1ON)

An Architecture for Extreme-Scale Operating Systems

Robert W. Wisniewski, Todd Inglett, Pardo Keppel, Ravi Murty, Rolf Riesen

ROSS 2014 (Best Paper Award)

/11

@ Exascale HPC systems

o Established applications and libraries

@ Exascale HPC systems

o Established applications and libraries

Evolution: Full-Weight kernel (FWK) Revolution: Light-Weight kernel (LWK)
@ Linux or Linux API @ performance
@ scalability
o reliability

o flexibility

@ Exascale HPC systems

o Established applications and libraries

Evolution: Full-Weight kernel (FWK) Revolution: Light-Weight kernel (LWK)
@ Linux or Linux API @ performance
= remove features o scalability
o reliability
o flexibility
= add functionality)

multi Operating System (mOS) = LWK + FWK

@ Symbiosis of LWK and FWK: “best of both worlds”

@ Minimal modifications to Linux

@ Testbed for new technologies

@ Hierarchical syscall mechanism (LWK > FWK > OS node)

multi Operating System (mOS) = LWK + FWK

@ Symbiosis of LWK and FWK: “best of both worlds”

@ Minimal modifications to Linux

@ Testbed for new technologies
@ Hierarchical syscall mechanism (LWK > FWK > OS node)

System Architecture

Compute N:1 (o1

-

Node " Node

A S
Asgipst Application 1/0 daemon
tools glibc/shim

partitioned =
Platform Software

/11

Design Space

100% Linux
compatible

Hobbes

Argo HPCVVLinux

CNK
Kitten

No non- y
upstreamable
changes I
to Linux / 7/ @
mos LWk-type
McKernel scaling &
performance

Argo ServiceOS for setup + specialized ComputeOS instances
McKernel Linux + LWK, originally for CPU + Xeon Phi, no OS nodes
Hobbes Virtualization for collocation of dependent applications
Kitten LWK with embedded VMM Palacios
CNK Compute Node Kernel, minimalistic LWK used on Blue Gene

Architecture

@ Linux + LWK on each compute node

@ Leverage Linux to simplify LWK

o Configurable resource partitions

e Cooperative Agent Kernel Extensions (CAKE), cp. FUSE

@ Booting + hardware setup
@ Linux functionality (e.g. TCP/IP sockets, signaling mechanisms, ...)

@ Infrastructure services (e.g. job launch and monitoring)

LWK
@ Memory management: physically contiguous regions
@ Scheduling: cooperative multitasking
@ System call forwarding to local FWK or OSN

System Calls

@ Handled by different parts of the system —LWK, FWK, OSN
@ Hierarchical triage

o User-level interception (and aggregation) in glibc via LD_PRELOAD
e Offload to OS node or forward to LWK
o LWK: forward syscall to FWK if not performance critical

Compute N:1 0s
Node " Node

A S
Asgi’:'.t Application 1/0 daemon
tools glibc/shim

partitioned =—————p
Platform Software

LWK-FWK Communication

Explicit communication between LWK and FWK (function shipping)
Messages via channels built with shared memory and IPIs

Driven by FWK cores to reduce effect on application

LWK channels may disable IPls

App/LWK cores Coordinator/Linux cores
IPI=dev driver IPI handler
ULS=user-level server

.

Al T
*T I YT
—-® T

LWK-FWK Communication |l

B = N B S O N

o A W N =

Message Send Example

read (fd, buf, len):
payload = { READ, fd, buf, len }
msg = { route=pid, context=lwk_pid, payload }
was = linux_channel.q.insert(msg)
if (lwas):
linux_channel .receiver.send_ipi ()
lwk_channel .wait_for_ack ()

IP1 Receive/Dispatch Example

ipi handler ():
msg_list = linux_channel.q.get_list ()
while ((msg = msg_list.pop()) != NULL):
pid = msg\rightarrowroute
channel[pid].q.insert (msg)
sched_run (pid)

OS Nodes and Partitioning

OS Nodes

@ Perform parallel filesystem |/O on behalf compute nodes
@ Reduce number of PFS clients

@ Reduce jitter, cache pollution and memory usage on compute nodes

Resource Partitioning

@ Static

@ Cores, memory: restrict Linux’' resource usage via kernel command line
(mem=m, maxcpus=n) and adapt ACPI tables

@ Devices

e Linux configures HPC network, then hands it to the application on LWK
e Other devices handled by Linux

Evaluation

No implementation/prototype available

10/11

Conclusion

mOS: LWK + FWK (+ OS nodes)

Hardware partitioning

o
o
@ Hierarchical syscall triage
°

Explicit communication

11/11

Conclusion

e mOS: LWK + FWK (4 OS nodes)
@ Hardware partitioning
@ Hierarchical syscall triage

@ Explicit communication

v
Discussion Points

@ Design space

@ Early development stage
@ mOS vs. FFMK

\

11/11

