Paper-Reading-Group

Nested Kernel: An Operating System Architecture
for Intra-Kernel Privilege Separation

Nathan Dautenhahn, Theodoros Kasampalis, Will Dietz, John Criswell, and Vikram Adve

Nested Kernel - Motivation

 Monoliths have single large TCB
 How to seperate into multiple protection domains?

- Microkernels require complete redesign of kernel
- VMMs have high performance overhead

How can we provide protection domains without the overhead
using the existing code base and design principles?

Nested Kernel - Idea

e Use the MMU to isolate the MMU

- Nested Kernel is small and protects MMU structures

— Outer Kernel is de-priviledged and only has checked
access to MMU structures

« Keep the monolithic address space

* While still enabling application of intra-kernel security
policies

- Example policies: write logging, write-mediation

Nested Kernel - Design

Separate policy from mechanism (MMU)
OS Co-design for security policies

MMU based privilege separation

Fine grained resource control

Negligible performance impact

Nested Kernel - Invariants

Invariant 1:
Active virtual-to-physical mappings for protected data are
configured read-only while the outer kernel executes.

Invariant 2:
Write-protection permissions in active virtual-to-physical
mappings are enforced while the outer kernel executes.

Nested Kernel — write protection

Function

Selected Arguments

Purpose

nk_declare

nk_alloc

nk_free

nk_write

mem_start, size, mediation_func
size,mediation_func, nk_wd_p
nk_wd

dest,src,size, nk_wd

Marks all pages RO; initializes an NK write descriptor nk_wd: returns the
nk_wd and the pointer to the region.

Allocates memory region: invokes nk_declare on it; stores write descriptor in
nk_wd; returns nk_wd and pointer to the region.

Deallocates memory identified by nk_wd. Memory must have been allocated
by nk_al loc. Freed pages can be reused only by a future nk_al loc.

Verifies write bounds: invokes mediation_func, if any: then copies
size bytes from srctodest.

PerspicuOS — Thread Model

Outer kernel may be under complete attacker control

- Can attempt to arbitrarily modify CPU state

- Can modify outer kernel source code

— Can modify control flow

Nested kernel source code and binary are trusted

- Including the mediation functions
Hardware is free of vulnerabilities

Do not protect against hardware attacks

PerspicuOS — Architecture

user | INTR / Trap
Process J

1 System call

INTR / Trap

Y

Nooted] Nested
este

Kernel Op.
T Outer J P)

Init

Nested

Eng
9ate

<

PerspicuOS — Invariant 1 Support

Reminder: Invariant 1:

Active virtual-to-physical mappings for protected data are
configured read-only while the outer kernel executes.

Invariant 3:

Ensure that there are no unvalidated mappings prior to
outer kernel execution

Invariant 4:
Only declared PTPs are used in mappings

Invariant 5:
All mappings to PTPs are marked read-only

Invariant 6:
CR3 is only loaded with a pre-declared top-level PTP.

PerspicuOS — Invariant 1 Support

Remir,
Wri
whig |

Invaric

Invaﬁa,-

Invari:c
.Il

Invari:

Invari: i@

Invang-n\

%ﬂ# WA

Invan -5

‘h-

PerspicuOS —

entry:
pushfg
cli
mov Trax, -:o(3rsp)
mov %rcx, -1o(%rsp)
mov %rsp, rcx
mov Scr0, %rax
and "CRO_WP, $rax
mov rax, ecrl
cli
mov FerCPUSecuresStack, trsp
push %rex
mov —-Ox8(%rex), %rax
mov —-Ox10(%rex), %rex

Entry & EXxit

Save current flags
Cisable interrupts

5pill regs for temps

Save stack ptr in rcx
Get current CRO wvalue
Clear WP bit in copy
Write back to CRO
Cisable interrupts
Switch to secure stack
Save orig stack ptr

Restore spilled regs

exit:
mov ((%rsp), %rsp
push %rax
mov fecrld, %rax

i
or CRO_WFP, %rax
mov Trax, %cr0
test CRO_WP, %eax
Je lb
pPop %rax
popfqg

Restore orig stack ptr
Spill scratch reg

Get current CRO wvalue

Set WP in CRO copy
Write back to CRQ
Ensure WF set

If not, lecop back
Restore clobbered reg
Restore flags

(incl interrupt status)

PerspicuOS - Evaluation

Example Mediation Functions:

* Write-only data
* Append-only data
* Write logging

Privilege Boundary | Time (usecs) | Time / NK Call
NK Call 0.1390 1.00x
Syscall 0.08757 0.62x
VMCALL 0.5130 3.69x

Table 3. Privilege Boundary Crossing Costs.

PerspicuOS — Evaluation (2)

| PerspicuOS 1 AppendOnly mmmm WriteOnce WriteLog

3.5

3
2.5
2

1.5

—

0.5
a

)
=
et
4]
prd
9o
Q@
=
=
©
Q@
o
S
Q
£
|—

Figure 4. LMBench results.

PerspicuOS — Evaluation (3)

| PerspicuOS 1 AppendLog mmmm WriteOnce WriteLog e |

—

=

)
=
=)
(O
pd
O
—-—
[«
=
—
O
D
s
S
o
—
2
=
©
-
O
o

File Size (KB)
Figure 5. SSHD Average Bandwidth.

PerspicuOS — Evaluation (4)

| PerspicuOS ——— AppendLog mmmm WriteOnce s WriteLog e |

—

=

)
=
——
(T
pd
S
@
=
-_—
Y
D
e
S
=
-—
2
3
o
c
T
o0

Figure 6. Apache average bandwidth.

| PerspicuOS | AppendOnly | WriteOnce | WriteLog |
| 2.6% 3.0% 2.6% 2.7% |

Table 4. Kernel Build Overhead over Native.

Conclusion

* Nested kernel architecture

» Using the MMU to protect the MMU

* Write mediation policies for memory

* Protection domains without using VMM/Processes
 Based on addresses

Discussion

Pro:
e Great if you want to log write accesses
* |f the Intention is rootkit detection this might be nice

Con:

* Not really suited for isolation of components
e Can't you still attack e.g. communication?

* The overhead evaluation ... sucks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

