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Motivation

Exascale challenges (U.S. Department of Energy)
Massive (dynamic) parallelism
Heterogeneity
Deep memory hierarchies
Power/Energy limitations
Fault-proneness

⇒ Largely driven by limitations in hardware technology
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Motivation II

Application composition
Exploratory Analytics
Streaming Analytics
Graph Analytics
Code Coupling
Application Frameworks
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Application composition for “Exploratory Analytics”
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Figure 1: Composition for an “exploratory analytics” use
case that uses a filter co-located with the simulation to re-
duce data communicated to the visualization enclave.

(compose) the enclaves (applications). While this mapping
is easy to implement, performance considerations dictate
that we also support mappings based on direct sharing of
node-level resources. For example, in the Exploratory An-
alytics use case (Fig. 1), a small “filter” needs to be inter-
posed between the application and visualization enclaves.
While we will describe the use case as a standard composi-
tion of applications, our intent is that the implementation
will be lightweight (e.g., a function call) and will reduce the
data communicated to the visualization enclave. Ultimately,
mapping decisions must be based on a careful analysis of
performance trade-offs and it is our intention to maintain a
separation between composition and mapping: composition
is used to describe computations, while mapping defines the
physical resources used to realize these computations.

It is worth noting that our approach in mapping enclaves
to shared physical resources provides the opportunity to,
effectively, “move code to data,” thus reducing (network)
data movement and thereby power consumption, as well as
increasing performance. With the addition of appropriate
trust, sandboxing, and resource management mechanisms,
the same approach can be used to allow interactions between
applications and shared services. For example, an applica-
tion could “push code” to an enclave implementing a storage
service (i.e., active storage”).

4.2 Virtualization
To address the challenges of variable runtime requirements

and complex application mappings, we will develop a wide
range of virtualization technologies. These technologies will
support the definition of “virtual compute nodes,” enabling
the full system virtualization that can be used to support
almost any RTS that could be required. By supporting
the creation of multiple virtual nodes from a single phys-
ical node, these technologies will also enable sharing of the
physical resources available on a compute node.

5. HOBBES ARCHITECTURE
The main components of the Hobbes architecture (Fig. 2)

include a System-Global OS, Enclave OS/R, Node OS/R,
Node Virtualization Layer, and the Global Information Bus.
In this section, we describe the role each component plays
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Figure 2: Schematic representation of the main components
of the Hobbes architecture and their interactions via APIs
(vertical arrows) and data exchange (horizontal arrows).

in the Hobbes architecture and the APIs needed to support
application composition.

5.1 System-Global OS
The System-Global OS (SGOS) is the portion of the sys-

tem responsible for scheduling, monitoring, controlling, and
coordinating the resources of a single system. We pay par-
ticular consideration to how applications use shared system
services, such as shared storage or visualization systems; in-
deed, the need to effectively use shared services is a primary
motivator for our approach to application composition. In
Hobbes, however, a shared service is simply a specialized,
possibly long-running application whose enclave may include
specialized nodes, e.g., storage or visualization nodes.

The APIs for the the SGOS include interfaces to a schedul-
ing and resource management subsystem responsible for map-
ping enclaves and assemblies of enclaves onto physical re-
sources; interfaces to hardware management and control sys-
tems that manage information about the health and pro-
ductivity of associated hardware and software in the sys-
tem, possibly gathered from sensors; interfaces for auto-
nomic management [31] that support a wide range of poli-
cies for adapting resource allocations, for example based on
power or resilience constraints [15, 30]; and interfaces to ba-
sic global services like authentication and authorization.

In addition to the core APIs for the SGOS, application
composition requires a much richer specification of jobs than
in the past. Job descriptions may include OS/R selections
for enclaves, information to guide the mapping of the logi-
cal computation structure onto the physical resources, and
policies to be enforced by the autonomic management sys-
tems. We will draw on related work in the cloud and grid
computing communities to inform our designs [3, 17].

5.2 Enclave OS/R
An enclave is a partition of the system allocated to a

single application or service [4]. As such, an enclave is pri-
marily a container and a unit of coordination. The Enclave
OS/R (EOS) as a distinct component of the OS architecture
extends the enclave concept with functionality, in much the
same way that an object extends a data structure with func-
tionality. The primary reason for introducing the EOS as a
distinct component of an extreme-scale OS is to allow each
enclave to operate with a degree of autonomy, rather than
current practice of explicit top-down control of all aspects
of the system from the equivalent of the SGOS.

The APIs of the EOS provide support for enclave member-
ship, collective operations for launching, terminating, pause,
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Design Goals/Influences

Hardware (expected ~ 2020)
Variety of processors: load/store, streaming, near-/in-memory
Variety of memory: bandwidth, latency, energy, . . .
High-speed inter-node network
Customizable monitor and control

Novel usage models
Co-location
Global addressing + massive multithreading
Event-based processing

Programming environments and tools
Legacy applications
Scalability (down)
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Enclaves

Different runtime requirements: minimal . . . Linux
Application composition usually enforces common runtime environment

“An enclave (i.e., partition) is a set of resources dedicated
to one application or one service. To the greatest pos-
sible extent, system functionality is encapsulated within
enclaves. In particular, the failure of an enclave should
not cause global system failure, and different enclaves can
provide different implementations of the same function. ”
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(compose) the enclaves (applications). While this mapping
is easy to implement, performance considerations dictate
that we also support mappings based on direct sharing of
node-level resources. For example, in the Exploratory An-
alytics use case (Fig. 1), a small “filter” needs to be inter-
posed between the application and visualization enclaves.
While we will describe the use case as a standard composi-
tion of applications, our intent is that the implementation
will be lightweight (e.g., a function call) and will reduce the
data communicated to the visualization enclave. Ultimately,
mapping decisions must be based on a careful analysis of
performance trade-offs and it is our intention to maintain a
separation between composition and mapping: composition
is used to describe computations, while mapping defines the
physical resources used to realize these computations.

It is worth noting that our approach in mapping enclaves
to shared physical resources provides the opportunity to,
effectively, “move code to data,” thus reducing (network)
data movement and thereby power consumption, as well as
increasing performance. With the addition of appropriate
trust, sandboxing, and resource management mechanisms,
the same approach can be used to allow interactions between
applications and shared services. For example, an applica-
tion could “push code” to an enclave implementing a storage
service (i.e., active storage”).

4.2 Virtualization
To address the challenges of variable runtime requirements

and complex application mappings, we will develop a wide
range of virtualization technologies. These technologies will
support the definition of “virtual compute nodes,” enabling
the full system virtualization that can be used to support
almost any RTS that could be required. By supporting
the creation of multiple virtual nodes from a single phys-
ical node, these technologies will also enable sharing of the
physical resources available on a compute node.

5. HOBBES ARCHITECTURE
The main components of the Hobbes architecture (Fig. 2)
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Node Virtualization Layer, and the Global Information Bus.
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Figure 2: Schematic representation of the main components
of the Hobbes architecture and their interactions via APIs
(vertical arrows) and data exchange (horizontal arrows).

in the Hobbes architecture and the APIs needed to support
application composition.

5.1 System-Global OS
The System-Global OS (SGOS) is the portion of the sys-

tem responsible for scheduling, monitoring, controlling, and
coordinating the resources of a single system. We pay par-
ticular consideration to how applications use shared system
services, such as shared storage or visualization systems; in-
deed, the need to effectively use shared services is a primary
motivator for our approach to application composition. In
Hobbes, however, a shared service is simply a specialized,
possibly long-running application whose enclave may include
specialized nodes, e.g., storage or visualization nodes.

The APIs for the the SGOS include interfaces to a schedul-
ing and resource management subsystem responsible for map-
ping enclaves and assemblies of enclaves onto physical re-
sources; interfaces to hardware management and control sys-
tems that manage information about the health and pro-
ductivity of associated hardware and software in the sys-
tem, possibly gathered from sensors; interfaces for auto-
nomic management [31] that support a wide range of poli-
cies for adapting resource allocations, for example based on
power or resilience constraints [15, 30]; and interfaces to ba-
sic global services like authentication and authorization.

In addition to the core APIs for the SGOS, application
composition requires a much richer specification of jobs than
in the past. Job descriptions may include OS/R selections
for enclaves, information to guide the mapping of the logi-
cal computation structure onto the physical resources, and
policies to be enforced by the autonomic management sys-
tems. We will draw on related work in the cloud and grid
computing communities to inform our designs [3, 17].

5.2 Enclave OS/R
An enclave is a partition of the system allocated to a

single application or service [4]. As such, an enclave is pri-
marily a container and a unit of coordination. The Enclave
OS/R (EOS) as a distinct component of the OS architecture
extends the enclave concept with functionality, in much the
same way that an object extends a data structure with func-
tionality. The primary reason for introducing the EOS as a
distinct component of an extreme-scale OS is to allow each
enclave to operate with a degree of autonomy, rather than
current practice of explicit top-down control of all aspects
of the system from the equivalent of the SGOS.

The APIs of the EOS provide support for enclave member-
ship, collective operations for launching, terminating, pause,
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in the Hobbes architecture and the APIs needed to support
application composition.

5.1 System-Global OS
The System-Global OS (SGOS) is the portion of the sys-

tem responsible for scheduling, monitoring, controlling, and
coordinating the resources of a single system. We pay par-
ticular consideration to how applications use shared system
services, such as shared storage or visualization systems; in-
deed, the need to effectively use shared services is a primary
motivator for our approach to application composition. In
Hobbes, however, a shared service is simply a specialized,
possibly long-running application whose enclave may include
specialized nodes, e.g., storage or visualization nodes.

The APIs for the the SGOS include interfaces to a schedul-
ing and resource management subsystem responsible for map-
ping enclaves and assemblies of enclaves onto physical re-
sources; interfaces to hardware management and control sys-
tems that manage information about the health and pro-
ductivity of associated hardware and software in the sys-
tem, possibly gathered from sensors; interfaces for auto-
nomic management [31] that support a wide range of poli-
cies for adapting resource allocations, for example based on
power or resilience constraints [15, 30]; and interfaces to ba-
sic global services like authentication and authorization.

In addition to the core APIs for the SGOS, application
composition requires a much richer specification of jobs than
in the past. Job descriptions may include OS/R selections
for enclaves, information to guide the mapping of the logi-
cal computation structure onto the physical resources, and
policies to be enforced by the autonomic management sys-
tems. We will draw on related work in the cloud and grid
computing communities to inform our designs [3, 17].

5.2 Enclave OS/R
An enclave is a partition of the system allocated to a

single application or service [4]. As such, an enclave is pri-
marily a container and a unit of coordination. The Enclave
OS/R (EOS) as a distinct component of the OS architecture
extends the enclave concept with functionality, in much the
same way that an object extends a data structure with func-
tionality. The primary reason for introducing the EOS as a
distinct component of an extreme-scale OS is to allow each
enclave to operate with a degree of autonomy, rather than
current practice of explicit top-down control of all aspects
of the system from the equivalent of the SGOS.

The APIs of the EOS provide support for enclave member-
ship, collective operations for launching, terminating, pause,
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coordinating the resources of a single system. We pay par-
ticular consideration to how applications use shared system
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sic global services like authentication and authorization.
In addition to the core APIs for the SGOS, application
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in the past. Job descriptions may include OS/R selections
for enclaves, information to guide the mapping of the logi-
cal computation structure onto the physical resources, and
policies to be enforced by the autonomic management sys-
tems. We will draw on related work in the cloud and grid
computing communities to inform our designs [3, 17].

5.2 Enclave OS/R
An enclave is a partition of the system allocated to a

single application or service [4]. As such, an enclave is pri-
marily a container and a unit of coordination. The Enclave
OS/R (EOS) as a distinct component of the OS architecture
extends the enclave concept with functionality, in much the
same way that an object extends a data structure with func-
tionality. The primary reason for introducing the EOS as a
distinct component of an extreme-scale OS is to allow each
enclave to operate with a degree of autonomy, rather than
current practice of explicit top-down control of all aspects
of the system from the equivalent of the SGOS.
The APIs of the EOS provide support for enclave member-

ship, collective operations for launching, terminating, pause,

System-Global OS
Scheduling, monitoring, resource management
Mapping of enclaves on nodes
Requires richer job specification (OS/R selection,
mapping hints, . . . )

Enclave OS/R
Control (launch, terminate, pause, resume) an
enclave and handle dynamic resource
addition/removal
Composition of enclaves: “selective breaking of
isolation”

8 / 1



Main Components

App 1 App 1

shared shared

Filter Filter

VisualizationVisualization

Portals

UPC

MPI

Enclave 2

    Linux

Enclave 1

   Kitten

Enclave 3

   Linux

Physical Node OS/R Instance Enclave

Legend

Figure 1: Composition for an “exploratory analytics” use
case that uses a filter co-located with the simulation to re-
duce data communicated to the visualization enclave.

(compose) the enclaves (applications). While this mapping
is easy to implement, performance considerations dictate
that we also support mappings based on direct sharing of
node-level resources. For example, in the Exploratory An-
alytics use case (Fig. 1), a small “filter” needs to be inter-
posed between the application and visualization enclaves.
While we will describe the use case as a standard composi-
tion of applications, our intent is that the implementation
will be lightweight (e.g., a function call) and will reduce the
data communicated to the visualization enclave. Ultimately,
mapping decisions must be based on a careful analysis of
performance trade-offs and it is our intention to maintain a
separation between composition and mapping: composition
is used to describe computations, while mapping defines the
physical resources used to realize these computations.

It is worth noting that our approach in mapping enclaves
to shared physical resources provides the opportunity to,
effectively, “move code to data,” thus reducing (network)
data movement and thereby power consumption, as well as
increasing performance. With the addition of appropriate
trust, sandboxing, and resource management mechanisms,
the same approach can be used to allow interactions between
applications and shared services. For example, an applica-
tion could “push code” to an enclave implementing a storage
service (i.e., active storage”).

4.2 Virtualization
To address the challenges of variable runtime requirements

and complex application mappings, we will develop a wide
range of virtualization technologies. These technologies will
support the definition of “virtual compute nodes,” enabling
the full system virtualization that can be used to support
almost any RTS that could be required. By supporting
the creation of multiple virtual nodes from a single phys-
ical node, these technologies will also enable sharing of the
physical resources available on a compute node.

5. HOBBES ARCHITECTURE
The main components of the Hobbes architecture (Fig. 2)

include a System-Global OS, Enclave OS/R, Node OS/R,
Node Virtualization Layer, and the Global Information Bus.
In this section, we describe the role each component plays

yHardware Abstraction Layer

Hardware and Firmware

Node OS/R

Enclave OS/R

System-Global OS/R

G
lo

b
a
l 
In

fo
rm

a
ti
o
n
 B

u
s

yNode Virtualization Layer

Figure 2: Schematic representation of the main components
of the Hobbes architecture and their interactions via APIs
(vertical arrows) and data exchange (horizontal arrows).

in the Hobbes architecture and the APIs needed to support
application composition.

5.1 System-Global OS
The System-Global OS (SGOS) is the portion of the sys-

tem responsible for scheduling, monitoring, controlling, and
coordinating the resources of a single system. We pay par-
ticular consideration to how applications use shared system
services, such as shared storage or visualization systems; in-
deed, the need to effectively use shared services is a primary
motivator for our approach to application composition. In
Hobbes, however, a shared service is simply a specialized,
possibly long-running application whose enclave may include
specialized nodes, e.g., storage or visualization nodes.
The APIs for the the SGOS include interfaces to a schedul-

ing and resource management subsystem responsible for map-
ping enclaves and assemblies of enclaves onto physical re-
sources; interfaces to hardware management and control sys-
tems that manage information about the health and pro-
ductivity of associated hardware and software in the sys-
tem, possibly gathered from sensors; interfaces for auto-
nomic management [31] that support a wide range of poli-
cies for adapting resource allocations, for example based on
power or resilience constraints [15, 30]; and interfaces to ba-
sic global services like authentication and authorization.
In addition to the core APIs for the SGOS, application

composition requires a much richer specification of jobs than
in the past. Job descriptions may include OS/R selections
for enclaves, information to guide the mapping of the logi-
cal computation structure onto the physical resources, and
policies to be enforced by the autonomic management sys-
tems. We will draw on related work in the cloud and grid
computing communities to inform our designs [3, 17].

5.2 Enclave OS/R
An enclave is a partition of the system allocated to a

single application or service [4]. As such, an enclave is pri-
marily a container and a unit of coordination. The Enclave
OS/R (EOS) as a distinct component of the OS architecture
extends the enclave concept with functionality, in much the
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distinct component of an extreme-scale OS is to allow each
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Node OS/R
Abstract interface to underlying compute, memory,
and network resources
Support SGOS and EOS in higher-level resource
management

Node Virtualization Layer: support for. . .
1 Bare-metal applications
2 Full-feature OSes
3 “Virtual nodes” to host multiple enclaves
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is the design of bi-directional interfaces to support coor-
dination of scheduling decisions between multiple layers in
the OS/R stack. These interfaces must support scheduling-
related dialog between an upper-level component that es-
tablishes policy and a lower-level component that provides
the mechanisms needed to implement the policy. As an ex-
ample, the SGOS establishes policies for the full machine;
however, the mechanisms needed to affect these policies will
be provided by the EOS, the NOS and possibly the NVL.
The needed dialog is frequently complicated by the fact that
the lower-level component is the first to be invoked when a
scheduling decision is needed.

6.3 Resilience
The OS/R must handle faults in all of its layers, masking

faults when appropriate, and providing sufficient informa-
tion and mechanisms to other OS layers and applications to
handle unmasked faults. We expect Hobbes to be a vehicle
for research in resilience mechanisms to handle faults in dif-
ferent layers of the software stack and to understand fault
sensitivity and coverage.

One area of particular interest is the development of mech-
anisms that identify critical OS/R data structures (those
most susceptible to failures and critical for stability) and
creating a methodology for resilient OS/R data structures.
For example, previous analysis [10] of dynamic memory pro-
files of Kitten and Linux indicates ample opportunities for
enhancements, such as using hashes, redundant data, and
self-checks and repairs, of OS/R data structures for spe-
cific allocation regions (e.g., memory/process management,
kernel/shared memory), which we will incorporate into the
Hobbes OS/R components as appropriate.

7. USER SUPPORT
To effectively address the needs of the HPC community,

Hobbes must support the entire set of HPC system “users”,
including support for developers of existing and experimen-
tal programming models, application developers, and per-
formance and debugging tool developers. The following de-
scribes the key interfaces in our design.

7.1 Programming Model Support
Programming model support is a critical enabling feature

of the proposed OS/R infrastructure. Hobbes provides both
low level OS mechanisms and global privileged services for
system management. The low level mechanisms need to en-
able both RTS and OS support, while global services pro-
vide for functionality outside the purview of applications.
Our main goal is to enable better system management by
providing a path for the flow of information from the RTS
to the NOS and SGOS.

7.2 Application Support
Much of the required work in the APIs and cross-cutting

areas is motivated by the requirements and challenges asso-
ciated with integrating analytics and simulation. In partic-
ular, we expect support for composition of applications with
different OS/R requirements to have a dramatic impact on
development, deployment, and usability of integrated ana-
lytics codes on extreme-scale systems. For example, con-
sider recent work for the National Nuclear Security Ad-
ministration Advanced Simulation and Computing program
(NNSA/ASC) to explore integrated simulation analysis. As
part of that project, an SNL team has developed both “in
situ” and “in transit” analysis techniques that use ParaView
to detect material fragments from simulation results of the
CTH shock physics code [27]. This work revealed a number
of weaknesses in existing HPC systems that could be dra-
matically improved by technologies included in the Hobbes
design. In particular, this type of application requires, at a
minimum, portable mechanisms for inter/intra-enclave com-
munication and coordinated scheduling. Advanced features
like dynamic allocation, contraction, and expansion of en-
claves; control over placement of data and code; and data-
movement scheduling would significantly expand the capa-
bility and utility of this type of approach.

7.3 Tools Support
As with programming models and applications, tools de-

fine requirements for the components of Hobbes. Our goal is
to ensure that Hobbes includes technologies to enable scal-
able and efficacious debugging, performance, and system ad-
ministration tools. Traditional OS/Rs have sufficient sup-
port for intra-enclave tools; however, we must also support
tools that work with multiple enclaves. For instance, we
must provide the support for a debugger to inspect and con-
trol processes of a software composition running in multiple
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“Crosscutting Areas”

Power and energy: measurement and management
Scheduling: coordination between layers
Resilience: mask/handle faults, resilient OS/R data structures
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Conclusion

Summary
Hobbes: extreme-scale OS/R and “playground”
Design based on anticipated trends in hard- and software
Explicit support for application composition
Virtualization for flexibility and co-location

Discussion
Similarities to DoE’s “Reference Architecture”
Hardware expectations vs. current HPC systems
Vague in some points (EOS vs. NOS vs. NVL)
Implications for FFMK?

11 / 1



Conclusion

Summary
Hobbes: extreme-scale OS/R and “playground”
Design based on anticipated trends in hard- and software
Explicit support for application composition
Virtualization for flexibility and co-location

Discussion
Similarities to DoE’s “Reference Architecture”
Hardware expectations vs. current HPC systems
Vague in some points (EOS vs. NOS vs. NVL)
Implications for FFMK?

11 / 1


