
The Benefit of SMT in the Multi-Core Era
Flexibility towards Degrees of Thread-Level Parallelism

Stijn Eyerman, Lieven Eeckhout
Ghent University, Belgium

ASPLOS ’14
March 2014

1 / 18



Motivation

Environments with varying thread-level parallelism
Multi-program workloads
Desktop applications (2–3 active threads)
Server workloads (10–50% utilization)
Multi-threaded applications

“How to best design a single-ISA multi-core processor in light of vary-
ing degrees of thread-level parallelism in contemporary workloads?”

2 / 18



Number of active threads on 24-core CPU (PARSEC, ROI-only)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
fra

ct
io

n 
of

 ti
m

e
20 threads
16-19 threads
11-15 threads
6-10 threads
5 threads
4 threads
3 threads
2 threads
1 thread

Figure 1. Distribution of the number of active threads for
the PARSEC benchmarks on a twenty-core processor.

2.2 Multi-core design choices
There exist three major multi-core architectures: symmet-
ric or homogeneous, asymmetric or heterogeneous, and dy-
namic [10]. All cores in a homogeneous multi-core have
the same organization; examples are the Intel Sandy Bridge
CPU [25], AMD Opteron [15], IBM POWER7 [14], etc.
Each core typically implements Simultaneous Multi-Threading
(SMT), effectively providing a many-thread architecture,
e.g., an 8-core processor with 4 SMT threads per core effec-
tively yields a 32-threaded processor.

A heterogeneous (or asymmetric) multi-core features one
or more cores that are more powerful than others. In case of
a single-ISA heterogeneous multi-core, there are so-called
big, high-performance cores and small, energy-efficient
cores. NVidia’s Kal-El [22] integrates four performance-
tuned cores along with one energy-tuned core, and ARM’s
big.LITTLE [8] combines a high-performance core with a
low-energy core.

A dynamic multi-core is able to combine a number of
cores to boost performance of sequential code sections.
Core fusion [11, 17] dynamically morphs cores to form a
bigger, more powerful core. Thread-level speculation and
helper threads [9, 28], in which assist-threads running on
other cores help speeding up another thread, could also be
viewed as a form of dynamic multi-core. Recently, Khubaib
et al. [16] propose MorphCore, which is a high-performance
out-of-order core that can morph into a many-threaded in-
order core when the demand for parallelism is high.

2.3 Goal of this paper
Given the background in workloads and the multi-core de-
sign space as just described, the following key question
arises: How to best design a single-ISA multi-core proces-
sor in light of varying degrees of thread-level parallelism
in contemporary workloads? As mentioned in the introduc-
tion, all three design options can deal with varying num-
bers of active threads, one way or the other. A homogeneous
multi-core can distribute the active threads across the vari-
ous cores and only activate SMT when there are more active
threads than cores. A heterogeneous multi-core can schedule

Big core Medium core Small core
Frequency 2.66GHz 2.66GHz 2.66GHz
Type Out-of-Order Out-of-Order In-Order
Width 4 2 2
ROB size 128 32 N/A
Func. units 3 int, 2 ld/st 2 int, 1 ld/st 2 int, 1 ld/st

1 mul/div 1 mul/div 1 mul/div
1 FP 1 FP 1 FP

SMT contexts up to 6 up to 3 up to 2
L1 I-cache 32KB 16KB 6KB

4-way assoc 2-way assoc 2-way assoc
L1 D-cache 32KB 16KB 6KB

4-way assoc 2-way assoc 2-way assoc
L2 cache 256KB 128KB 48KB

8-way assoc 4-way assoc 4-way assoc
Last-level cache 8MB, 16-way assoc
On-chip interconn. 2.66GHz, full cross-bar
DRAM 8 banks, 45ns access time
Off-chip bus 8GB/s

Table 1. Big, medium and small core configurations.

the active threads on the big cores and only schedule threads
on the small cores when there are more active threads than
big cores. A dynamic multi-core can form as many cores
as there are active threads. However, without a detailed and
comprehensive study, it is unclear which multi-core architec-
ture paradigm yields best performance under varying active
thread counts. This paper, to the best of our knowledge, is
the first to explore this multi-core design space and compre-
hensively compare multi-core paradigms in light of variable
active thread count. Note that specialized accelerators are not
in this paper’s scope, as we focus on single-ISA multi-cores.

3. Experimental Setup
3.1 Multi-core design space
To evaluate the various multi-core paradigms in the context
of varying thread counts, we use the following experimental
setup. We consider three types of cores: a four-wide out-of-
order core (big core), a two-wide out-of-order core (medium
core), and a two-wide in-order core (small core), see also
Table 1 for more details about these microarchitectures.

We compare all multi-core architectures under the (ap-
proximate) same power envelope. We therefore estimate
power consumption using McPAT [20] (assuming 45 nm
technology and aggressive clock gating). The big core con-
sumes approximately 1.8 times the power of the medium
two-wide OoO core on average, and 4.4 times the power of
the small two-wide in-order core. We conservatively assume
that one big core is power-equivalent to two medium cores
and five small cores. We validate later in this section that
these scaling factors result in an approximately equal power
consumption, even when the big cores execute six threads
through SMT (which leads to higher utilization and there-
fore higher dynamic power consumption). When evaluating
energy efficiency in Section 7, we assume idle cores are
power gated.

3 / 18



Core configurations

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

fra
ct

io
n 

of
 ti

m
e

20 threads
16-19 threads
11-15 threads
6-10 threads
5 threads
4 threads
3 threads
2 threads
1 thread

Figure 1. Distribution of the number of active threads for
the PARSEC benchmarks on a twenty-core processor.

2.2 Multi-core design choices
There exist three major multi-core architectures: symmet-
ric or homogeneous, asymmetric or heterogeneous, and dy-
namic [10]. All cores in a homogeneous multi-core have
the same organization; examples are the Intel Sandy Bridge
CPU [25], AMD Opteron [15], IBM POWER7 [14], etc.
Each core typically implements Simultaneous Multi-Threading
(SMT), effectively providing a many-thread architecture,
e.g., an 8-core processor with 4 SMT threads per core effec-
tively yields a 32-threaded processor.

A heterogeneous (or asymmetric) multi-core features one
or more cores that are more powerful than others. In case of
a single-ISA heterogeneous multi-core, there are so-called
big, high-performance cores and small, energy-efficient
cores. NVidia’s Kal-El [22] integrates four performance-
tuned cores along with one energy-tuned core, and ARM’s
big.LITTLE [8] combines a high-performance core with a
low-energy core.

A dynamic multi-core is able to combine a number of
cores to boost performance of sequential code sections.
Core fusion [11, 17] dynamically morphs cores to form a
bigger, more powerful core. Thread-level speculation and
helper threads [9, 28], in which assist-threads running on
other cores help speeding up another thread, could also be
viewed as a form of dynamic multi-core. Recently, Khubaib
et al. [16] propose MorphCore, which is a high-performance
out-of-order core that can morph into a many-threaded in-
order core when the demand for parallelism is high.

2.3 Goal of this paper
Given the background in workloads and the multi-core de-
sign space as just described, the following key question
arises: How to best design a single-ISA multi-core proces-
sor in light of varying degrees of thread-level parallelism
in contemporary workloads? As mentioned in the introduc-
tion, all three design options can deal with varying num-
bers of active threads, one way or the other. A homogeneous
multi-core can distribute the active threads across the vari-
ous cores and only activate SMT when there are more active
threads than cores. A heterogeneous multi-core can schedule

Big core Medium core Small core
Frequency 2.66GHz 2.66GHz 2.66GHz
Type Out-of-Order Out-of-Order In-Order
Width 4 2 2
ROB size 128 32 N/A
Func. units 3 int, 2 ld/st 2 int, 1 ld/st 2 int, 1 ld/st

1 mul/div 1 mul/div 1 mul/div
1 FP 1 FP 1 FP

SMT contexts up to 6 up to 3 up to 2
L1 I-cache 32KB 16KB 6KB

4-way assoc 2-way assoc 2-way assoc
L1 D-cache 32KB 16KB 6KB

4-way assoc 2-way assoc 2-way assoc
L2 cache 256KB 128KB 48KB

8-way assoc 4-way assoc 4-way assoc
Last-level cache 8MB, 16-way assoc
On-chip interconn. 2.66GHz, full cross-bar
DRAM 8 banks, 45ns access time
Off-chip bus 8GB/s

Table 1. Big, medium and small core configurations.

the active threads on the big cores and only schedule threads
on the small cores when there are more active threads than
big cores. A dynamic multi-core can form as many cores
as there are active threads. However, without a detailed and
comprehensive study, it is unclear which multi-core architec-
ture paradigm yields best performance under varying active
thread counts. This paper, to the best of our knowledge, is
the first to explore this multi-core design space and compre-
hensively compare multi-core paradigms in light of variable
active thread count. Note that specialized accelerators are not
in this paper’s scope, as we focus on single-ISA multi-cores.

3. Experimental Setup
3.1 Multi-core design space
To evaluate the various multi-core paradigms in the context
of varying thread counts, we use the following experimental
setup. We consider three types of cores: a four-wide out-of-
order core (big core), a two-wide out-of-order core (medium
core), and a two-wide in-order core (small core), see also
Table 1 for more details about these microarchitectures.

We compare all multi-core architectures under the (ap-
proximate) same power envelope. We therefore estimate
power consumption using McPAT [20] (assuming 45 nm
technology and aggressive clock gating). The big core con-
sumes approximately 1.8 times the power of the medium
two-wide OoO core on average, and 4.4 times the power of
the small two-wide in-order core. We conservatively assume
that one big core is power-equivalent to two medium cores
and five small cores. We validate later in this section that
these scaling factors result in an approximately equal power
consumption, even when the big cores execute six threads
through SMT (which leads to higher utilization and there-
fore higher dynamic power consumption). When evaluating
energy efficiency in Section 7, we assume idle cores are
power gated.

4 / 18



Power-equivalent multi-core designs (46–50W)

We keep total on-chip cache capacity constant when ex-
ploring the multi-core design space, in order to focus on the
impact of core types and organization, and not cache capac-
ity. This implies that we have to set the private cache size
of the medium core two times smaller compared to the big
core, and five times for the small core, see also Table 1. (We
pick numbers that are powers of two or just in between two
powers of two). The last-level cache (LLC) is shared across
all cores, and has the same size for all multi-core config-
urations (8MB). The on-chip network is a full crossbar be-
tween all cores and the shared LLC. Although not realistic, a
full crossbar ensures that the results are not skewed in favor
of the few large cores configuration, which would experi-
ence less contention in the on-chip network compared to a
many small cores configuration. We use the multi-core sim-
ulator Sniper [5] enhanced with cycle-level out-of-order and
in-order core models, as well as SMT support.

Total chip power budget is equivalent to 4 big cores or
8 medium cores or 20 small cores, plus a shared LLC. This
allows for 9 possible designs, see Figure 2. (For the hetero-
geneous designs, we only consider mixes of big cores and
medium cores or small cores; we do not consider mixes of
medium and small cores). In the remainder of the paper,
these designs are referred to as 4B, 3B2m, 3B5s, 2B4m,
2B10s, 1B6m, 1B15s, 8m and 20s, as indicated in the fig-
ure. 4B, 8m and 20s are homogeneous multi-cores (all cores
of the same type), while the others are heterogeneous. With
SMT enabled, we assume that a big core is able to execute up
to six threads; a medium core can execute up to three threads;
and a small in-order core can execute up to two threads (us-
ing fine-grained multithreading), so that all configurations
can run up to 24 threads. The SMT core that we simulate
implements static ROB partitioning and a round-robin fetch
policy [24].

The average total (static plus dynamic) power consump-
tion of the three homogeneous configurations running 24
threads is 46 Watt for 4B, 50 Watt for 8m, and 45 Watt for
20s (averaged across all homogeneous multi-program work-
loads, see later). The power consumption of the heteroge-
neous configurations varies between 46 and 50 Watt. This
justifies our claim that all configurations operate more or less
under the same power envelope.

3.2 Workloads
Multi-program workloads. We consider multi-program
workloads using the SPEC CPU 2006 benchmarks with their
reference inputs. In order to limit the number of simula-
tions, we select 12 representative benchmark-input combi-
nations. The selection is based on the relative performance
of the benchmarks on the three core types. We evaluated all
55 SPEC CPU 2006 benchmark-input combinations on the
three core designs (big, medium and small) and calculated
relative performance with respect to the big core. We then
picked 12 benchmarks that cover the full performance range,
i.e., the benchmarks that have the highest and lowest rela-

B

LLC

B

B B

m
m

B

LLC

B

B

B

LLC

B
m
m

B

LLC

m
m

m
m

m
m

LLC

m
m

m
m

m
m

4B

3B2m 2B4m 1B6m 8m

m
m

m
m

B

LLC

B

B

3B5s

s s s
s s

B

LLC

B

2B10s

s s s
s s

s s s
ss

B

LLC

1B15s

s s s
s s

s s s
ss

s s
ss s

LLC

20s

s s s
s s

s s s
ss

s s
ss ss

s s
ss

Figure 2. The nine power-equivalent multi-core designs
considered in this study (B=big core, m=medium core,
s=small core).

tive performance, along with in-between benchmarks picked
such as to provide good coverage.

For each benchmark, we take a 750 million instruction
single simulation point to reduce simulation time [26]. When
running a multi-program workload, we stop the simulation
when all of the programs have executed at least 750 mil-
lion instructions, thereby restarting programs that reached
the end of the 750 million instruction simulation point.
We summarize multi-program performance using the sys-
tem throughput (STP) metric [7] or weighted speedup [27],
which is a measure for the number of jobs completed per unit
of time. For computing STP, we normalize against isolated
execution on the big core. When reporting STP numbers
averaged across a set of workloads, we use the harmonic
mean because STP is a rate metric (inversely proportional to
time). We also calculate average normalize turnaround time
(ANTT [7]) to show the impact of the multi-core design on
per-program performance.

We evaluate homogeneous multi-program workloads
(multiple copies of the same benchmark) as well as het-
erogeneous multi-program workloads (different benchmarks
co-run). We vary the number of programs from 1 to 24.
For the heterogeneous multi-program workloads, we ran-
domly construct 12 two-, 12 three-, 12 four-, etc., up to 12
twenty-four-thread combinations, while making sure that ev-
ery benchmark is included an equal number of times for all
thread counts. Velasquez et al. [32] show that this balanced
random sampling technique is more representative compared
to fully random sampling.

We intentionally limit the number of active threads to 24
to reflect a (realistic) situation with a modest and variable
thread count. Given the hardware budget of 4 big cores, this
is already a considerable number of threads (6 threads per
core). Our results confirm that at a (constantly) large thread
count, a design with many small cores is optimal, but in this
study we specifically target those workloads that exhibit a
variable active thread count. Furthermore, we believe our
results are general enough to be projected to larger hardware

5 / 18



Multi-program workloads (SPEC CPU 2006)

Homogenous workloads

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

1 3 5 7 9 11 13 15 17 19 21 23

no
rm

al
ize

d 
th

ro
ug

hp
ut

thread count

4B
8m
20s
3B2m
3B5s
2B4m
2B10s
1B6m
1B15s

0

1

2

3

4

5

6

7

1 3 5 7 9 11 13 15 17 19 21 23

no
rm

al
iz

ed
 th

ro
ug

hp
ut

thread count

4B
8m
20s
3B2m
3B5s
2B4m
2B10s
1B6m
1B15s

(a) Homogeneous workloads (b) Heterogeneous workloads

Figure 3. Comparing the performance for the nine multi-core design points with homogeneous and heterogeneous multi-
program workloads.

0
1
2
3
4
5
6
7
8
9

1 3 5 7 9 11 13 15 17 19 21 23

no
rm

al
ize

d 
th

ro
ug

hp
ut

thread count

4B
8m
20s
3B2m
3B5s
2B4m
2B10s
1B6m
1B15s

0

0.5

1

1.5

2

2.5

3

3.5

1 3 5 7 9 11 13 15 17 19 21 23

no
rm

al
ize

d 
th

ro
ug

hp
ut

thread count

4B
8m
20s
3B2m
3B5s
2B4m
2B10s
1B6m
1B15s

(a) tonto (b) libquantum

Figure 4. Performance of the nine multi-core design points for two representative benchmarks (both homogeneous multi-
program workloads): (a) tonto and (b) libquantum.

the maximum (2B10s). This is due to the fact that heteroge-
neous workloads consist of mixes of both memory-intensive
and compute-intensive benchmarks. Scheduling a memory-
intensive benchmark with compute-intensive benchmarks on
one core using SMT enables the memory-intensive bench-
mark to occupy a larger fraction of the core’s private cache
(256KB in our study), as the compute-intensive benchmarks
are less demanding for cache space. In case of a multi-core
with many small cores (20s), each core has a small pri-
vate cache (48KB in our setup), hence, a memory-intensive
benchmark would not get as much cache space. By intelli-
gently scheduling benchmarks to cores and SMT thread con-
texts, the 4B multi-core is better capable of utilizing cache
space than a multi-core with many small cores and relatively
smaller private caches.

For completeness, Figure 5 shows the average normalized
turnaround time (ANTT) for the homogeneous workloads
as a function of thread count (the results for heterogeneous
workloads are similar). At small thread counts, the 4B design
results in the lowest per-program execution time (highest
per-program performance), because all threads can run on
a big core. Per-program execution time increases as thread
count goes up, because more threads share a core through
SMT, reducing per-program performance. For the other ex-

0

1

2

3

4

5

6

1 3 5 7 9 11 13 15 17 19 21 23

av
er

ag
e 

no
rm

al
ize

d 
tu

rn
ar

ou
nd

 ti
m

e

thread count

4B
8s
20t
3B2s
3B5t
2B4s
2B10t
1B6s
1B15t

Figure 5. Comparing the ANTT for the nine multi-core
design points with homogeneous multi-program workloads.

treme configuration 20s, the turnaround time is larger for
low thread counts, because of the poorly performing cores,
but it remains more stable as thread count increases, due to
a smaller degree of sharing. The conclusions are similar to
that of the througput results: at low thread counts, 4B has
the highest throughput and the lowest per-program execu-
tion time, and at high thread counts, the configurations with
more and smaller cores have the highest throughput and the
lowest per-program execution time, but the 4B configuration
remains close.

Heterogenous workloads

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

1 3 5 7 9 11 13 15 17 19 21 23

no
rm

al
ize

d 
th

ro
ug

hp
ut

thread count

4B
8m
20s
3B2m
3B5s
2B4m
2B10s
1B6m
1B15s

0

1

2

3

4

5

6

7

1 3 5 7 9 11 13 15 17 19 21 23

no
rm

al
iz

ed
 th

ro
ug

hp
ut

thread count

4B
8m
20s
3B2m
3B5s
2B4m
2B10s
1B6m
1B15s

(a) Homogeneous workloads (b) Heterogeneous workloads

Figure 3. Comparing the performance for the nine multi-core design points with homogeneous and heterogeneous multi-
program workloads.

0
1
2
3
4
5
6
7
8
9

1 3 5 7 9 11 13 15 17 19 21 23

no
rm

al
ize

d 
th

ro
ug

hp
ut

thread count

4B
8m
20s
3B2m
3B5s
2B4m
2B10s
1B6m
1B15s

0

0.5

1

1.5

2

2.5

3

3.5

1 3 5 7 9 11 13 15 17 19 21 23

no
rm

al
ize

d 
th

ro
ug

hp
ut

thread count

4B
8m
20s
3B2m
3B5s
2B4m
2B10s
1B6m
1B15s

(a) tonto (b) libquantum

Figure 4. Performance of the nine multi-core design points for two representative benchmarks (both homogeneous multi-
program workloads): (a) tonto and (b) libquantum.

the maximum (2B10s). This is due to the fact that heteroge-
neous workloads consist of mixes of both memory-intensive
and compute-intensive benchmarks. Scheduling a memory-
intensive benchmark with compute-intensive benchmarks on
one core using SMT enables the memory-intensive bench-
mark to occupy a larger fraction of the core’s private cache
(256KB in our study), as the compute-intensive benchmarks
are less demanding for cache space. In case of a multi-core
with many small cores (20s), each core has a small pri-
vate cache (48KB in our setup), hence, a memory-intensive
benchmark would not get as much cache space. By intelli-
gently scheduling benchmarks to cores and SMT thread con-
texts, the 4B multi-core is better capable of utilizing cache
space than a multi-core with many small cores and relatively
smaller private caches.

For completeness, Figure 5 shows the average normalized
turnaround time (ANTT) for the homogeneous workloads
as a function of thread count (the results for heterogeneous
workloads are similar). At small thread counts, the 4B design
results in the lowest per-program execution time (highest
per-program performance), because all threads can run on
a big core. Per-program execution time increases as thread
count goes up, because more threads share a core through
SMT, reducing per-program performance. For the other ex-

0

1

2

3

4

5

6

1 3 5 7 9 11 13 15 17 19 21 23

av
er

ag
e 

no
rm

al
ize

d 
tu

rn
ar

ou
nd

 ti
m

e

thread count

4B
8s
20t
3B2s
3B5t
2B4s
2B10t
1B6s
1B15t

Figure 5. Comparing the ANTT for the nine multi-core
design points with homogeneous multi-program workloads.

treme configuration 20s, the turnaround time is larger for
low thread counts, because of the poorly performing cores,
but it remains more stable as thread count increases, due to
a smaller degree of sharing. The conclusions are similar to
that of the througput results: at low thread counts, 4B has
the highest throughput and the lowest per-program execu-
tion time, and at high thread counts, the configurations with
more and smaller cores have the highest throughput and the
lowest per-program execution time, but the 4B configuration
remains close.

6 / 18



Findings

1 A homogeneous multi-core consisting of all big SMT cores yields better
performance than a heterogeneous multi-core for a small number of
threads and only slightly worse for a large number of threads.

7 / 18



Uniform thread count distribution

No SMT

1.5

2

2.5

3

3.5

4

4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s 4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s

homogeneous workloads heterogeneous workloads

no
rm

al
ize

d 
th

ro
ug

hp
ut

Figure 6. Average performance assuming a uniform thread
count distribution and no SMT.

We conclude this section with our first finding:
Finding #1: A homogeneous multi-core consisting of all big
SMT cores yields better performance than a heterogeneous
multi-core for a small number of threads (due to the big-
ger cores) and only slightly worse for a large number of
threads (because shared resource contention largely domi-
nates performance for workload mixes of memory-intensive
applications, and cache capacity can be used more efficiently
through intelligent scheduling).

4.2 Thread count distributions
We now compare the multi-core designs under various active
thread distributions, assuming uniform distributions as well
as distributions observed in datacenter operations.

4.2.1 Uniform distribution.
We begin with assuming a uniform distribution over 24
threads, i.e., each thread count (1 to 24 threads) has equal
probability.

No SMT. We first assume that none of the cores implement
SMT. Figure 6 shows the average performance for all of the
multi-core designs without SMT. Each core can execute only
one thread at a time, and when there are more threads than
cores, multiple threads run on one core sequentially through
time-sharing.

Clearly, the 4B configuration outperforms the other ho-
mogeneous configurations (8m, 20s). Being able to execute
faster at low thread counts is more important than achieving
a high throughput at high thread counts. This is in line with
Amdahl’s law: as parallelism increases, the performance of
the sequential part (low thread count) dominates the perfor-
mance of the program as a whole.

The most important conclusion is that the optimal de-
sign without SMT is 2B4m for homogeneous workloads and
3B5s for heterogeneous workloads — both heterogeneous
multi-core designs. Hence our second finding:
Finding #2: In the absence of SMT, heterogeneous multi-
cores outperform homogeneous multi-cores across varying
thread counts. At low thread counts, the big cores in a het-
erogeneous multi-core can be used to get high performance,

1.5

2

2.5

3

3.5

4

4.5

4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s

4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s

homogeneous workloads heterogeneous workloads

no
rm

al
ize

d 
th

ro
ug

hp
ut

Figure 7. Average performance assuming a uniform thread
count distribution and SMT in the homogeneous configura-
tions.

1.5

2

2.5

3

3.5

4

4.5

5

4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s

4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s

homogeneous workloads heterogeneous workloads

no
rm

al
ize

d 
th

ro
ug

hp
ut

Figure 8. Average performance assuming a uniform thread
count distribution and SMT in all configurations.

while at high thread counts, the larger amount of small cores
can be used to exploit thread-level parallelism. This is in line
with recent work that advocates single-ISA heterogeneous
multi-core processors [10, 19].

SMT in homogeneous designs. We now assume SMT is
implemented in the homogeneous designs (4B, 8m and 20s),
but not the heterogeneous designs. Figure 7 shows aver-
age performance for the various designs. It is interesting
to compare this graph against the one in Figure 6, which
showed that heterogeneous multi-cores yield higher perfor-
mance than homogeneous multi-cores when the number of
threads varies. Now, through Figure 7, we observe that by
adding SMT to the homogeneous multi-cores, the 4B design
outperforms the other designs. This leads to:
Finding #3: A homogeneous multi-core with big SMT cores
outperforms a heterogeneous multi-core (without SMT) un-
der the same power budget. Put differently, SMT outperforms
heterogeneity as a means to cope with varying thread counts.
The intuition is that, at low thread counts, the 4B design
with SMT is able to use all 4 big cores, while the number
of big cores in the heterogeneous designs is always smaller.
At high thread counts, a homogeneous multi-core with big
SMT cores allows for more concurrent threads (24 in total)
compared to heterogeneous multi-cores (at most 20 in the

8 / 18



Uniform thread count distribution

No SMT

1.5

2

2.5

3

3.5

4

4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s 4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s

homogeneous workloads heterogeneous workloads

no
rm

al
ize

d 
th

ro
ug

hp
ut

Figure 6. Average performance assuming a uniform thread
count distribution and no SMT.

We conclude this section with our first finding:
Finding #1: A homogeneous multi-core consisting of all big
SMT cores yields better performance than a heterogeneous
multi-core for a small number of threads (due to the big-
ger cores) and only slightly worse for a large number of
threads (because shared resource contention largely domi-
nates performance for workload mixes of memory-intensive
applications, and cache capacity can be used more efficiently
through intelligent scheduling).

4.2 Thread count distributions
We now compare the multi-core designs under various active
thread distributions, assuming uniform distributions as well
as distributions observed in datacenter operations.

4.2.1 Uniform distribution.
We begin with assuming a uniform distribution over 24
threads, i.e., each thread count (1 to 24 threads) has equal
probability.

No SMT. We first assume that none of the cores implement
SMT. Figure 6 shows the average performance for all of the
multi-core designs without SMT. Each core can execute only
one thread at a time, and when there are more threads than
cores, multiple threads run on one core sequentially through
time-sharing.

Clearly, the 4B configuration outperforms the other ho-
mogeneous configurations (8m, 20s). Being able to execute
faster at low thread counts is more important than achieving
a high throughput at high thread counts. This is in line with
Amdahl’s law: as parallelism increases, the performance of
the sequential part (low thread count) dominates the perfor-
mance of the program as a whole.

The most important conclusion is that the optimal de-
sign without SMT is 2B4m for homogeneous workloads and
3B5s for heterogeneous workloads — both heterogeneous
multi-core designs. Hence our second finding:
Finding #2: In the absence of SMT, heterogeneous multi-
cores outperform homogeneous multi-cores across varying
thread counts. At low thread counts, the big cores in a het-
erogeneous multi-core can be used to get high performance,

1.5

2

2.5

3

3.5

4

4.5

4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s

4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s

homogeneous workloads heterogeneous workloads

no
rm

al
ize

d 
th

ro
ug

hp
ut

Figure 7. Average performance assuming a uniform thread
count distribution and SMT in the homogeneous configura-
tions.

1.5

2

2.5

3

3.5

4

4.5

5

4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s

4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s

homogeneous workloads heterogeneous workloads

no
rm

al
ize

d 
th

ro
ug

hp
ut

Figure 8. Average performance assuming a uniform thread
count distribution and SMT in all configurations.

while at high thread counts, the larger amount of small cores
can be used to exploit thread-level parallelism. This is in line
with recent work that advocates single-ISA heterogeneous
multi-core processors [10, 19].

SMT in homogeneous designs. We now assume SMT is
implemented in the homogeneous designs (4B, 8m and 20s),
but not the heterogeneous designs. Figure 7 shows aver-
age performance for the various designs. It is interesting
to compare this graph against the one in Figure 6, which
showed that heterogeneous multi-cores yield higher perfor-
mance than homogeneous multi-cores when the number of
threads varies. Now, through Figure 7, we observe that by
adding SMT to the homogeneous multi-cores, the 4B design
outperforms the other designs. This leads to:
Finding #3: A homogeneous multi-core with big SMT cores
outperforms a heterogeneous multi-core (without SMT) un-
der the same power budget. Put differently, SMT outperforms
heterogeneity as a means to cope with varying thread counts.
The intuition is that, at low thread counts, the 4B design
with SMT is able to use all 4 big cores, while the number
of big cores in the heterogeneous designs is always smaller.
At high thread counts, a homogeneous multi-core with big
SMT cores allows for more concurrent threads (24 in total)
compared to heterogeneous multi-cores (at most 20 in the

SMT (Homogenous)

1.5

2

2.5

3

3.5

4

4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s 4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s

homogeneous workloads heterogeneous workloads

no
rm

al
ize

d 
th

ro
ug

hp
ut

Figure 6. Average performance assuming a uniform thread
count distribution and no SMT.

We conclude this section with our first finding:
Finding #1: A homogeneous multi-core consisting of all big
SMT cores yields better performance than a heterogeneous
multi-core for a small number of threads (due to the big-
ger cores) and only slightly worse for a large number of
threads (because shared resource contention largely domi-
nates performance for workload mixes of memory-intensive
applications, and cache capacity can be used more efficiently
through intelligent scheduling).

4.2 Thread count distributions
We now compare the multi-core designs under various active
thread distributions, assuming uniform distributions as well
as distributions observed in datacenter operations.

4.2.1 Uniform distribution.
We begin with assuming a uniform distribution over 24
threads, i.e., each thread count (1 to 24 threads) has equal
probability.

No SMT. We first assume that none of the cores implement
SMT. Figure 6 shows the average performance for all of the
multi-core designs without SMT. Each core can execute only
one thread at a time, and when there are more threads than
cores, multiple threads run on one core sequentially through
time-sharing.

Clearly, the 4B configuration outperforms the other ho-
mogeneous configurations (8m, 20s). Being able to execute
faster at low thread counts is more important than achieving
a high throughput at high thread counts. This is in line with
Amdahl’s law: as parallelism increases, the performance of
the sequential part (low thread count) dominates the perfor-
mance of the program as a whole.

The most important conclusion is that the optimal de-
sign without SMT is 2B4m for homogeneous workloads and
3B5s for heterogeneous workloads — both heterogeneous
multi-core designs. Hence our second finding:
Finding #2: In the absence of SMT, heterogeneous multi-
cores outperform homogeneous multi-cores across varying
thread counts. At low thread counts, the big cores in a het-
erogeneous multi-core can be used to get high performance,

1.5

2

2.5

3

3.5

4

4.5

4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s

4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s

homogeneous workloads heterogeneous workloads

no
rm

al
ize

d 
th

ro
ug

hp
ut

Figure 7. Average performance assuming a uniform thread
count distribution and SMT in the homogeneous configura-
tions.

1.5

2

2.5

3

3.5

4

4.5

5

4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s

4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s

homogeneous workloads heterogeneous workloads

no
rm

al
ize

d 
th

ro
ug

hp
ut

Figure 8. Average performance assuming a uniform thread
count distribution and SMT in all configurations.

while at high thread counts, the larger amount of small cores
can be used to exploit thread-level parallelism. This is in line
with recent work that advocates single-ISA heterogeneous
multi-core processors [10, 19].

SMT in homogeneous designs. We now assume SMT is
implemented in the homogeneous designs (4B, 8m and 20s),
but not the heterogeneous designs. Figure 7 shows aver-
age performance for the various designs. It is interesting
to compare this graph against the one in Figure 6, which
showed that heterogeneous multi-cores yield higher perfor-
mance than homogeneous multi-cores when the number of
threads varies. Now, through Figure 7, we observe that by
adding SMT to the homogeneous multi-cores, the 4B design
outperforms the other designs. This leads to:
Finding #3: A homogeneous multi-core with big SMT cores
outperforms a heterogeneous multi-core (without SMT) un-
der the same power budget. Put differently, SMT outperforms
heterogeneity as a means to cope with varying thread counts.
The intuition is that, at low thread counts, the 4B design
with SMT is able to use all 4 big cores, while the number
of big cores in the heterogeneous designs is always smaller.
At high thread counts, a homogeneous multi-core with big
SMT cores allows for more concurrent threads (24 in total)
compared to heterogeneous multi-cores (at most 20 in the

8 / 18



Uniform thread count distribution
No SMT

1.5

2

2.5

3

3.5

4

4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s 4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s

homogeneous workloads heterogeneous workloads

no
rm

al
ize

d 
th

ro
ug

hp
ut

Figure 6. Average performance assuming a uniform thread
count distribution and no SMT.

We conclude this section with our first finding:
Finding #1: A homogeneous multi-core consisting of all big
SMT cores yields better performance than a heterogeneous
multi-core for a small number of threads (due to the big-
ger cores) and only slightly worse for a large number of
threads (because shared resource contention largely domi-
nates performance for workload mixes of memory-intensive
applications, and cache capacity can be used more efficiently
through intelligent scheduling).

4.2 Thread count distributions
We now compare the multi-core designs under various active
thread distributions, assuming uniform distributions as well
as distributions observed in datacenter operations.

4.2.1 Uniform distribution.
We begin with assuming a uniform distribution over 24
threads, i.e., each thread count (1 to 24 threads) has equal
probability.

No SMT. We first assume that none of the cores implement
SMT. Figure 6 shows the average performance for all of the
multi-core designs without SMT. Each core can execute only
one thread at a time, and when there are more threads than
cores, multiple threads run on one core sequentially through
time-sharing.

Clearly, the 4B configuration outperforms the other ho-
mogeneous configurations (8m, 20s). Being able to execute
faster at low thread counts is more important than achieving
a high throughput at high thread counts. This is in line with
Amdahl’s law: as parallelism increases, the performance of
the sequential part (low thread count) dominates the perfor-
mance of the program as a whole.

The most important conclusion is that the optimal de-
sign without SMT is 2B4m for homogeneous workloads and
3B5s for heterogeneous workloads — both heterogeneous
multi-core designs. Hence our second finding:
Finding #2: In the absence of SMT, heterogeneous multi-
cores outperform homogeneous multi-cores across varying
thread counts. At low thread counts, the big cores in a het-
erogeneous multi-core can be used to get high performance,

1.5

2

2.5

3

3.5

4

4.5

4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s

4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s

homogeneous workloads heterogeneous workloads

no
rm

al
ize

d 
th

ro
ug

hp
ut

Figure 7. Average performance assuming a uniform thread
count distribution and SMT in the homogeneous configura-
tions.

1.5

2

2.5

3

3.5

4

4.5

5

4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s

4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s

homogeneous workloads heterogeneous workloads

no
rm

al
ize

d 
th

ro
ug

hp
ut

Figure 8. Average performance assuming a uniform thread
count distribution and SMT in all configurations.

while at high thread counts, the larger amount of small cores
can be used to exploit thread-level parallelism. This is in line
with recent work that advocates single-ISA heterogeneous
multi-core processors [10, 19].

SMT in homogeneous designs. We now assume SMT is
implemented in the homogeneous designs (4B, 8m and 20s),
but not the heterogeneous designs. Figure 7 shows aver-
age performance for the various designs. It is interesting
to compare this graph against the one in Figure 6, which
showed that heterogeneous multi-cores yield higher perfor-
mance than homogeneous multi-cores when the number of
threads varies. Now, through Figure 7, we observe that by
adding SMT to the homogeneous multi-cores, the 4B design
outperforms the other designs. This leads to:
Finding #3: A homogeneous multi-core with big SMT cores
outperforms a heterogeneous multi-core (without SMT) un-
der the same power budget. Put differently, SMT outperforms
heterogeneity as a means to cope with varying thread counts.
The intuition is that, at low thread counts, the 4B design
with SMT is able to use all 4 big cores, while the number
of big cores in the heterogeneous designs is always smaller.
At high thread counts, a homogeneous multi-core with big
SMT cores allows for more concurrent threads (24 in total)
compared to heterogeneous multi-cores (at most 20 in the

SMT (Homogenous)

1.5

2

2.5

3

3.5

4
4B 8m 20

s
3B

2m
3B

5s
2B

4m
2B

10
s

1B
6m

1B
15

s 4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s

homogeneous workloads heterogeneous workloads

no
rm

al
ize

d 
th

ro
ug

hp
ut

Figure 6. Average performance assuming a uniform thread
count distribution and no SMT.

We conclude this section with our first finding:
Finding #1: A homogeneous multi-core consisting of all big
SMT cores yields better performance than a heterogeneous
multi-core for a small number of threads (due to the big-
ger cores) and only slightly worse for a large number of
threads (because shared resource contention largely domi-
nates performance for workload mixes of memory-intensive
applications, and cache capacity can be used more efficiently
through intelligent scheduling).

4.2 Thread count distributions
We now compare the multi-core designs under various active
thread distributions, assuming uniform distributions as well
as distributions observed in datacenter operations.

4.2.1 Uniform distribution.
We begin with assuming a uniform distribution over 24
threads, i.e., each thread count (1 to 24 threads) has equal
probability.

No SMT. We first assume that none of the cores implement
SMT. Figure 6 shows the average performance for all of the
multi-core designs without SMT. Each core can execute only
one thread at a time, and when there are more threads than
cores, multiple threads run on one core sequentially through
time-sharing.

Clearly, the 4B configuration outperforms the other ho-
mogeneous configurations (8m, 20s). Being able to execute
faster at low thread counts is more important than achieving
a high throughput at high thread counts. This is in line with
Amdahl’s law: as parallelism increases, the performance of
the sequential part (low thread count) dominates the perfor-
mance of the program as a whole.

The most important conclusion is that the optimal de-
sign without SMT is 2B4m for homogeneous workloads and
3B5s for heterogeneous workloads — both heterogeneous
multi-core designs. Hence our second finding:
Finding #2: In the absence of SMT, heterogeneous multi-
cores outperform homogeneous multi-cores across varying
thread counts. At low thread counts, the big cores in a het-
erogeneous multi-core can be used to get high performance,

1.5

2

2.5

3

3.5

4

4.5

4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s

4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s

homogeneous workloads heterogeneous workloads

no
rm

al
ize

d 
th

ro
ug

hp
ut

Figure 7. Average performance assuming a uniform thread
count distribution and SMT in the homogeneous configura-
tions.

1.5

2

2.5

3

3.5

4

4.5

5

4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s

4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s

homogeneous workloads heterogeneous workloads

no
rm

al
ize

d 
th

ro
ug

hp
ut

Figure 8. Average performance assuming a uniform thread
count distribution and SMT in all configurations.

while at high thread counts, the larger amount of small cores
can be used to exploit thread-level parallelism. This is in line
with recent work that advocates single-ISA heterogeneous
multi-core processors [10, 19].

SMT in homogeneous designs. We now assume SMT is
implemented in the homogeneous designs (4B, 8m and 20s),
but not the heterogeneous designs. Figure 7 shows aver-
age performance for the various designs. It is interesting
to compare this graph against the one in Figure 6, which
showed that heterogeneous multi-cores yield higher perfor-
mance than homogeneous multi-cores when the number of
threads varies. Now, through Figure 7, we observe that by
adding SMT to the homogeneous multi-cores, the 4B design
outperforms the other designs. This leads to:
Finding #3: A homogeneous multi-core with big SMT cores
outperforms a heterogeneous multi-core (without SMT) un-
der the same power budget. Put differently, SMT outperforms
heterogeneity as a means to cope with varying thread counts.
The intuition is that, at low thread counts, the 4B design
with SMT is able to use all 4 big cores, while the number
of big cores in the heterogeneous designs is always smaller.
At high thread counts, a homogeneous multi-core with big
SMT cores allows for more concurrent threads (24 in total)
compared to heterogeneous multi-cores (at most 20 in the

SMT (all)

1.5

2

2.5

3

3.5

4

4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s 4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s

homogeneous workloads heterogeneous workloads

no
rm

al
ize

d 
th

ro
ug

hp
ut

Figure 6. Average performance assuming a uniform thread
count distribution and no SMT.

We conclude this section with our first finding:
Finding #1: A homogeneous multi-core consisting of all big
SMT cores yields better performance than a heterogeneous
multi-core for a small number of threads (due to the big-
ger cores) and only slightly worse for a large number of
threads (because shared resource contention largely domi-
nates performance for workload mixes of memory-intensive
applications, and cache capacity can be used more efficiently
through intelligent scheduling).

4.2 Thread count distributions
We now compare the multi-core designs under various active
thread distributions, assuming uniform distributions as well
as distributions observed in datacenter operations.

4.2.1 Uniform distribution.
We begin with assuming a uniform distribution over 24
threads, i.e., each thread count (1 to 24 threads) has equal
probability.

No SMT. We first assume that none of the cores implement
SMT. Figure 6 shows the average performance for all of the
multi-core designs without SMT. Each core can execute only
one thread at a time, and when there are more threads than
cores, multiple threads run on one core sequentially through
time-sharing.

Clearly, the 4B configuration outperforms the other ho-
mogeneous configurations (8m, 20s). Being able to execute
faster at low thread counts is more important than achieving
a high throughput at high thread counts. This is in line with
Amdahl’s law: as parallelism increases, the performance of
the sequential part (low thread count) dominates the perfor-
mance of the program as a whole.

The most important conclusion is that the optimal de-
sign without SMT is 2B4m for homogeneous workloads and
3B5s for heterogeneous workloads — both heterogeneous
multi-core designs. Hence our second finding:
Finding #2: In the absence of SMT, heterogeneous multi-
cores outperform homogeneous multi-cores across varying
thread counts. At low thread counts, the big cores in a het-
erogeneous multi-core can be used to get high performance,

1.5

2

2.5

3

3.5

4

4.5

4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s

4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s

homogeneous workloads heterogeneous workloads

no
rm

al
ize

d 
th

ro
ug

hp
ut

Figure 7. Average performance assuming a uniform thread
count distribution and SMT in the homogeneous configura-
tions.

1.5

2

2.5

3

3.5

4

4.5

5

4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s

4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s

homogeneous workloads heterogeneous workloads

no
rm

al
ize

d 
th

ro
ug

hp
ut

Figure 8. Average performance assuming a uniform thread
count distribution and SMT in all configurations.

while at high thread counts, the larger amount of small cores
can be used to exploit thread-level parallelism. This is in line
with recent work that advocates single-ISA heterogeneous
multi-core processors [10, 19].

SMT in homogeneous designs. We now assume SMT is
implemented in the homogeneous designs (4B, 8m and 20s),
but not the heterogeneous designs. Figure 7 shows aver-
age performance for the various designs. It is interesting
to compare this graph against the one in Figure 6, which
showed that heterogeneous multi-cores yield higher perfor-
mance than homogeneous multi-cores when the number of
threads varies. Now, through Figure 7, we observe that by
adding SMT to the homogeneous multi-cores, the 4B design
outperforms the other designs. This leads to:
Finding #3: A homogeneous multi-core with big SMT cores
outperforms a heterogeneous multi-core (without SMT) un-
der the same power budget. Put differently, SMT outperforms
heterogeneity as a means to cope with varying thread counts.
The intuition is that, at low thread counts, the 4B design
with SMT is able to use all 4 big cores, while the number
of big cores in the heterogeneous designs is always smaller.
At high thread counts, a homogeneous multi-core with big
SMT cores allows for more concurrent threads (24 in total)
compared to heterogeneous multi-cores (at most 20 in the

8 / 18



Findings (continued)

2 In the absence of SMT, heterogeneous multi-cores outperform
homogeneous multi-cores across varying thread counts.

3 A homogeneous multi-core with big SMT cores outperforms a
heterogeneous multi-core (without SMT) under the same power budget.
Put differently, SMT outperforms heterogeneity as a means to cope with
varying thread counts.

4 The added benefit of combining heterogeneity and SMT is limited.
5 Adding SMT to the heterogeneous designs makes the optimum shift

towards fewer and larger cores.

9 / 18



Datacenter distribution distribution, heterogeneous workloads

0

1

2

3

4

5

6

no
rm

al
ize

d 
th

ro
ug

hp
ut 4B

8m
20s
3B2m
3B5s
2B4m
2B10s
1B6m
1B15s

Figure 9. Average performance per benchmark assuming a uniform thread count distribution.

0

0.02

0.04

0.06

0.08

0.1

0.12

1 3 5 7 9 11 13 15 17 19 21 23

fre
qu

en
cy

thread count

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

7

4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s 4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s 4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s 4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s

without SMT with SMT without SMT with SMT
datacenter datacenter mirrored

no
rm

al
ize

d 
th

ro
ug

hp
ut

(a) Datacenter distribution (b) Average throughput

Figure 10. Datacenter distribution and average performance using the datacenter distribution and the mirrored datacenter
distribution.

20s design point), yielding higher overall throughput within
the same power budget.

SMT in all designs. Finally, Figure 8 shows average per-
formance when SMT is enabled in all cores of all designs.
For homogeneous workloads, the performance for the best
heterogeneous configuration is 5.6% higher than that of 4B
without SMT in all configurations (Figure 6), but only 0.6%
higher than with SMT in all designs (Figure 8). For hetero-
geneous workloads, the homogeneous 4B design even out-
performs the best heterogeneous design by 0.5%. Thus, in
other words:
Finding #4: The added benefit of combining heterogeneity
and SMT is limited.

It is also interesting to observe that the optimal hetero-
geneous design shifts from 2B4m without SMT to 3B2m
with SMT for the homogeneous workloads, and from 3B5s
to 3B2m for the heterogeneous workloads. Hence:
Finding #5: Adding SMT to the heterogeneous designs
makes the optimum shift towards fewer and larger cores.
This is in line with the general observation that SMT in
larger cores enables flexibility as a function of active thread
count.

Per-benchmark results. Figure 9 shows average perfor-
mance for the various multi-core configurations (SMT en-
abled in all cores) for each benchmark, assuming a uni-
form distribution. The results vary across benchmarks: for
some benchmarks (calculix, h264ref, hmmer and tonto),
4B performs worse than the best heterogeneous multi-core,
while for others it performs similarly, or even slightly bet-
ter (libquantum and mcf). Detailed analysis of the results
revealed that the latter category of benchmarks have high
memory bandwidth demands, resulting in bandwidth-bound
performance numbers for high thread counts. Section 8.2
contains results with a higher memory bandwidth setting.

4.2.2 Datacenter distributions.
Figure 10(b) shows average performance across two dif-
ferent thread count distributions, assuming heterogeneous
workload mixes. “Datacenter” is the distribution taken from [2]
for CPU utilization in a datacenter, adapted to a workload
of at most 24 threads; Figure 10(a) shows the distribution:
there is a peak at 1 thread (low utilization) and one at 7 to 9
threads (30%-40% utilization). “Mirrored datacenter” is the
same distribution, mirrored around the center. This means
that there now is a peak at 24 threads, and one around 16 to
18 threads. We use this distribution to model a more heavily

0

1

2

3

4

5

6

no
rm

al
ize

d 
th

ro
ug

hp
ut 4B

8m
20s
3B2m
3B5s
2B4m
2B10s
1B6m
1B15s

Figure 9. Average performance per benchmark assuming a uniform thread count distribution.

0

0.02

0.04

0.06

0.08

0.1

0.12

1 3 5 7 9 11 13 15 17 19 21 23

fre
qu

en
cy

thread count

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

7

4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s 4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s 4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s 4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s

without SMT with SMT without SMT with SMT
datacenter datacenter mirrored

no
rm

al
ize

d 
th

ro
ug

hp
ut

(a) Datacenter distribution (b) Average throughput

Figure 10. Datacenter distribution and average performance using the datacenter distribution and the mirrored datacenter
distribution.

20s design point), yielding higher overall throughput within
the same power budget.

SMT in all designs. Finally, Figure 8 shows average per-
formance when SMT is enabled in all cores of all designs.
For homogeneous workloads, the performance for the best
heterogeneous configuration is 5.6% higher than that of 4B
without SMT in all configurations (Figure 6), but only 0.6%
higher than with SMT in all designs (Figure 8). For hetero-
geneous workloads, the homogeneous 4B design even out-
performs the best heterogeneous design by 0.5%. Thus, in
other words:
Finding #4: The added benefit of combining heterogeneity
and SMT is limited.

It is also interesting to observe that the optimal hetero-
geneous design shifts from 2B4m without SMT to 3B2m
with SMT for the homogeneous workloads, and from 3B5s
to 3B2m for the heterogeneous workloads. Hence:
Finding #5: Adding SMT to the heterogeneous designs
makes the optimum shift towards fewer and larger cores.
This is in line with the general observation that SMT in
larger cores enables flexibility as a function of active thread
count.

Per-benchmark results. Figure 9 shows average perfor-
mance for the various multi-core configurations (SMT en-
abled in all cores) for each benchmark, assuming a uni-
form distribution. The results vary across benchmarks: for
some benchmarks (calculix, h264ref, hmmer and tonto),
4B performs worse than the best heterogeneous multi-core,
while for others it performs similarly, or even slightly bet-
ter (libquantum and mcf). Detailed analysis of the results
revealed that the latter category of benchmarks have high
memory bandwidth demands, resulting in bandwidth-bound
performance numbers for high thread counts. Section 8.2
contains results with a higher memory bandwidth setting.

4.2.2 Datacenter distributions.
Figure 10(b) shows average performance across two dif-
ferent thread count distributions, assuming heterogeneous
workload mixes. “Datacenter” is the distribution taken from [2]
for CPU utilization in a datacenter, adapted to a workload
of at most 24 threads; Figure 10(a) shows the distribution:
there is a peak at 1 thread (low utilization) and one at 7 to 9
threads (30%-40% utilization). “Mirrored datacenter” is the
same distribution, mirrored around the center. This means
that there now is a peak at 24 threads, and one around 16 to
18 threads. We use this distribution to model a more heavily

10 / 18



Datacenter distribution distribution, heterogeneous workloads

0

1

2

3

4

5

6

no
rm

al
ize

d 
th

ro
ug

hp
ut 4B

8m
20s
3B2m
3B5s
2B4m
2B10s
1B6m
1B15s

Figure 9. Average performance per benchmark assuming a uniform thread count distribution.

0

0.02

0.04

0.06

0.08

0.1

0.12

1 3 5 7 9 11 13 15 17 19 21 23

fre
qu

en
cy

thread count

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

7

4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s 4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s 4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s 4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s

without SMT with SMT without SMT with SMT
datacenter datacenter mirrored

no
rm

al
ize

d 
th

ro
ug

hp
ut

(a) Datacenter distribution (b) Average throughput

Figure 10. Datacenter distribution and average performance using the datacenter distribution and the mirrored datacenter
distribution.

20s design point), yielding higher overall throughput within
the same power budget.

SMT in all designs. Finally, Figure 8 shows average per-
formance when SMT is enabled in all cores of all designs.
For homogeneous workloads, the performance for the best
heterogeneous configuration is 5.6% higher than that of 4B
without SMT in all configurations (Figure 6), but only 0.6%
higher than with SMT in all designs (Figure 8). For hetero-
geneous workloads, the homogeneous 4B design even out-
performs the best heterogeneous design by 0.5%. Thus, in
other words:
Finding #4: The added benefit of combining heterogeneity
and SMT is limited.

It is also interesting to observe that the optimal hetero-
geneous design shifts from 2B4m without SMT to 3B2m
with SMT for the homogeneous workloads, and from 3B5s
to 3B2m for the heterogeneous workloads. Hence:
Finding #5: Adding SMT to the heterogeneous designs
makes the optimum shift towards fewer and larger cores.
This is in line with the general observation that SMT in
larger cores enables flexibility as a function of active thread
count.

Per-benchmark results. Figure 9 shows average perfor-
mance for the various multi-core configurations (SMT en-
abled in all cores) for each benchmark, assuming a uni-
form distribution. The results vary across benchmarks: for
some benchmarks (calculix, h264ref, hmmer and tonto),
4B performs worse than the best heterogeneous multi-core,
while for others it performs similarly, or even slightly bet-
ter (libquantum and mcf). Detailed analysis of the results
revealed that the latter category of benchmarks have high
memory bandwidth demands, resulting in bandwidth-bound
performance numbers for high thread counts. Section 8.2
contains results with a higher memory bandwidth setting.

4.2.2 Datacenter distributions.
Figure 10(b) shows average performance across two dif-
ferent thread count distributions, assuming heterogeneous
workload mixes. “Datacenter” is the distribution taken from [2]
for CPU utilization in a datacenter, adapted to a workload
of at most 24 threads; Figure 10(a) shows the distribution:
there is a peak at 1 thread (low utilization) and one at 7 to 9
threads (30%-40% utilization). “Mirrored datacenter” is the
same distribution, mirrored around the center. This means
that there now is a peak at 24 threads, and one around 16 to
18 threads. We use this distribution to model a more heavily

0

1

2

3

4

5

6

no
rm

al
ize

d 
th

ro
ug

hp
ut 4B

8m
20s
3B2m
3B5s
2B4m
2B10s
1B6m
1B15s

Figure 9. Average performance per benchmark assuming a uniform thread count distribution.

0

0.02

0.04

0.06

0.08

0.1

0.12

1 3 5 7 9 11 13 15 17 19 21 23

fre
qu

en
cy

thread count

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

7

4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s 4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s 4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s 4B 8m 20
s

3B
2m

3B
5s

2B
4m

2B
10

s
1B

6m
1B

15
s

without SMT with SMT without SMT with SMT
datacenter datacenter mirrored

no
rm

al
ize

d 
th

ro
ug

hp
ut

(a) Datacenter distribution (b) Average throughput

Figure 10. Datacenter distribution and average performance using the datacenter distribution and the mirrored datacenter
distribution.

20s design point), yielding higher overall throughput within
the same power budget.

SMT in all designs. Finally, Figure 8 shows average per-
formance when SMT is enabled in all cores of all designs.
For homogeneous workloads, the performance for the best
heterogeneous configuration is 5.6% higher than that of 4B
without SMT in all configurations (Figure 6), but only 0.6%
higher than with SMT in all designs (Figure 8). For hetero-
geneous workloads, the homogeneous 4B design even out-
performs the best heterogeneous design by 0.5%. Thus, in
other words:
Finding #4: The added benefit of combining heterogeneity
and SMT is limited.

It is also interesting to observe that the optimal hetero-
geneous design shifts from 2B4m without SMT to 3B2m
with SMT for the homogeneous workloads, and from 3B5s
to 3B2m for the heterogeneous workloads. Hence:
Finding #5: Adding SMT to the heterogeneous designs
makes the optimum shift towards fewer and larger cores.
This is in line with the general observation that SMT in
larger cores enables flexibility as a function of active thread
count.

Per-benchmark results. Figure 9 shows average perfor-
mance for the various multi-core configurations (SMT en-
abled in all cores) for each benchmark, assuming a uni-
form distribution. The results vary across benchmarks: for
some benchmarks (calculix, h264ref, hmmer and tonto),
4B performs worse than the best heterogeneous multi-core,
while for others it performs similarly, or even slightly bet-
ter (libquantum and mcf). Detailed analysis of the results
revealed that the latter category of benchmarks have high
memory bandwidth demands, resulting in bandwidth-bound
performance numbers for high thread counts. Section 8.2
contains results with a higher memory bandwidth setting.

4.2.2 Datacenter distributions.
Figure 10(b) shows average performance across two dif-
ferent thread count distributions, assuming heterogeneous
workload mixes. “Datacenter” is the distribution taken from [2]
for CPU utilization in a datacenter, adapted to a workload
of at most 24 threads; Figure 10(a) shows the distribution:
there is a peak at 1 thread (low utilization) and one at 7 to 9
threads (30%-40% utilization). “Mirrored datacenter” is the
same distribution, mirrored around the center. This means
that there now is a peak at 24 threads, and one around 16 to
18 threads. We use this distribution to model a more heavily

10 / 18



Findings (continued)

6 For distributions that are skewed to fewer threads, the 4B configuration
with SMT is optimal. For distributions that are skewed towards more
active threads, 4B with SMT becomes less optimal, but its performance
is very close to the optimum.

11 / 18



Normalized speedup for PARSEC benchmarks

ROI-only




































(a) ROI-only



































(b) Whole program

Figure 12. Normalized speedup for the individual PARSEC
benchmarks.

6. Dynamic Multi-Cores
Dynamic multi-cores are multi-core processors with a dy-
namic configuration [11, 17]: core configuration and the
number of cores can dynamically vary between many small
cores and a few large cores, and in-between heterogeneous
configurations. Theoretical studies, such as the one of Hill
and Marty [10], show that this type of multi-core is opti-
mal in the context of varying parallelism and varying thread
count. Through dynamic adaptation, one or a few big cores
can be formed when there is low parallelism, while the con-
figuration is changed to many small cores when there are
a lot of active threads. This technique is essentially the in-
verse of SMT: an SMT core executes a single thread but
can execute multiple threads at higher active thread counts; a
dynamic multi-core executes threads on independent cores,
which can be fused to bigger cores at low active thread
counts.

To compare the abilities of a homogeneous multi-core
with big SMT cores (4B) versus a dynamic multi-core to
cope with varying active thread counts, we assume an ideal
dynamic multi-core that can be morphed without overhead
into any of the 9 multi-core configurations in Figure 2.
This ideal dynamic multi-core chooses the best perform-
ing configuration (out of the 9 possible configurations) at
each thread count for each workload. This is an optimistic
assumption in favor of dynamic multi-cores, since fusing
cores is likely to involve a non-negligible time, area and
power overhead. Figure 13 compares dynamic multi-cores
(both with and without SMT) against the 4B configura-
tion (with SMT) for the homogeneous and heterogeneous

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

1 3 5 7 9 11 13 15 17 19 21 23

no
rm

al
ize

d 
th

ro
ug

hp
ut

number of threads

4B

dynamic
w/o SMT

dynamic
w/ SMT

(a) Homogeneous multi-program workloads

0

1

2

3

4

5

6

7

1 3 5 7 9 11 13 15 17 19 21 23

no
rm

al
ize

d 
th

ro
ug

hp
ut

number of threads

4B

dynamic
w/o SMT

dynamic w/
SMT

(b) Heterogeneous multi-program workloads

Figure 13. Throughput as a function of the number of
threads for the 4B configuration with SMT and the dynamic
core fusion configuration with and without SMT.

multi-program workloads. This figure shows that dynamic
multi-cores without SMT yield similar or even worse over-
all performance. Especially for heterogeneous workloads,
SMT seems to perform better than a dynamic multi-core de-
sign. The reason is that SMT enables better utilization and
higher throughput within the same power budget, especially
when the programs are complementary in their resource de-
mands. SMT also allows for more fine-grained parallelism:
for the dynamic multi-core, a big core can be split up into
2 medium cores or 5 small cores, but an SMT core can also
execute 3 and 4 threads concurrently, while fully utilizing all
resources. As a result, the 4B line in Figure 13(b) smoothly
increases, while the dynamic line (without SMT) shows mul-
tiple plateaus with jumps when the configuration changes. A
dynamic multi-core that also supports SMT performs the
best, but this will probably result in a very complex design
and an even more complex scheduling and reconfiguration
policy. We thus conclude:
Finding #8: Homogeneous multi-cores with big SMT cores
outperform (or are at least competitive to) dynamic multi-
cores as a way to cope with variable active thread counts. A
combination of both is optimal, but is also the most complex,
both with respect to design and run-time scheduling.

Whole program




































(a) ROI-only



































(b) Whole program

Figure 12. Normalized speedup for the individual PARSEC
benchmarks.

6. Dynamic Multi-Cores
Dynamic multi-cores are multi-core processors with a dy-
namic configuration [11, 17]: core configuration and the
number of cores can dynamically vary between many small
cores and a few large cores, and in-between heterogeneous
configurations. Theoretical studies, such as the one of Hill
and Marty [10], show that this type of multi-core is opti-
mal in the context of varying parallelism and varying thread
count. Through dynamic adaptation, one or a few big cores
can be formed when there is low parallelism, while the con-
figuration is changed to many small cores when there are
a lot of active threads. This technique is essentially the in-
verse of SMT: an SMT core executes a single thread but
can execute multiple threads at higher active thread counts; a
dynamic multi-core executes threads on independent cores,
which can be fused to bigger cores at low active thread
counts.

To compare the abilities of a homogeneous multi-core
with big SMT cores (4B) versus a dynamic multi-core to
cope with varying active thread counts, we assume an ideal
dynamic multi-core that can be morphed without overhead
into any of the 9 multi-core configurations in Figure 2.
This ideal dynamic multi-core chooses the best perform-
ing configuration (out of the 9 possible configurations) at
each thread count for each workload. This is an optimistic
assumption in favor of dynamic multi-cores, since fusing
cores is likely to involve a non-negligible time, area and
power overhead. Figure 13 compares dynamic multi-cores
(both with and without SMT) against the 4B configura-
tion (with SMT) for the homogeneous and heterogeneous

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

1 3 5 7 9 11 13 15 17 19 21 23

no
rm

al
ize

d 
th

ro
ug

hp
ut

number of threads

4B

dynamic
w/o SMT

dynamic
w/ SMT

(a) Homogeneous multi-program workloads

0

1

2

3

4

5

6

7

1 3 5 7 9 11 13 15 17 19 21 23

no
rm

al
ize

d 
th

ro
ug

hp
ut

number of threads

4B

dynamic
w/o SMT

dynamic w/
SMT

(b) Heterogeneous multi-program workloads

Figure 13. Throughput as a function of the number of
threads for the 4B configuration with SMT and the dynamic
core fusion configuration with and without SMT.

multi-program workloads. This figure shows that dynamic
multi-cores without SMT yield similar or even worse over-
all performance. Especially for heterogeneous workloads,
SMT seems to perform better than a dynamic multi-core de-
sign. The reason is that SMT enables better utilization and
higher throughput within the same power budget, especially
when the programs are complementary in their resource de-
mands. SMT also allows for more fine-grained parallelism:
for the dynamic multi-core, a big core can be split up into
2 medium cores or 5 small cores, but an SMT core can also
execute 3 and 4 threads concurrently, while fully utilizing all
resources. As a result, the 4B line in Figure 13(b) smoothly
increases, while the dynamic line (without SMT) shows mul-
tiple plateaus with jumps when the configuration changes. A
dynamic multi-core that also supports SMT performs the
best, but this will probably result in a very complex design
and an even more complex scheduling and reconfiguration
policy. We thus conclude:
Finding #8: Homogeneous multi-cores with big SMT cores
outperform (or are at least competitive to) dynamic multi-
cores as a way to cope with variable active thread counts. A
combination of both is optimal, but is also the most complex,
both with respect to design and run-time scheduling.

12 / 18



Findings (continued)

7 SMT is also beneficial for multi-threaded workloads. As for the
multi-program workloads, adding SMT lets the optimal design shift to
fewer but larger cores. A homogeneous design with big SMT cores
outperforms the best heterogeneous design without SMT, and performs
close to, and sometimes even slightly better than, the best heterogeneous
design with SMT.

13 / 18



Energy Efficiency

Power consumption
assuming power gating

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23

po
we

r (
W

)

thread count

4B
8m
20s
3B2m
3B5s
2B4m
2B10s
1B6m
1B15s

Figure 14. Power consumption as a function of thread count
for all configurations assuming power gating.

7. Energy Efficiency
In the previous sections, we focused on performance under
an equal total power budget. However, power-gating can
be used to turn off idle cores, resulting in lower power
consumption at low active thread counts. Especially for the
configurations with many medium or small cores, this may
result in improved power/energy-efficiency compared to the
homogeneous configuration with a few big SMT cores.

Power consumption as a function of thread count. Fig-
ure 14 shows average power consumption for all configura-
tions (all configurations have SMT enabled in all cores) as a
function of thread count when power-gating unused cores
(averaged across all homogeneous multi-program work-
loads). It is interesting to study power consumption along
with performance as shown in Figure 3: the 4B configura-
tion consumes most power at low active thread counts while
delivering highest performance; the 20s configuration con-
sumes least power while delivering poorest performance;
on the other hand, at high thread counts, all configurations
perform nearly as well while consuming similar levels of
power.

Figure 14 also shows that activating SMT contexts in-
creases power consumption, due to the increase in resource
utilization, but not as much as the increase in power con-
sumption from activating cores (see for example the 4B con-
figuration: power consumption increases from 42 Watt for 4
threads to 46 Watt for 24 threads). Note that the numbers for
one thread (leftmost points) do not show the 1/2/5 relative
power difference for the big, medium and small cores (the
power consumption for one active core is 17.3, 13.5 and 9.8
Watt, for B, m and s, respectively). This is because the shared
L3 cache and the main memory (DRAM) are active all the
time, irrespective of active thread count — these resources
consume approximately 7 Watt. The relative difference in
power consumption for the three core types is reflected in
the slopes of the 4B, 8m and 20s configurations (part of the
curves that do not use SMT, i.e., with thread count lower
than or equal to core count).

Pareto-optimal designs. Figure 15 shows the power and
energy consumption as a function of performance for the

0
5

10
15
20
25
30
35
40
45

0 1 2 3 4 5

po
we

r (
W

)

normalized throughput

4B
8m
20s
3B2m
3B5s
2B4m
2B10s
1B6m
1B15s

(a) Power versus performance

0

2

4

6

8

10

12

0 1 2 3 4 5

no
rm

al
ize

d 
en

er
gy

normalized throughput

4B
8m
20s
3B2m
3B5s
2B4m
2B10s
1B6m
1B15s

(b) Energy versus performance

Figure 15. Throughput versus power (top) and energy (bot-
tom) consumption for heterogeneous multi-program work-
loads (assuming a uniform thread count distribution).

heterogeneous multi-program workloads (assuming a uni-
form thread count distribution). There are several interest-
ing observations to be made. First, the 20s configuration
consumes the least power, but results in high energy con-
sumption due to its poor performance. In other words, a
configuration with many small cores is not energy-optimal.
Second, the 4B configuration is the best performing, but
also has higher power and energy consumption. Third, the
Pareto-optimal frontier is populated with heterogeneous de-
sign points, along with the best-performance 4B and lowest-
power 20s configurations: the Pareto-optimal frontier con-
sists of the following design points, 4B, 3B2m, 2B4m, 3B5s,
2B10s, 1B15s and 20s, for power versus performance (top
graph in Figure 15), and 4B, 3B2m and 3B5s, for energy
versus performance (bottom graph). In other words, hetero-
geneity trades off performance for power and energy con-
sumption. The design point with the minimum energy-delay
product (EDP) across all the designs considered is the 3B5s
configuration, yet this heterogeneous design point improves
EDP by as little as 4.1% and 1.8% over the 4B design point
for the homogeneous and heterogeneous workloads, respec-
tively. This leads to the following finding:
Finding #9: Heterogeneous multi-core designs, when power
gating idle cores, yield an (only) slightly better energy-
efficiency compared to homogeneous multi-cores with big
SMT cores under variable active thread count conditions.

Energy vs. performance

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23

po
we

r (
W

)

thread count

4B
8m
20s
3B2m
3B5s
2B4m
2B10s
1B6m
1B15s

Figure 14. Power consumption as a function of thread count
for all configurations assuming power gating.

7. Energy Efficiency
In the previous sections, we focused on performance under
an equal total power budget. However, power-gating can
be used to turn off idle cores, resulting in lower power
consumption at low active thread counts. Especially for the
configurations with many medium or small cores, this may
result in improved power/energy-efficiency compared to the
homogeneous configuration with a few big SMT cores.

Power consumption as a function of thread count. Fig-
ure 14 shows average power consumption for all configura-
tions (all configurations have SMT enabled in all cores) as a
function of thread count when power-gating unused cores
(averaged across all homogeneous multi-program work-
loads). It is interesting to study power consumption along
with performance as shown in Figure 3: the 4B configura-
tion consumes most power at low active thread counts while
delivering highest performance; the 20s configuration con-
sumes least power while delivering poorest performance;
on the other hand, at high thread counts, all configurations
perform nearly as well while consuming similar levels of
power.

Figure 14 also shows that activating SMT contexts in-
creases power consumption, due to the increase in resource
utilization, but not as much as the increase in power con-
sumption from activating cores (see for example the 4B con-
figuration: power consumption increases from 42 Watt for 4
threads to 46 Watt for 24 threads). Note that the numbers for
one thread (leftmost points) do not show the 1/2/5 relative
power difference for the big, medium and small cores (the
power consumption for one active core is 17.3, 13.5 and 9.8
Watt, for B, m and s, respectively). This is because the shared
L3 cache and the main memory (DRAM) are active all the
time, irrespective of active thread count — these resources
consume approximately 7 Watt. The relative difference in
power consumption for the three core types is reflected in
the slopes of the 4B, 8m and 20s configurations (part of the
curves that do not use SMT, i.e., with thread count lower
than or equal to core count).

Pareto-optimal designs. Figure 15 shows the power and
energy consumption as a function of performance for the

0
5

10
15
20
25
30
35
40
45

0 1 2 3 4 5

po
we

r (
W

)

normalized throughput

4B
8m
20s
3B2m
3B5s
2B4m
2B10s
1B6m
1B15s

(a) Power versus performance

0

2

4

6

8

10

12

0 1 2 3 4 5

no
rm

al
ize

d 
en

er
gy

normalized throughput

4B
8m
20s
3B2m
3B5s
2B4m
2B10s
1B6m
1B15s

(b) Energy versus performance

Figure 15. Throughput versus power (top) and energy (bot-
tom) consumption for heterogeneous multi-program work-
loads (assuming a uniform thread count distribution).

heterogeneous multi-program workloads (assuming a uni-
form thread count distribution). There are several interest-
ing observations to be made. First, the 20s configuration
consumes the least power, but results in high energy con-
sumption due to its poor performance. In other words, a
configuration with many small cores is not energy-optimal.
Second, the 4B configuration is the best performing, but
also has higher power and energy consumption. Third, the
Pareto-optimal frontier is populated with heterogeneous de-
sign points, along with the best-performance 4B and lowest-
power 20s configurations: the Pareto-optimal frontier con-
sists of the following design points, 4B, 3B2m, 2B4m, 3B5s,
2B10s, 1B15s and 20s, for power versus performance (top
graph in Figure 15), and 4B, 3B2m and 3B5s, for energy
versus performance (bottom graph). In other words, hetero-
geneity trades off performance for power and energy con-
sumption. The design point with the minimum energy-delay
product (EDP) across all the designs considered is the 3B5s
configuration, yet this heterogeneous design point improves
EDP by as little as 4.1% and 1.8% over the 4B design point
for the homogeneous and heterogeneous workloads, respec-
tively. This leads to the following finding:
Finding #9: Heterogeneous multi-core designs, when power
gating idle cores, yield an (only) slightly better energy-
efficiency compared to homogeneous multi-cores with big
SMT cores under variable active thread count conditions.

14 / 18



Energy Efficiency

Power consumption
assuming power gating

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23

po
we

r (
W

)

thread count

4B
8m
20s
3B2m
3B5s
2B4m
2B10s
1B6m
1B15s

Figure 14. Power consumption as a function of thread count
for all configurations assuming power gating.

7. Energy Efficiency
In the previous sections, we focused on performance under
an equal total power budget. However, power-gating can
be used to turn off idle cores, resulting in lower power
consumption at low active thread counts. Especially for the
configurations with many medium or small cores, this may
result in improved power/energy-efficiency compared to the
homogeneous configuration with a few big SMT cores.

Power consumption as a function of thread count. Fig-
ure 14 shows average power consumption for all configura-
tions (all configurations have SMT enabled in all cores) as a
function of thread count when power-gating unused cores
(averaged across all homogeneous multi-program work-
loads). It is interesting to study power consumption along
with performance as shown in Figure 3: the 4B configura-
tion consumes most power at low active thread counts while
delivering highest performance; the 20s configuration con-
sumes least power while delivering poorest performance;
on the other hand, at high thread counts, all configurations
perform nearly as well while consuming similar levels of
power.

Figure 14 also shows that activating SMT contexts in-
creases power consumption, due to the increase in resource
utilization, but not as much as the increase in power con-
sumption from activating cores (see for example the 4B con-
figuration: power consumption increases from 42 Watt for 4
threads to 46 Watt for 24 threads). Note that the numbers for
one thread (leftmost points) do not show the 1/2/5 relative
power difference for the big, medium and small cores (the
power consumption for one active core is 17.3, 13.5 and 9.8
Watt, for B, m and s, respectively). This is because the shared
L3 cache and the main memory (DRAM) are active all the
time, irrespective of active thread count — these resources
consume approximately 7 Watt. The relative difference in
power consumption for the three core types is reflected in
the slopes of the 4B, 8m and 20s configurations (part of the
curves that do not use SMT, i.e., with thread count lower
than or equal to core count).

Pareto-optimal designs. Figure 15 shows the power and
energy consumption as a function of performance for the

0
5

10
15
20
25
30
35
40
45

0 1 2 3 4 5

po
we

r (
W

)

normalized throughput

4B
8m
20s
3B2m
3B5s
2B4m
2B10s
1B6m
1B15s

(a) Power versus performance

0

2

4

6

8

10

12

0 1 2 3 4 5

no
rm

al
ize

d 
en

er
gy

normalized throughput

4B
8m
20s
3B2m
3B5s
2B4m
2B10s
1B6m
1B15s

(b) Energy versus performance

Figure 15. Throughput versus power (top) and energy (bot-
tom) consumption for heterogeneous multi-program work-
loads (assuming a uniform thread count distribution).

heterogeneous multi-program workloads (assuming a uni-
form thread count distribution). There are several interest-
ing observations to be made. First, the 20s configuration
consumes the least power, but results in high energy con-
sumption due to its poor performance. In other words, a
configuration with many small cores is not energy-optimal.
Second, the 4B configuration is the best performing, but
also has higher power and energy consumption. Third, the
Pareto-optimal frontier is populated with heterogeneous de-
sign points, along with the best-performance 4B and lowest-
power 20s configurations: the Pareto-optimal frontier con-
sists of the following design points, 4B, 3B2m, 2B4m, 3B5s,
2B10s, 1B15s and 20s, for power versus performance (top
graph in Figure 15), and 4B, 3B2m and 3B5s, for energy
versus performance (bottom graph). In other words, hetero-
geneity trades off performance for power and energy con-
sumption. The design point with the minimum energy-delay
product (EDP) across all the designs considered is the 3B5s
configuration, yet this heterogeneous design point improves
EDP by as little as 4.1% and 1.8% over the 4B design point
for the homogeneous and heterogeneous workloads, respec-
tively. This leads to the following finding:
Finding #9: Heterogeneous multi-core designs, when power
gating idle cores, yield an (only) slightly better energy-
efficiency compared to homogeneous multi-cores with big
SMT cores under variable active thread count conditions.

Energy vs. performance

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23

po
we

r (
W

)

thread count

4B
8m
20s
3B2m
3B5s
2B4m
2B10s
1B6m
1B15s

Figure 14. Power consumption as a function of thread count
for all configurations assuming power gating.

7. Energy Efficiency
In the previous sections, we focused on performance under
an equal total power budget. However, power-gating can
be used to turn off idle cores, resulting in lower power
consumption at low active thread counts. Especially for the
configurations with many medium or small cores, this may
result in improved power/energy-efficiency compared to the
homogeneous configuration with a few big SMT cores.

Power consumption as a function of thread count. Fig-
ure 14 shows average power consumption for all configura-
tions (all configurations have SMT enabled in all cores) as a
function of thread count when power-gating unused cores
(averaged across all homogeneous multi-program work-
loads). It is interesting to study power consumption along
with performance as shown in Figure 3: the 4B configura-
tion consumes most power at low active thread counts while
delivering highest performance; the 20s configuration con-
sumes least power while delivering poorest performance;
on the other hand, at high thread counts, all configurations
perform nearly as well while consuming similar levels of
power.

Figure 14 also shows that activating SMT contexts in-
creases power consumption, due to the increase in resource
utilization, but not as much as the increase in power con-
sumption from activating cores (see for example the 4B con-
figuration: power consumption increases from 42 Watt for 4
threads to 46 Watt for 24 threads). Note that the numbers for
one thread (leftmost points) do not show the 1/2/5 relative
power difference for the big, medium and small cores (the
power consumption for one active core is 17.3, 13.5 and 9.8
Watt, for B, m and s, respectively). This is because the shared
L3 cache and the main memory (DRAM) are active all the
time, irrespective of active thread count — these resources
consume approximately 7 Watt. The relative difference in
power consumption for the three core types is reflected in
the slopes of the 4B, 8m and 20s configurations (part of the
curves that do not use SMT, i.e., with thread count lower
than or equal to core count).

Pareto-optimal designs. Figure 15 shows the power and
energy consumption as a function of performance for the

0
5

10
15
20
25
30
35
40
45

0 1 2 3 4 5

po
we

r (
W

)

normalized throughput

4B
8m
20s
3B2m
3B5s
2B4m
2B10s
1B6m
1B15s

(a) Power versus performance

0

2

4

6

8

10

12

0 1 2 3 4 5

no
rm

al
ize

d 
en

er
gy

normalized throughput

4B
8m
20s
3B2m
3B5s
2B4m
2B10s
1B6m
1B15s

(b) Energy versus performance

Figure 15. Throughput versus power (top) and energy (bot-
tom) consumption for heterogeneous multi-program work-
loads (assuming a uniform thread count distribution).

heterogeneous multi-program workloads (assuming a uni-
form thread count distribution). There are several interest-
ing observations to be made. First, the 20s configuration
consumes the least power, but results in high energy con-
sumption due to its poor performance. In other words, a
configuration with many small cores is not energy-optimal.
Second, the 4B configuration is the best performing, but
also has higher power and energy consumption. Third, the
Pareto-optimal frontier is populated with heterogeneous de-
sign points, along with the best-performance 4B and lowest-
power 20s configurations: the Pareto-optimal frontier con-
sists of the following design points, 4B, 3B2m, 2B4m, 3B5s,
2B10s, 1B15s and 20s, for power versus performance (top
graph in Figure 15), and 4B, 3B2m and 3B5s, for energy
versus performance (bottom graph). In other words, hetero-
geneity trades off performance for power and energy con-
sumption. The design point with the minimum energy-delay
product (EDP) across all the designs considered is the 3B5s
configuration, yet this heterogeneous design point improves
EDP by as little as 4.1% and 1.8% over the 4B design point
for the homogeneous and heterogeneous workloads, respec-
tively. This leads to the following finding:
Finding #9: Heterogeneous multi-core designs, when power
gating idle cores, yield an (only) slightly better energy-
efficiency compared to homogeneous multi-cores with big
SMT cores under variable active thread count conditions.

14 / 18



Findings (continued)

9 Heterogeneous multi-core designs, when power gating idle cores, yield an
(only) slightly better energy-efficiency compared to homogeneous
multi-cores with big SMT cores under variable active thread count
conditions.

15 / 18



Average PARSEC performance with large-cache/higher frequency

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
no

rm
al

ize
d 

sp
ee

du
p

Figure 16. Average multi-threaded benchmark perfor-
mance with alternative large-cache and high-frequency con-
figurations.

8. Alternative Multi-Core Designs
8.1 Larger caches or higher frequency for the small

cores
In Section 3, we assumed particular design decisions that
may impact the final results. One decision was to keep total
cache capacity constant across all designs. The motivation
was to evaluate the impact of core type and organization, not
cache capacity. Nevertheless, we noticed that sharing a cache
between multiple programs co-executing on an SMT core
can lead to better cache usage. We therefore now evaluate
the effect of keeping private cache sizes constant across core
types. We also evaluate the impact of increasing frequency
of the small cores to improve its performance.

Figure 16 shows average speedup for the multi-threaded
benchmarks (ROI-only). 6m lc and 16s lc (lc stands for
larger cache) are configurations where the private L1 and
L2 cache sizes for the medium and small cores are equal
to that of the big core. Larger caches consume more power,
leading to a different power-equivalence among core types: a
big core is now power-equivalent to 1.5 medium cores and 4
small cores, which explains the decreased core count for the
configurations with a larger cache. Further, the 6m hf and
16s hf configurations contain 6 medium cores or 16 small
cores with clock frequency increased from 2.66 GHz to 3.33
GHz. This increase in frequency also results in a 1 to 1.5,
and a 1 to 4 power-equivalence between the big and medium
cores, and the big and small cores, respectively.

The results in Figure 16 show that a larger cache and,
more distinctly, higher frequency leads to a higher speedup
for the small-core configuration (compare 16s lc and 16s hf
versus 20s). This is because many benchmarks do not scale
well up to 20 threads, and reducing core count in exchange
for more cache capacity or a higher frequency results in
higher speedup. For the medium-core configuration (8m) on
the other hand, enlarging the cache or increasing the fre-
quency has a negative impact on performance: the benefits
of a large cache or a higher frequency do not compensate for
the reduction in core count. Overall, we observe that a homo-
geneous multi-core with big SMT cores achieves best perfor-

mance for the given power budget. Hence, we conclude that:

Finding #10: Enlarging the caches or increasing the fre-
quency of the medium and small cores does not affect the
general observation that a homogeneous multi-core with big
SMT cores is close to optimal.

8.2 Higher memory bandwidth
Another decision made in our initial setup was to set the
memory bandwidth to 8 GB/s. However, as mentioned be-
fore, for some benchmarks, memory bandwidth turns out to
be a bottleneck. We therefore now double memory band-
width to 16 GB/s, see Figure 17. Comparing this Figure to
Figures 8 and 11, we observe that performance increases
for all configurations, albeit by a small margin. For the ho-
mogeneous multi-program workloads, 4B now achieves a
0.8% lower throughput than the optimum (which was 0.6%
for 8 GB/s), and a 0.4% lower throughput for the heteroge-
neous multi-program workloads (used to be 0.5% higher).
For the multi-threaded programs, considering ROI only, we
observe a speedup for 4B that is 2.9% lower than the opti-
mum (which was 1.8% before), and a 1.8% higher speedup
when considering the whole program (1.9% before). The
programs that were bandwidth-bound in the 8 GB/s setup
now achieve better performance across all configurations.
These memory-bound benchmarks especially benefit from
SMT, more so than compute-bound programs [21]. Hence,
our conclusion:
Finding #11: Even under high available memory band-
widths does the performance of a homogeneous design with
big SMT cores remain close to the heterogeneous configura-
tions.

9. Related Work
Olukotun et al. [23] make the case for multi-core process-
ing. By comparing an aggressive single-core processor (6-
wide out-of-order) and a dual-core processor consisting of
2-wide out-of-order cores, they found that parallelized ap-
plications with limited parallelism achieve comparable per-
formance on both architectures, and that applications with
large amount of coarse-grained parallelism achieve signifi-
cantly better performance on the dual-core.

Kumar et al. [19] argue that a single-ISA heterogeneous
multi-core processor covers a spectrum of workloads bet-
ter than a conventional multi-core processor, providing good
single-thread performance when thread-level parallelism is
low, and high throughput when thread-level parallelism is
high. Our results confirm this finding: the heterogeneous
multi-core configurations achieve better overall performance
compared to 4B across the broad range of active thread
counts when SMT is not enabled. However, Kumar et al.
did not consider and compare against a homogeneous multi-
core with big SMT cores, which we find to achieve a level of
performance that is competitive to a heterogeneous design

16 / 18



Findings (continued)

10 Enlarging the caches or increasing the frequency of the medium and small
cores does not affect the general observation that a homogeneous
multi-core with big SMT cores is close to optimal.

17 / 18



Summary

Number of active threads usually varies over time
Homogeneous big SMT cores provide adaptivity

high per-thread performce for few threads
competitive throughput for higher thread numbers
flexible use of private caches

Heterogeneous multi-core slightly more energy-efficient

“[W]hile multi-cores with many small cores, be it homogeneous or
heterogeneous architectures, outperform homogeneous multi-cores
with big SMT cores at full utilization, the inverse is typically true
under variable active thread workload conditions[...]”

18 / 18


