
Beyond the PDP-11: Architectural support
for a memory-safe C abstract machine

David Chisnall, Colin Rothwell, Robert N.M. Watson,
Jonathan Woodruff, Munraj Vadera, Simon W. Moore,

Michael Roe,
(University of Cambridge)

Brooks Davis, Peter G. Neumann
(SRI International)

ASPLOS 2015

1 / 3



Motivation

I C memory model was originally designed close to what
PDP-11 could do, and is still close to that.

I Obviously (some) memory safety would be nice.
I CWE/SANS top 25 most dangerous software errors (2011)

has buffer overflows on place three.
I Goal: Describe an (abstract) machine that runs existing

C-code memory safe(r).

2 / 3



Difficult idioms

PROGRAM DECONST CONTAINER SUB II INT IA MASK WIDE LOC

ffmpeg 150 0 800 4 0 0 4 0 693,010
libX11 117 0 19 9 1 0 0 5 120,386

FreeBSD libc 288 0 216 2 13 50 184 17 136,717
bash 43 0 207 11 0 0 15 4 109,250

libpng 20 0 175 1 0 0 0 0 50,071
tcpdump 579 0 9 1299 0 0 0 0 66,555

perf 575 151 46 0 53 151 31 4 52,033
pmc 2 0 0 0 18 0 0 0 8,886
pcre 98 0 52 0 0 0 0 0 70,447

python 494 0 358 1 109 0 131 8 383,813
wget 55 0 61 0 3 0 1 10 91,710
zlib 4 0 24 0 0 0 0 0 21,090
zsh 29 0 267 0 0 0 5 5 98,664

TOTAL 2491 151 2236 1557 197 201 371 53 1,902,632

Table 1. Summary of difficult idioms in popular C packages.

looking for cases where programs rely on implementation-
defined behavior related to a specific understanding of the
machine’s memory model, and thus would be fragile in the
presence of different interpretations. When a compiler en-
counters undefined behavior, it is free to do whatever it
wishes. For example, if the value of a is the result of un-
defined behavior, then it is acceptable for the compiler to
optimize a == b and a != b to the same value. In contrast,
implementation-defined behavior must be self-consistent.
For example, the value of sizeof(int) is implementation
defined and may be 4, 8, or some other value, but must be
consistent within a program.

We assume that all of the code that we inspected works
correctly, that all of the idioms that we find are intentional,
and that the code depends on them working as expected. We
identified the following idioms:

Deconst refers to programs that remove the const qualifier
from a pointer. This will break with any implementation
that enforces the const at run time. §6.7.3.4 [16] states:
If an attempt is made to modify an object defined with

a const-qualified type through use of an lvalue with non-
const-qualified type, the behavior is undefined.

This means that such removal is permitted unless the
object identified by the pointer is declared const, but this
guarantee is very hard to make statically and the removal
can violate programmer intent.
We would like to be able to make a const pointer a
guarantee that nothing that receives the pointer may write
to the resulting memory. This allows const pointers to be
passed across security-domain boundaries.

Container describes behavior in a macro common in the
Linux, BSD, and Windows kernels that, given a pointer
to a structure member, returns a pointer to the enclosing

structure [20]. This may or may not be permitted behav-
ior according to the standard, due to the ambiguous def-
inition of ‘object’. Use of this idiom would break with
any implementation that associates strict bounds check-
ing with a pointer based on its static type, but not one that
employs the bounds of the original object.
This is a special case of pointer subtraction, but its
use breaks assumptions that we would like to make for
pointer bounds: A compiler can statically insert bounds
information on a pointer to a structure field, which can be
enforced by the underlying substrate—preventing some
categories of pointer error with a fine granularity.

Sub refers to any arbitrary pointer subtraction. High-level
languages commonly lack pointer subtraction, preferring
a model where pointers are always references to objects
(a base and a bounds), and accesses to object fields or ar-
ray elements require that the programmer have a pointer
to the object. With pointer subtraction, bounds checking
requires an offset as well as the base and bounds and so
bounds-checked pointers are larger.

II refers to computation of invalid intermediate results. The
C specification allows pointers to point one element after
the end of an array, but not be dereferenced when point-
ing outside of a valid object. This case refers to pointer
arithmetic where the end result is within the bounds of an
object, but intermediate results are not. This is undefined
behavior according to the C specification and makes even
conservative garbage collection impossible unless a valid
pointer to the object is guaranteed to also exist.
Without this being expected to work, we could trap as
soon as a pointer went out of range, rather than waiting
until it is dereferenced. This would be useful mostly as a

3 / 3


