

Paper-Reading-Group

Nested Kernel: An Operating System Architecture
for Intra-Kernel Privilege Separation

Nathan Dautenhahn, Theodoros Kasampalis, Will Dietz, John Criswell, and Vikram Adve

Nested Kernel - Motivation

● Monoliths have single large TCB

● How to seperate into multiple protection domains?

– Microkernels require complete redesign of kernel

– VMMs have high performance overhead

How can we provide protection domains without the overhead
using the existing code base and design principles?

Nested Kernel - Idea

● Use the MMU to isolate the MMU

– Nested Kernel is small and protects MMU structures

– Outer Kernel is de-priviledged and only has checked
access to MMU structures

● Keep the monolithic address space

● While still enabling application of intra-kernel security
policies

– Example policies: write logging, write-mediation

Nested Kernel - Design

● Separate policy from mechanism (MMU)

● OS Co-design for security policies

● MMU based privilege separation

● Fine grained resource control

● Negligible performance impact

Nested Kernel - Invariants

Invariant 1:
Active virtual-to-physical mappings for protected data are
configured read-only while the outer kernel executes.

Invariant 2:
Write-protection permissions in active virtual-to-physical
mappings are enforced while the outer kernel executes.

Nested Kernel – write protection

PerspicuOS – Thread Model

● Outer kernel may be under complete attacker control

– Can attempt to arbitrarily modify CPU state

– Can modify outer kernel source code

– Can modify control flow
● Nested kernel source code and binary are trusted

– Including the mediation functions
● Hardware is free of vulnerabilities

● Do not protect against hardware attacks

PerspicuOS – Architecture

PerspicuOS – Invariant 1 Support

Reminder: Invariant 1:
Active virtual-to-physical mappings for protected data are
configured read-only while the outer kernel executes.

Invariant 3:
Ensure that there are no unvalidated mappings prior to
outer kernel execution

Invariant 4:
Only declared PTPs are used in mappings

Invariant 5:
All mappings to PTPs are marked read-only

Invariant 6:
CR3 is only loaded with a pre-declared top-level PTP.

PerspicuOS – Invariant 1 Support

Reminder: Invariant 2:
Write-protection permissions in active virtual-to-physical mappings are enforced
while the outer kernel executes

Invariant 7: The WP and PG flags in CR0 are set prior to any outer kernel
 execution

Invariant 8: The WP-bit in CR0 is never disabled by outer kernel code

Invariant 9: Disabling the PG-bit directs control flow to the nested kernel

Invariant 10: The nested kernel controls the SMM interrupt handler and operation

Invariant 11: Enable the WP-bit on interrupts and traps prior to calling outer kernel
 interrupt/trap handlers

Invariant 12: Enable the WP-bit on interrupts and traps prior to calling outer kernel
 interrupt/trap handlers

Invariant 13: The nested kernel stack is write-protected from outer kernel
 modifications

PerspicuOS – Entry & Exit

PerspicuOS - Evaluation

Example Mediation Functions:

● Write-only data
● Append-only data
● Write logging

PerspicuOS – Evaluation (2)

PerspicuOS – Evaluation (3)

PerspicuOS – Evaluation (4)

Conclusion

● Nested kernel architecture
● Using the MMU to protect the MMU
● Write mediation policies for memory
● Protection domains without using VMM/Processes

● Based on addresses

Discussion

Pro:
● Great if you want to log write accesses
● If the intention is rootkit detection this might be nice

Con:
● Not really suited for isolation of components
● Can't you still attack e.g. communication?
● The overhead evaluation … sucks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

