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Classification Example CVE Example description Count

Memory corruption CVE-2013-5660 Buffer overflow 11
Parsing inconsistency CVE-2013-1462 Multiple virus scanners interpret ZIP files incorrectly 4
Semantic misunderstanding CVE-2014-2319 Weak cryptography used even if user selects AES 1

Total of all vulnerabilities related to .zip processing 16

Figure 1: Classification of vulnerabilities in the CVE database from 2010 to May 2014 containing the term “ZIP” and involving the ZIP file format.

is memory safety bugs, such as buffer overflows, which
allow an adversary to corrupt the application’s memory
using specially crafted inputs. These mistakes arise in
lower-level languages that do not provide memory safety
guarantees, such as C, and can be partially mitigated by
a wide range of techniques, for example static analysis,
dynamic instrumentation, and address space layout ran-
domization, that make it more difficult for an adversary
to exploit these bugs. Nail helps developers using lower-
level languages to avoid these bugs in the first place.

The second class, which occurred four times in our
study, is logic errors, where application code misinter-
prets input data. Safe languages and exploit mitigation
technologies do not help against such vulnerabilities. This
can lead to serious security consequences when two sys-
tems disagree on the meaning of a network packet or a
signed message, as shown by the vulnerabilities we de-
scribed before. CVE-2013-0211 shows that logic errors
can be the underlying cause of memory corruption, when
one part of a parser interprets a size field as a signed
integer and another interprets it as an unsigned integer.
CVE-2013-7338 is a logic error that allows an attacker
to craft ZIP files that are incorrectly extracted or result
in application hangs with applications using a Python
ZIP library, because this library does not check that two
fields that contain the size of a file contain the same value.
The Android ZIP file signature verification bug that we
described earlier was also among these 4 vulnerabilities.

These mistakes are highly application-specific, and
are difficult to mitigate using existing techniques, and
these mistakes can occur even in high-level languages
that guarantee memory safety. By allowing developers to
specify their data format just once, Nail avoids logic errors
and inconsistencies in parsing and output generation.

4 DESIGN

Nail’s goals are to reduce programmer effort required to
safely interact with data formats and prevent vulnerabili-
ties like those described in §3. In particular, this means:

• Using a single grammar to define both the exter-
nal format and the internal representation. This
allows the same grammar to be re-used in multiple

attacks based on their description: CVE-2013-5660, -0742, -0138, CVE-
2012-4987, -1163, -1162, CVE-2011-2265, CVE-2010-4535, -1657,
-1336, and -1218.

programs, and helps avoid vulnerabilities like the
Android Master Key bug.

• Parsing inputs into internal representations, as well
as generating outputs from internal representations,
without requiring the programmer to write any se-
mantic actions. This prevents vulnerabilities such as
the iOS XNU bug, where format recognition and se-
mantics are mixed and interact in unexpected ways.

• Eliminating redundancy in internal representations,
such as storing both an explicit length field and an
implicit length of a container data structure, to pro-
vide programmers a consistent, unambiguous view
of the data. This helps avoid bugs such as the one
discovered in the Python ZIP library [28].

• Allow programmers to define grammars for com-
plex real-world data formats through well-defined
extensibility mechanisms. This helps prevent pro-
grammers from falling back on manual parsing when
encountering a complex data format.

4.1 Overview
Internal model. Nail grammars describe both the ex-
ternal format and an internal representation of a protocol.
Nail produces the following from a single, descriptive
grammar:

• Type declarations for the internal model, which the
application should use to represent data items in
memory.

• The parser, a function that the application should
invoke to parse a sequence of bytes into an instance
of the above model.

• The generator, a function that the application should
invoke to create a sequence of bytes from an instance
of the model.

For example, Figure 2 shows a Nail grammar for DNS
packets. For this grammar, Nail produces the type decla-
rations shown in Figure 3, and the parser and generator
functions shown in Figure 4.
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Design

grammar
⇒ type declaration for internal model
⇒ parser (external format → internal model)
⇒ generator (external format ← internal model)

semantic bijection due to discarded constants
dependent fields, e.g. lengths, checksums, offsets
transformations to hold arbitrary code
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Syntax I
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Nail grammar External format Internal data type in C

uint4 4-bit unsigned integer uint8_t

int32 | [1,5..255,512] Signed 32-bit integer x ∈ {1,5..255,512} int32_t

uint8 = 0 8-bit constant with value 0 /* empty */

optional int8 | 16.. 8-bit integer ≥ 16 or nothing int8_t *

many int8 | ![0] A NULL-terminated string struct {

size_t N_count;

int_t *elem;

};

{ Structure with two fields struct {

hours uint8 uint8_t hours;

minutes uint8 uint8_t minutes;

} };

<int8=’"’; p; int8=’"’> A value described by parser p, in quotes The data type of p

choose { Either an 8-bit integer between 1 and 8, struct {

A = uint8 | 1..8 or a 16-bit integer larger than 256 enum {A, B} N_type;

B = uint16 | 256.. union {

} uint8_t a;

uint16_t b;

};

};

@valuelen uint16 A 16-bit length field, followed by struct {

value n_of @valuelen uint8 that many bytes size_t N_count;

uint8_t *elem;

};

$data transform Applies programmer-specified function to /* empty */

deflate($current @method) create new stream (§4.4)

apply $stream p Apply parser p to stream $stream (§4.4) The data type of p

foo = p Define rule foo as parser p typedef /* type of p */ foo;

* p Apply parser p Pointer to the data type of p

Figure 5: Syntax of Nail parser declarations and the formats and data types they describe.

by scanning for a magic number starting at the end of the
file or at a fixed offset. In nested grammars, offsets are
also not necessarily computed from the beginning of a file
or packet. Nail’s transformations allow the programmer
to write arbitrary functions that can handle such structures
and streams, which are a generic abstraction for input and
output data that allow the decoded data to be integrated
with the rest of the generated Nail parser.

4.2 Basics
A Nail parser defines both the structure of some external
format and a data type to represent that format. Parsers
are constructed by combinators over simpler parsers, an
approach popularized by the Parsec framework [21]. We
provide the most common combinators familiar from
other parser combinator libraries, such as Parsec and
Hammer [32] and extend them so they also describe a
data type.

We present both a systematic overview of Nail’s syntax
with short examples in Figure 5, and explain our design in
more detail below, using a grammar for the well-known
DNS protocol as a running example (shown in Figure 2).

Rules. A Nail grammar consists of rules that assign a
parser to a name. Rules are written as assignments, such
as ints = /*parser definition*/, which defines a rule
called ints. As we will describe later in §4.3 and §4.4,
rules can optionally consume parameters. Rules can be
invoked in a Nail grammar anywhere a parser can appear.
Rule invocations act as though the body of the rule had
been substituted in the code. If parameters appear, they
are passed by reference.

Integers and constraints. Nail’s fundamental parsers
represent signed or unsigned integers with arbitrary
lengths up to 64 bits. Note that is possible to define
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Syntax II
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Nail grammar External format Internal data type in C

uint4 4-bit unsigned integer uint8_t

int32 | [1,5..255,512] Signed 32-bit integer x ∈ {1,5..255,512} int32_t

uint8 = 0 8-bit constant with value 0 /* empty */

optional int8 | 16.. 8-bit integer ≥ 16 or nothing int8_t *

many int8 | ![0] A NULL-terminated string struct {

size_t N_count;

int_t *elem;

};

{ Structure with two fields struct {

hours uint8 uint8_t hours;

minutes uint8 uint8_t minutes;

} };

<int8=’"’; p; int8=’"’> A value described by parser p, in quotes The data type of p

choose { Either an 8-bit integer between 1 and 8, struct {

A = uint8 | 1..8 or a 16-bit integer larger than 256 enum {A, B} N_type;

B = uint16 | 256.. union {

} uint8_t a;

uint16_t b;

};

};

@valuelen uint16 A 16-bit length field, followed by struct {

value n_of @valuelen uint8 that many bytes size_t N_count;

uint8_t *elem;

};

$data transform Applies programmer-specified function to /* empty */

deflate($current @method) create new stream (§4.4)

apply $stream p Apply parser p to stream $stream (§4.4) The data type of p

foo = p Define rule foo as parser p typedef /* type of p */ foo;

* p Apply parser p Pointer to the data type of p

Figure 5: Syntax of Nail parser declarations and the formats and data types they describe.

by scanning for a magic number starting at the end of the
file or at a fixed offset. In nested grammars, offsets are
also not necessarily computed from the beginning of a file
or packet. Nail’s transformations allow the programmer
to write arbitrary functions that can handle such structures
and streams, which are a generic abstraction for input and
output data that allow the decoded data to be integrated
with the rest of the generated Nail parser.

4.2 Basics
A Nail parser defines both the structure of some external
format and a data type to represent that format. Parsers
are constructed by combinators over simpler parsers, an
approach popularized by the Parsec framework [21]. We
provide the most common combinators familiar from
other parser combinator libraries, such as Parsec and
Hammer [32] and extend them so they also describe a
data type.

We present both a systematic overview of Nail’s syntax
with short examples in Figure 5, and explain our design in
more detail below, using a grammar for the well-known
DNS protocol as a running example (shown in Figure 2).

Rules. A Nail grammar consists of rules that assign a
parser to a name. Rules are written as assignments, such
as ints = /*parser definition*/, which defines a rule
called ints. As we will describe later in §4.3 and §4.4,
rules can optionally consume parameters. Rules can be
invoked in a Nail grammar anywhere a parser can appear.
Rule invocations act as though the body of the rule had
been substituted in the code. If parameters appear, they
are passed by reference.

Integers and constraints. Nail’s fundamental parsers
represent signed or unsigned integers with arbitrary
lengths up to 64 bits. Note that is possible to define
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Example – Sums and Products of Integers
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expr = choose {
PAREN = <uint8=’(’; *expr; uint8=’)’>
PRODUCT = sepBy1 uint8=’*’ expr
SUM = sepBy1 uint8=’+’ expr
INTEGER = many1 uint8 | ’0’ .. ’9’

}

Figure 6: Grammar for sums and products of integers.

fields. We represent such values using dependent fields
and handle them transparently during parsing and genera-
tion without exposing them to the internal model.

Dependent fields are defined within a structure like
normal fields, but their name starts with an @ symbol. A
dependent field is in scope and can be referred to by the
definition of all subsequent fields in the same structure.
Dependent fields can be passed to rule invocations as
parameters.

Dependent fields are handled like other fields when
parsing input, but their values are not stored in the in-
ternal data type. Instead the value can be referenced by
subsequent parsers and it discarded when the field goes
out of scope. When generating output, Nail visits a depen-
dent field twice. First, while generating the other fields of
a structure, the generator reserves space for the dependent
field in the output. Once the dependent field goes out of
scope, the generator writes the dependent field’s value to
this space.

Nail provides only one built-in combinator that uses
dependent fields, n_of, which acts like the many combi-
nator, except it represents an exact number, specified in
the dependent field, of repetitions, as opposed to as many
repetitions as possible. For example, DNS labels, which
are encoded as a length followed by a value, are described
in line 38 of the DNS grammar. Other dependencies, such
as offset fields or checksums, are not handled directly by
combinators, but through transformations, as we describe
next.

4.4 Input streams and transformations
Traditional parsers handle input one symbol at a time,
from beginning to end. However, real-world formats
often require non-linear parsing. Offset fields require a
parser to move to a different position in the input, possibly
backwards. Size fields require the parser to stop process-
ing before the end of input has been reached, and perhaps
resume executing a parent parser. Other cases, such as
compressed data, require more complicated processing
on parts of the input before it can be handled.

Nail introduces two concepts to handle these chal-
lenges, streams and transformations. Streams represent a
sequence of bytes that contain some external format. The
parsers and generators that Nail generates always operate
on an implicit stream named $current that they process
front to back, reading input or appending output. Gram-

mars can use the apply combinator to parse or generate
external data on a different stream, inserting the result in
the data model.

Streams are passed as arguments to a rule or defined
within the grammar through transformations. The current
stream is always passed as an implicit parameter.

Transformations are two arbitrary functions called dur-
ing parsing and output generation. The parsing func-
tion takes any number of stream arguments and depen-
dent field values, and produces any number of temporary
streams. This function may reposition and read from the
input streams and read the values of dependent fields,
but not change their contents and values. The generat-
ing function has to be an inverse of the parsing function.
It takes the same number of temporary streams that the
parsing function produces, and writes the same number
of streams and dependent field values that the parsing
function consumes.

Typically, the top level of most grammars is a rule that
takes only a single stream, which may then be broken up
by various transformations and passed to sub-rules, which
eventually parse various linear fragment streams. Upon
parsing, these fragment streams are generated and then
combined by the transforms.

To reduce both programmer effort and the risk of unsafe
operations, Nails provides implementations of transforma-
tions for many common features, such as checksums, size,
and offset fields. Furthermore, Nail provides library func-
tions that can be used to safely operate on streams, such
as splitting and concatenation. Nail implements streams
as iterators, so they can share underlying buffers and can
be efficiently duplicated and split.

Transformations need to be carefully written, because
they can violate Nail’s safety properties and introduce
bugs. However, as we will show in §6.2, Nail transfor-
mations are much shorter than hand-written parsers, and
many formats can be represented with just the transfor-
mations in Nail’s standard library. For example, our Zip
transformations are 78 lines of code, compared to 1600
lines of code for a hand-written parser. Additionally,
Nail provides convenient and safe interfaces for allocat-
ing memory and accessing streams that address the most
common occurrences of buffer overflow vulnerabilities.

Transformations can handle a wide variety of patterns
in data formats, including the following:

Offsets. A built-in transformation for handling off-
set fields, which is invoked as follows: $fragment
transform offset_u32($current, @offset). This
transformation corresponds to two functions for parsing
and generation, as shown in Figure 7. It defines a new
stream $fragment that can be used to parse data at the
offset contained in @offset, by using apply $fragment
some_parser.

8
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Implementation

Prototype
supporting C (C++ in development)
parses Nail grammars with Nail
130 lines grammar, 2000 lines C++
https://github.com/jbangert/nail/

Hardening
arenas

large, fixed-size memory allocations
zeroed and freed as a whole
one used during parsing, one for internal data

input zeroed after successful parse
fail-fast to avoid “fixing” malformed input
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Evaluation – Data Formats
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Protocol LoC Challenging features

DNS packets 48+64 Label compression,
count fields

ZIP archives 92+78 Checksums, offsets,
variable length trailer,
compression

Ethernet 16+0 —
ARP 10+0 —
IP 25+0 Total length field, options
UDP 7+0 Checksum, length field
ICMP 5+0 Checksum

Figure 8: Protocols, sizes of their Nail grammars, and challenging
aspects of the protocol that cannot be expressed in existing grammar
languages. A + symbol counts lines of Nail grammar code (before the
+) and lines of C code for protocol-specific transforms (after the +).

• Does Nail achieve acceptable performance?

6.1 Data formats
To answer the first question, we used Nail to implement
grammars for seven protocols with a range of challenging
features. Figure 8 summarizes these protocols, the lines
of code for their Nail grammars, and the challenging
features that make the protocols difficult to parse with
state-of-the-art parser generators. We find that despite
the challenging aspects of these protocols, Nail is able
to capture the protocols, by relying on its novel features:
dependent fields, streams, and transforms. In contrast,
state-of-the-art parser generators would be unable to fully
handle 5 out of the 7 data formats. In the rest of this
subsection, we describe the DNS and Zip grammars in
more detail, focusing on how Nail’s features enable us to
support these formats.

DNS. In Section 4, we introduced Nail’s syntax with
a grammar for DNS packets, shown in Figure 2. The
grammar corresponds almost directly to the diagrams
in RFC 1035, which defines DNS [26: §4]. Each DNS
packet consists of a header, a set of question records, and a
set of answer records. Domain names in both queries and
answers are encoded as a sequence of labels, terminated
by a zero byte. Labels are Pascal-style strings, consisting
of a length field followed by that many bytes comprising
the label.

One challenging aspect of DNS packets lies in the
count fields (qc, ac, ns, and ar), which represent the
number of questions or answers in another part of the
packet. Nail’s n_of combinator handles this situation
easily, which would have been difficult to handle for other
parsers.

Another challenging aspect of DNS is label compres-
sion [26: §4.1.4]. Label compression is used to reduce the
size overhead of including each domain name multiple

int dnscompress_parse(NailArena *tmp,
NailStream *out_decomp,
NailStream *in_current);

int dnscompress_generate(NailArena *tmp,
NailStream *in_decomp,
NailStream *out_current);

Figure 9: Signatures of stream transform functions for handling DNS
label compression.

times in a DNS reply (once in the question section, and at
least once in the response section). If a domain name suf-
fix is repeated, instead of repeating that suffix, the DNS
packet may write a two-bit marker sequence followed by
a 14-bit offset into the packet, indicating the position of
where that suffix was previously encoded.

Handling label compression in existing tools, such as
Bison or Hammer, would be awkward at best, because
some ad-hoc trick would have to be used to re-position the
parser’s input stream. Keeping track of the position of all
recognized labels would not be enough, as the offset field
may refer to any byte within the packet, not just the be-
ginning of labels. For this reason, the DNS server used as
the example for Hammer does not support compression.

In contrast, Nail is able to handle label compression,
by using a stream transform; the signatures of the two
transform functions are shown in Figure 9. When pars-
ing a packet, this transform decompresses the DNS label
stream by following the offset pointers. When generating
a packet, this transform receives the current suffix as an in-
put, and scans the packet so far for previous occurrences,
which implements compression.

ZIP files. An especially tricky data format is the ZIP
compressed archive format [33]. ZIP files are normally
parsed end-to-beginning. At the end of each ZIP file is an
end-of-directory header. This header contains a variable-
length comment, so it has to be located by scanning back-
wards from the end of the file until a magic number and
a valid length field is found. Many ZIP implementations
disagree on how to find this header in confusing situ-
ations, such as when the comment contains the magic
number [42].

This end-of-directory header contains the offset and
size of the ZIP directory, which is an array of directory
entry headers, one for every file in the archive. Each entry
stores file metadata, such as file name, compressed and
uncompressed size, and a checksum, in addition to the off-
set of a local file header. The local file header duplicates
most information from the directory entry header. The
compressed file contents follow the header immediately.

Duplicating information made sense when ZIP files
were stored on floppy disks with slow seek times and high
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Evaluation – Programmer Effort

DNS server
parse zone file, listen for requests, respond
183 lines C + 48 lines grammar + 64 lines C for transformations
Hammer toy DNS: 683 lines C + 52 lines grammar

ZIP file extractor
DEFLATE decompression of files from ZIP archive
50 lines C + 92 lines grammar + 78 lines C for transformations
extract.c from Info-Zip unzip: 1,600 lines C
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Evaluation – Security

DNS server
no crash or heap/stack corruption during 4 hour run of Metasploit DNS fuzzer

ZIP file extractor
no memory corruptions by design (offset checks, no exposure of untrusted pointers)
explicit encoding of redundant information
grammar reusable for other applications
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Evaluation – Performance

DNS server

compare to ISC BIND 9 release 9.9.5
Intel i7-3610QM, 12 GiB RAM
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Figure 12: A box plot comparing the performance of the Nail-based
DNS server compared to BIND 9.5.5 on 50,000 domains. The boxes
show the interquartile range, with the middle showing the median result.
The dots show outliers.

benchmark tool kept at most 20 queries outstanding at
once, and was configured to repeat the same randomized
sequence of queries for one minute. We repeated each
test seven times with 50,000 domain names, restarting
each daemon in between; we also repeated the tests with
1 million domain names, and found similar results. We
also performed one initial dry run to warm the file system
cache for the zone file.

The results are shown in Figure 12, and demonstrate
that our Nail-based DNS server can achieve higher perfor-
mance and lower latency than BIND. Although BIND is
a more sophisticated DNS server, and implements many
features that are not present in our Nail-based DNS server
and that allow it to be used in more complicated config-
urations, we believe our results demonstrate that Nail’s
parsers are not a barrier to achieving good performance.

7 CONCLUSION

This paper presented the design and implementation of
Nail, a tool for parsing and generating complex data for-
mats based on a precise grammar. Nail helps program-
mers avoid memory corruption and inconsistency vulner-
abilities while reducing effort in parsing and generating
real-world protocols and file formats. Nail achieves this
by reducing the expressive power of the grammar, estab-
lishing a semantic bijection between data formats and
internal representations. Nail captures complex data for-
mats by introducing dependent fields, streams, and trans-
forms. Using these techniques, Nail is able to support
DNS packet and ZIP file formats, and enables applica-
tions to handle these data formats in many fewer lines of
code. Nail and all of the applications and grammars devel-
oped in this paper are released as open-source software,
available at https://github.com/jbangert/nail.
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Summary

grammar → internal model + parser + generator
avoid memory corruption and inconsistencies
suitable for real-world (binary) formats
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