configured patched offering for extreme scale,
but that does not provide full Linux compatibility. As an
example, the Cray R©Linux Environment provides extreme
scale and cluster compatibility capability [3]. mOS runs
both Linux and an LWK simultaneously. Therefore, Linux
can be more Linux, it does not need to be stripped down.
And the LWK can be more lightweight, it does not need to
include support for services that should be supported on the
compute node, but would be better left out of an LWK, e.g.,
Java, Python. Further, mOS allows Linux functionality to
be achieved with minimal or no patching of Linux. The goal
of upstreaming modifications can be achieved due to the nar-
row interface needed to interact with Linux, and provides for
better sustainability due to not needing to maintain Linux
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there are reduced misunderstandings about component in-
teractions and simply because there is less code. LWKs have
been shown to have low noise, high performance, and scale
well. An LWK also allows easier implementation of special-
ized features. One example that Linux probably would not
entertain, but can be done in an LWK, is to remove all dy-
namic memory mapping and statically map in all memory.
Other examples include specialized placement of MPI com-
municating threads nearest the network, having zero ticks,
and automatic use of large pages.

In the long term, as frequency is not increasing and spe-
cialized cores proliferate, we contend the right way to man-
age the other cores is with an LWK on them where that
“kernel” is targeted to that special application or device.
In particular, HPC systems are increasingly heterogeneous,
with nodes containing a combination of cores optimized for

single thread performance, ones optimized for power effi-
ciency, ones designed for special purposes but being used
more generally, e.g., GPUs, programmable logic (FPGAs),
and fixed-function application-specific hardware. Thus, an
mOS-like approach will be increasingly important compared
to either FWK or traditional LWK approaches, as mOS’s
architecture is suited to leverage special cores. It allows
placing key services as close as possible to raw hardware,
while at the same time keeping jittery and other system ser-
vices isolated. Further, because mOS provides non-critical
services by calling Linux, the mOS LWK is smaller than a
conventional LWK; in turn, this makes it simpler to port
and target mOS to novel hardware.
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describe three levels of hierarchy for simplicity, we envision
offload can be to more than just a single node.

This paper is an architectural description of mOS. As a
prototype is not fully implemented, the contributions of this
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ploration of the tradeoffs we considered and the value of the
mOS approach as a way to satisfy the above listed motiva-
tions. The motivations and requirements are representative
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There was significant operating system research in the
1990s, and then in the 2000s there was less emphasis on new
operating structure and more work on Linux enhancements.
More recently there has been resurgence of OS work [6, 7, 5,
15, 8, 16, 17, 14]. Thus, most importantly, the goal of this
paper is to provide a basis for a timely and active discussion
in this area at the workshop.

The rest of the paper is structured as follows. In Sections 2
and 3, we start by describing the design space for mOS and
then describe the related work. Section 4 describes the ar-
chitecture of mOS. It is broken into six subsections corre-
sponding to each of the components in mOS. We provide
concluding remarks in Section 5.
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represents one of the key design parameters of mOS: Linux
compatibility, limited changes to Linux, and full LWK scal-
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LWK-FWK Communication

Explicit communication between LWK and FWK (function shipping)
Messages via channels built with shared memory and IPIs
Driven by FWK cores to reduce effect on application
LWK channels may disable IPIs

Traditionally, LWKs like SUNMOS, Puma, Catamount, and
CNK, were responsible for booting a node, initializing its
hardware resources, including the NIC, and loading pro-
cesses. In mOS, much of the hardware of a node will be
booted and initialized by Linux. This allows us to design
a simpler more streamlined LWK, allowing us to more ef-
fectively deliver on its goals of making the performance and
scalability of the underlying hardware accessible to applica-
tion processes.

The mOS LWK is based on the following requirements for
the resources for which it is responsible:

1. Manage memory as physically contiguous regions

• Important for page table caching and large pages to
reduce or avoid TLB misses

2. Generate no interrupts

• Except those setup by the application

• Run in a cooperative multi-tasking mode; i.e., no
quantum timer

3. Provide full control of scheduling

4. Share memory regions across LWK processes

5. Ship system calls to the Linux core and OSNs

6. Provide efficient and user-level access to the hardware

• Yield high performance MPI and PGAS runtimes

• Allow scalable application load

7. Allow flexibility across cores in allocated memory

• Rank 0 may need more memory than the remaining
ranks of a parallel job

Unlike a pure LWK model, we intentionally simplify mOS’s
LWK by leveraging the on-node Linux. We have identified
the following features:

1. Boot and configure the hardware

2. Direct interrupts to Linux instead of the LWK

3. Hand off cores, memory, and other resource to the LWK
to manage

4.2 Linux
The primary role of the Linux kernel component is to pro-

vide Linux functionality in mOS. From a microkernel per-
spective, the Linux kernel component may be thought of
as a service that provides Linux functionality. This func-
tionality includes capability that the LWK may otherwise
have had to implement. Examples include compute node
TCP/IP sockets and non-I/O file descriptor operations such
as an epoll on any of a timer, inotify, signal, or event de-
scriptors. Secondary goals include providing an execution
environment for various application assistance and infras-
tructure services and providing a familiar administrative in-
terface to the compute node. The former would include
daemons typically found on Linux clusters for job launch
and monitoring, but also might include specialized applica-
tion framework daemons that support new workflow-based
programming models.

There are several possibilities for selection of a Linux ker-
nel for mOS. The main criteria is that it should be a stan-
dard HPC cluster Linux. It does not need development
or GUI packages, but it should have standard HPC exe-
cution packages. High performance paths will be handled

Figure 3: Schematic of in-node shipping c©Intel

by the LWK, and application memory will be managed by
the LWK. Memory is a precious resource on compute nodes,
so Linux is configured for minimal memory use, and without
disk paging.

Our goal is to minimize the changes mOS requires of Linux
to maximize the likelihood of upstreaming the modifications.
The mOS operating environment relies on OS nodes and
other external OS infrastructure, thus we plan to use the
same Linux on other nodes as on mOS. However, different
distributions of Linux may be desired on different systems,
and if we succeed in upstreaming the mOS patches, it will
be relatively easy to substitute a Linux of choice.

4.3 The In-Node LWK-Linux Connection
Communication between Linux and LWK is explicit. We

refer to moved functionality as “function shipping”. The
LWK is structured so some LWK components may be im-
plemented as Linux device drivers and others as user-level
servers. Communication between Linux and the LWK is
done on the cores running Linux to avoid jitter on applica-
tion cores even though the LWK is initiating a request.

Figure 3 shows a general schematic of one node in mOS.
On the left are LWK cores that may be running one or sev-
eral threads; on the right are user-level servers. Requests
from LWK cores are sent via messages with delivery as dis-
cussed below.

User-level servers in mOS take several forms. The servers
run on Linux at user level on Linux cores. They are lever-
aged by the LWK and are structured according to needs of
the specific service, including that some may utilize kernel
drivers. One simple structure is a user-level server thread
per LWK thread, and a user-level server process per LWK
process. Specific services may, however, go directly to other
servers.

Communication between LWK and Linux is accomplished
by one of three mechanisms: shared memory, messages, and
inter-processor interrupts (IPIs). The Linux kernel directly
accesses user level with loads and stores. This makes full
marshalling a problem without invasive Linux changes as
cross-space accesses are not fully abstracted. To overcome
this, mOS partitions physical memory into a Linux-managed
part and an LWK-managed part, where each kernel is al-
lowed to access the other’s memory.

System calls are triaged (see 4.4) to determine which ker-
nel should implement them. Calls that are forwarded to
Linux have parameters assembled in a message along with
context information such as the hardware thread and core
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LWK-FWK Communication II

Message Send Example� �
1 read(fd , buf , len ):
2 payload = { READ , fd , buf , len }
3 msg = { route=pid , context =lwk_pid , payload }
4 was = linux_channel .q. insert (msg)
5 i f (! was ):
6 linux_channel . receiver . send_ipi ()
7 lwk_channel . wait_for_ack ()� �

IPI Receive/Dispatch Example� �
1 ipi handler ():
2 msg_list = linux_channel .q. get_list ()
3 wh i l e (( msg = msg_list .pop ()) != NULL ):
4 pid = msg$\ rightarrow$route
5 channel [pid ].q. insert (msg)
6 sched_run (pid)� �
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OS Nodes and Partitioning

OS Nodes
Perform parallel filesystem I/O on behalf compute nodes
Reduce number of PFS clients
Reduce jitter, cache pollution and memory usage on compute nodes

Resource Partitioning
Static
Cores, memory: restrict Linux’ resource usage via kernel command line

(mem=m, maxcpus=n) and adapt ACPI tables
Devices

Linux configures HPC network, then hands it to the application on LWK
Other devices handled by Linux
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Evaluation

No implementation/prototype available
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Conclusion

Summary
mOS: LWK + FWK (+ OS nodes)
Hardware partitioning
Hierarchical syscall triage
Explicit communication

Discussion Points
Design space
Early development stage
mOS vs. FFMK
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