
iThreads: A Threading Library for Parallel

Incremental Computation

Paper Reading Group

Pramod Bhatotia
Pedro Fonseca
Umut A. Acar

Bj�orn B. Brandenburg
Rodrigo Rodrigues

Presents: Maksym Planeta

09.07.2015

Table of Contents

Motivation

Details

Evaluation

Conclusion

Goals

Make incremental computations easy to use:

I Convenient for user

I Legacy support

I Language independent

I No programmer intervention

I Multithreaded environment

I Use existing OS facilities

I Generic program model

I Low overhead

Work
ow

1. Inital run

2. Build Concurrent Dynamic Dependence Graph (CDDG)

3. Specify input changes

4. Incremental run uses change propagation

5. Update CDDG

$ LD PRELOAD=iThreads.so // preload iThreads
$./<program executable> <input-file> // initial run
$ emacs <input-file> // input modified
$ echo "<off> <len>" >> changes.txt // specify changes
$./<program executable> <input-file> // incremental run

Figure 1. How to run an executable using iThreads

and synchronization primitives (such as R/W locks, mutexes,
semaphores, barriers, and conditional wait/signal).

In this paper, we instead target increased generality, and to
this end propose an OS-based approach to parallel incremen-
tal computation. More specifically, we present iThreads, a
threading library for parallel incremental computation, which
achieves the following goals.

• Practicality: iThreads supports the shared-memory
multi-threaded programming model with the full range of
synchronization primitives in the POSIX API.

• Transparency: iThreads supports unmodified programs
(e.g., C/C++) without requiring the use of a new language
with special data types.

• Efficiency: iThreads achieves efficiency, without limit-
ing the available application parallelism, as its underlying
algorithms are parallel as well.

The iThreads library is easy to use (see Figure 1 for the
workflow): the user just needs to preload iThreads to replace
pthreads by using the environment variable LD PRELOAD.
The dynamically linkable shared library interface allows
existing executables to benefit from iThreads.

For the first run of a program (or the initial run), iThreads
computes the output from scratch and records an execution
trace. All subsequent runs for the program are incremental
runs. For an incremental run, the user modifies the input
and specifies the changes; e.g., assuming that the program
reads the input from a file, the user specifies the offset and
len for the changed parts of the file. Thereafter, iThreads
incrementally updates the output based on the specified input
changes and the recorded trace from the previous run.

Our approach relies on recording the data and control
dependencies in a computation during the initial run by con-
structing a Concurrent Dynamic Dependence Graph (CDDG).
The CDDG tracks the input data to a program, all sub-
computations (a sub-computation is a unit of the computation
that is either reused or recomputed), the data flow between
them, and the final output. For the incremental run, a (paral-
lel) change propagation algorithm updates the output and the
CDDG by identifying sub-computations that are affected by
the changes and recomputing only those sub-computations.

We make the following main contributions:

• We present parallel algorithms for incremental multi-
threading (§4).

Thread 1 (T1) Thread 2 (T2)
/* T1.a */ lock();
read={y} z = ++y;
write={y, z} unlock();

↘
lock(); /* T2.a */
x++; read={x}
unlock(); write={x}
↓

lock(); /* T2.b */
y = 2*x + z; read={x, z}
unlock(); write={y}

Figure 2. An example of shared-memory multithreading

• We present an implementation of the algorithms encapsu-
lated in a dynamically linkable shared library built using
Dthreads [63], which we call iThreads (§5).

• We empirically demonstrate the effectiveness of iThreads
by applying it to applications taken from the PARSEC [24]
& Phoenix [74] benchmark suites and case studies (§6).

Our experience with iThreads shows that significant perfor-
mance gains (time savings) and efficient resource utilization
(work savings) can be achieved in many parallel applications
without requiring any effort from the programmer.

2. Design Overview
We base our design on POSIX threads, or pthreads, a widely
used threading library for shared-memory multithreading
with a rich set of synchronization primitives.

2.1 The Basic Approach
Our design adapts the principles of self-adjusting computa-
tion [6] for shared-memory multithreading, and also makes
use of techniques from record-replay systems employed for
reliable multithreading (§7). At a high level, the basic ap-
proach proceeds in the following three steps:

1. Divide a computation into a set of sub-computations N .

2. During the initial run, record an execution trace to con-
struct a Concurrent Dynamic Dependence Graph (or
CDDG). The CDDG captures a partial order O = (N,→)
among sub-computations with the following property:
given a sub-computation n (where n ∈ N) and the subset
of sub-computations M that precede it according to→,
i.e., M = {M ⊂ N | ∀m ∈M,m→ n}, if the inputs to
allm ∈M are unchanged and the incremental run follows
the partial order→, then n’s input is also unchanged and
we can reuse n’s memoized effect without recomputing n.

3. During the incremental run, propagate the changes
through the CDDG. That is, the incremental run follows
an order that is consistent with the recorded partial order
→, reusing sub-computations whose input is unchanged
and re-computing those whose input has changed.

646

Work
ow

1. Inital run

2. Build Concurrent Dynamic Dependence Graph (CDDG)

3. Specify input changes

4. Incremental run uses change propagation

5. Update CDDG

$ LD PRELOAD=iThreads.so // preload iThreads
$./<program executable> <input-file> // initial run
$ emacs <input-file> // input modified
$ echo "<off> <len>" >> changes.txt // specify changes
$./<program executable> <input-file> // incremental run

Figure 1. How to run an executable using iThreads

and synchronization primitives (such as R/W locks, mutexes,
semaphores, barriers, and conditional wait/signal).

In this paper, we instead target increased generality, and to
this end propose an OS-based approach to parallel incremen-
tal computation. More specifically, we present iThreads, a
threading library for parallel incremental computation, which
achieves the following goals.

• Practicality: iThreads supports the shared-memory
multi-threaded programming model with the full range of
synchronization primitives in the POSIX API.

• Transparency: iThreads supports unmodified programs
(e.g., C/C++) without requiring the use of a new language
with special data types.

• Efficiency: iThreads achieves efficiency, without limit-
ing the available application parallelism, as its underlying
algorithms are parallel as well.

The iThreads library is easy to use (see Figure 1 for the
workflow): the user just needs to preload iThreads to replace
pthreads by using the environment variable LD PRELOAD.
The dynamically linkable shared library interface allows
existing executables to benefit from iThreads.

For the first run of a program (or the initial run), iThreads
computes the output from scratch and records an execution
trace. All subsequent runs for the program are incremental
runs. For an incremental run, the user modifies the input
and specifies the changes; e.g., assuming that the program
reads the input from a file, the user specifies the offset and
len for the changed parts of the file. Thereafter, iThreads
incrementally updates the output based on the specified input
changes and the recorded trace from the previous run.

Our approach relies on recording the data and control
dependencies in a computation during the initial run by con-
structing a Concurrent Dynamic Dependence Graph (CDDG).
The CDDG tracks the input data to a program, all sub-
computations (a sub-computation is a unit of the computation
that is either reused or recomputed), the data flow between
them, and the final output. For the incremental run, a (paral-
lel) change propagation algorithm updates the output and the
CDDG by identifying sub-computations that are affected by
the changes and recomputing only those sub-computations.

We make the following main contributions:

• We present parallel algorithms for incremental multi-
threading (§4).

Thread 1 (T1) Thread 2 (T2)
/* T1.a */ lock();
read={y} z = ++y;
write={y, z} unlock();

↘
lock(); /* T2.a */
x++; read={x}
unlock(); write={x}
↓

lock(); /* T2.b */
y = 2*x + z; read={x, z}
unlock(); write={y}

Figure 2. An example of shared-memory multithreading

• We present an implementation of the algorithms encapsu-
lated in a dynamically linkable shared library built using
Dthreads [63], which we call iThreads (§5).

• We empirically demonstrate the effectiveness of iThreads
by applying it to applications taken from the PARSEC [24]
& Phoenix [74] benchmark suites and case studies (§6).

Our experience with iThreads shows that significant perfor-
mance gains (time savings) and efficient resource utilization
(work savings) can be achieved in many parallel applications
without requiring any effort from the programmer.

2. Design Overview
We base our design on POSIX threads, or pthreads, a widely
used threading library for shared-memory multithreading
with a rich set of synchronization primitives.

2.1 The Basic Approach
Our design adapts the principles of self-adjusting computa-
tion [6] for shared-memory multithreading, and also makes
use of techniques from record-replay systems employed for
reliable multithreading (§7). At a high level, the basic ap-
proach proceeds in the following three steps:

1. Divide a computation into a set of sub-computations N .

2. During the initial run, record an execution trace to con-
struct a Concurrent Dynamic Dependence Graph (or
CDDG). The CDDG captures a partial order O = (N,→)
among sub-computations with the following property:
given a sub-computation n (where n ∈ N) and the subset
of sub-computations M that precede it according to→,
i.e., M = {M ⊂ N | ∀m ∈M,m→ n}, if the inputs to
allm ∈M are unchanged and the incremental run follows
the partial order→, then n’s input is also unchanged and
we can reuse n’s memoized effect without recomputing n.

3. During the incremental run, propagate the changes
through the CDDG. That is, the incremental run follows
an order that is consistent with the recorded partial order
→, reusing sub-computations whose input is unchanged
and re-computing those whose input has changed.

646

Table of Contents

Motivation

Details

Evaluation

Conclusion

System model

I Memory model
I Release consistency

I Synchronization model
I pthreads API

I Deterministic behavior

Thunk

I Unit of sequential execution

I Surrounded by synchronization operations

I State

I Read and write sets

I Causally ordered (vector clocks)

I Thunk recomputed) All thunks in the thread recomputed

Algorithm 4: The incremental run algorithm
Data: Shared dirty setM ← { modified pages } and Lt

∀s ∈ S,∀i ∈ {1, ..., T} : Cs[i]← 0; // All sync clocks set to 0
executeThread(t)
begin

initThread(t); // Same as initial run algorithm
while (t has not terminated and isValid(Lt[α])) do

// Thread t is valid
await (isEnabled(Lt[α]) or ! isValid(Lt[α]));
if (isEnabled(Lt[α]) then

resolveValid(Lt[α]);
Ct[t]← α; // Update thread clock
α← α+ 1; // Increment thunk counter

end
end
// The thread has terminated or a thunk has been invalidated
L′
t ← Lt; // Make a temp copy for missing writes

while (t has not terminated or α < |L′
t|) do

// Thread t is invalid
if (α < |L′

t|) then
M ←M ∪ L′

t[α].W ; // Add missing writes
Ct[t]← α; // Update thread clock

end
if (t has not terminated) then

resolveInvalid(Lt[α]);
end
α← α+ 1; // Increment thunk counter

end
// The thread has terminated

end

(which usually resides in a single page storing local vari-
ables) because the stack follows a push/pop model, where the
stack is written (or gets dirty) when a call frame is pushed
or popped, even without a local variable being modified. To
avoid the overheads of tracking local variables, we do not
track the stack. Instead, we follow a conservative strategy
to capture the intra-thread data dependencies. In our design,
once a thunk is recomputed (or invalidated) in a thread, all
remaining thunks of the thread are also invalidated in order
to capture a possible change propagation via local variables.

(3) Control flow divergence. During the incremental run, it
may happen that the control flow diverges from the recorded
execution. As a result of the divergence, new thunks may be
created or existing ones may be deleted. As in the previous
challenge, the algorithm we propose takes a simple approach
of only reusing a prefix of each thread (before the control
flow diverges), and subsequently recording the new CDDG
for enabling change propagation in subsequent runs.

Details. Algorithm 4 presents the overview of the incremental
run algorithm, and details of subroutines used in the algorithm
are presented in Algorithm 5. The incremental run algorithm
allows all threads to proceed in parallel, and associates a
state with each thunk of every thread. The state of each
thunk follows a state machine (shown in Figure 4), which
enforces that each thread waits until all thunks that happened-
before its next thunk to be executed are resolved (i.e., either
recomputed or reused), and only when it is certain that reusing
memoized results is not possible will it start to re-execute

Algorithm 5: Subroutines for the incremental run algo-
rithm

isEnabled(Lt[α])
begin

if (∀i ∈ {1, ..., T} \ {t} : (Ci[i] > Lt[α].C[i])) then
// All thunks happened-before are resolved
return (isValid(Lt[α])); // check if it’s valid

end
return false;

end
isValid(Lt[α])
begin

if ((Lt[α].R ∩M) = ∅) then
return true; // Read set does not intersects with dirty set

end
return false;

end
resolveInvalid(Lt[α])
begin

startThunk(); // Same as initial run algorithm
repeat

Execute instruction of t;
if (instruction is load or store) then

onMemoryAccess(); // Same as initial run algorithm
end

until t invokes synchronization primitive;
M ←M ∪ Lt[α].W ; // Add the new writes
endThunk(); // Same as initial run algorithm
onSynchronization(s); // Same as initial run algorithm

end
resolveValid(Lt[α])
begin

address space← memo(Lt[α].W); // Globals and heap
stack← memo(Lt[α].Stack);
CPU registers← memo(Lt[α].Reg); // Also adjusts PC
onSynchronization(s); // Same as initial run algorithm

end

Resolved

invalid

Resolved

valid

Pending

Enabled

Invalid

Reused and applied

memoized e!ects

Re-executed and

modi"ed dirty set

Unresolved Resolved

2

1
3

5
4

Figure 4. State transition for thunks during incremental run

its next thunk. In particular, the state of a thunk is either
resolved or unresolved. The state of a thunk is resolved when
the thunk has either been reused (resolved-valid) or re-
executed (resolved-invalid). Otherwise, the thunk is still
unresolved. An unresolved thunk is in one of the following
states: pending, enabled or invalid.

Initially, the state of all thunks is pending, except for
the initial thunk, which is enabled. A pending thunk is
not “ready” to be considered for re-computation or reuse.
A pending thunk of a thread is enabled (state transition
1©) when all thunks (of any thread) that happened-before are
resolved (either resolved-valid or resolved-invalid).
To check for this condition (using routine isEnabled()),
we make use of the strong clock consistency condition [65]

650

Example

Sub-computations
Case Input Thread schedule Reused Recomputed
A x, y*, z T1.a→ T2.a→ T2.b T2.a T1.a, T2.b
B x, y, z (T2.a→ T2.b→ T1.a)* T2.a T1.a, T2.b
C x, y, z T1.a→ T2.a→ T2.b T1.a, T1.b, T2.a —

Figure 3. For the incremental run, some cases with changed
input or thread schedule (changes are marked with *)

2.2 Example
We next use a simple example, shown in Figure 2, to explain
how our basic approach works. The example considers a
multi-threaded execution with two threads (T1 & T2) modify-
ing three shared variables (x, y, & z) using a lock.

Step #1: Identifying sub-computations. We divide a thread
execution into sub-computations at the boundaries of lock()
/ unlock(). (We explain this design choice in §3.) We
identify these sub-computations as T1.a for thread T1, and
T2.a & T2.b for thread T2. For the initial run, let us assume
that thread T2 acquired the lock after the execution of sub-
computation T1.a. This resulted in the following thread
schedule for sub-computations: T1.a→ T2.a→ T2.b.

Step #2: Construct the CDDG. To understand the depen-
dencies that need to be recorded to build the CDDG, we
consider incremental runs with changes either in the input
data or the thread schedule (shown in Figure 3).

We first consider the case of change in the input data. An
important function of the CDDG is to propagate the changes
through the graph by determining whether a sub-computation
is transitively affected by the input change. For example
consider case A in Figure 3, when the value of variable y is
changed—in this case, we need to recompute T1.a because it
reads the modified value of y. In contrast, we can still reuse
T2.a because it is independent of y and also not affected by
the writes made by T1.a. However, we need to recompute
T2.b even though it does not directly depend on y, since it
is still transitively affected (via modified z) by the writes
made by T1.a. Therefore, the CDDG needs to record data
dependencies (meaning which sub-computations modify a
value that is read by another sub-computation) to determine
whether a sub-computation can be reused or if it has to be
recomputed.

We next consider the case of a change in the thread
schedule. In general, multi-threaded programs are non-
deterministic because the OS scheduler is free to interleave
sub-computations in different ways. As a result, a prob-
lem can arise if the initial and the incremental runs follow
different schedules. This might alter the shared state, and
therefore cause unnecessary re-computations even without
any input changes. For example consider case B in Figure 3:
if thread T1 acquires the lock after the execution of T2.b (i.e.,
a changed thread schedule of T2.a→ T2.b→ T1.a) then sub-
computations T1.a and T2.b need to be recomputed because
of the changed value of y. Therefore, (and as observed by
prior work on reliable multithreading (§7)) the partial order

Algorithm 1: Basic algorithm for the incremental run
dirty-set← {changed input};
executeThread(t)
forall sub-computations in thread t do

// Check a sub-computation’s validity in happens-before order
if (read-set ∩ dirty-set) then

– recompute the sub-computation
– add the write-set to the dirty-set

else
– skip execution of the sub-computation
– write memoized value of the write-set to address space

end
end

captured by the CDDG (→) is a happens-before order among
synchronization events, which ensures that, given unchanged
input and that all threads acquire locks in the same order as
dictated by→, all sub-computations remain unchanged, as
shown in case C in Figure 3. We explain how to build this
partial order in §4.

Step #3: Change propagation. The previous observations
allow us to reach a refined explanation of our basic algo-
rithm (see Algorithm 1). The starting point is the CDDG
that records the happens-before order (→) between sub-
computations, according to the synchronization events. Fur-
thermore, data dependencies are recorded implicitly in the
CDDG by recording the read and write sets: if we know what
data is read and written by each sub-computation, we can
determine whether a data dependency exists, i.e., if a sub-
computation is reading data that was modified by another
sub-computation. Therefore, the incremental run visits sub-
computations in an order that is compatible with →, and,
for each sub-computation, uses the read and write sets to
determine whether part of its input was modified during the
incremental run. If the read-set is modified then the sub-
computation is re-computed, otherwise we skip the execution
of the sub-computation, and directly write the memoized
value of the write-set to the address space.

3. System Model

Memory consistency model. As we explained in the previ-
ous section, the CDDG implicitly records read-after-write
data dependencies between sub-computations using the read
and write sets. The efficiency of the mechanism that records
these dependencies is related to the memory model we use,
and consequently on the granularity of sub-computations. As
a design choice, our approach relies on the use of the Release
Consistency [44] (RC) memory model. To understand this
design choice, consider a possible option of using a strict
memory model such as Sequential Consistency [58] (SC).
Under the SC model, one would have to define the regions of
code bounded by shared-memory accesses as the granularity
of sub-computations. This is because any write made by a
thread can potentially affect the execution of another thread
since it may read the same memory location. Intercepting this

647

$ LD PRELOAD=iThreads.so // preload iThreads
$./<program executable> <input-file> // initial run
$ emacs <input-file> // input modified
$ echo "<off> <len>" >> changes.txt // specify changes
$./<program executable> <input-file> // incremental run

Figure 1. How to run an executable using iThreads

and synchronization primitives (such as R/W locks, mutexes,
semaphores, barriers, and conditional wait/signal).

In this paper, we instead target increased generality, and to
this end propose an OS-based approach to parallel incremen-
tal computation. More specifically, we present iThreads, a
threading library for parallel incremental computation, which
achieves the following goals.

• Practicality: iThreads supports the shared-memory
multi-threaded programming model with the full range of
synchronization primitives in the POSIX API.

• Transparency: iThreads supports unmodified programs
(e.g., C/C++) without requiring the use of a new language
with special data types.

• Efficiency: iThreads achieves efficiency, without limit-
ing the available application parallelism, as its underlying
algorithms are parallel as well.

The iThreads library is easy to use (see Figure 1 for the
workflow): the user just needs to preload iThreads to replace
pthreads by using the environment variable LD PRELOAD.
The dynamically linkable shared library interface allows
existing executables to benefit from iThreads.

For the first run of a program (or the initial run), iThreads
computes the output from scratch and records an execution
trace. All subsequent runs for the program are incremental
runs. For an incremental run, the user modifies the input
and specifies the changes; e.g., assuming that the program
reads the input from a file, the user specifies the offset and
len for the changed parts of the file. Thereafter, iThreads
incrementally updates the output based on the specified input
changes and the recorded trace from the previous run.

Our approach relies on recording the data and control
dependencies in a computation during the initial run by con-
structing a Concurrent Dynamic Dependence Graph (CDDG).
The CDDG tracks the input data to a program, all sub-
computations (a sub-computation is a unit of the computation
that is either reused or recomputed), the data flow between
them, and the final output. For the incremental run, a (paral-
lel) change propagation algorithm updates the output and the
CDDG by identifying sub-computations that are affected by
the changes and recomputing only those sub-computations.

We make the following main contributions:

• We present parallel algorithms for incremental multi-
threading (§4).

Thread 1 (T1) Thread 2 (T2)
/* T1.a */ lock();
read={y} z = ++y;
write={y, z} unlock();

↘
lock(); /* T2.a */
x++; read={x}
unlock(); write={x}
↓

lock(); /* T2.b */
y = 2*x + z; read={x, z}
unlock(); write={y}

Figure 2. An example of shared-memory multithreading

• We present an implementation of the algorithms encapsu-
lated in a dynamically linkable shared library built using
Dthreads [63], which we call iThreads (§5).

• We empirically demonstrate the effectiveness of iThreads
by applying it to applications taken from the PARSEC [24]
& Phoenix [74] benchmark suites and case studies (§6).

Our experience with iThreads shows that significant perfor-
mance gains (time savings) and efficient resource utilization
(work savings) can be achieved in many parallel applications
without requiring any effort from the programmer.

2. Design Overview
We base our design on POSIX threads, or pthreads, a widely
used threading library for shared-memory multithreading
with a rich set of synchronization primitives.

2.1 The Basic Approach
Our design adapts the principles of self-adjusting computa-
tion [6] for shared-memory multithreading, and also makes
use of techniques from record-replay systems employed for
reliable multithreading (§7). At a high level, the basic ap-
proach proceeds in the following three steps:

1. Divide a computation into a set of sub-computations N .

2. During the initial run, record an execution trace to con-
struct a Concurrent Dynamic Dependence Graph (or
CDDG). The CDDG captures a partial order O = (N,→)
among sub-computations with the following property:
given a sub-computation n (where n ∈ N) and the subset
of sub-computations M that precede it according to→,
i.e., M = {M ⊂ N | ∀m ∈M,m→ n}, if the inputs to
allm ∈M are unchanged and the incremental run follows
the partial order→, then n’s input is also unchanged and
we can reuse n’s memoized effect without recomputing n.

3. During the incremental run, propagate the changes
through the CDDG. That is, the incremental run follows
an order that is consistent with the recorded partial order
→, reusing sub-computations whose input is unchanged
and re-computing those whose input has changed.

646

Architecture

provided by vector clocks to detect causality (a → b iff
C(a) < C(b)). In particular, we compare the recorded clock
value of the thunk against the current clock value of all
threads to check that all threads have passed the time recorded
in the thunk’s clock.

An enabled thunk transitions to invalid (state tran-
sition 2©) if the read set of the thunk intersects with the
dirty set. Otherwise, the enabled thunk transitions to
resolved-valid (state transition 3©), where we skip the
execution of the thunk and directly apply the memoized
write-set to the address space, including performing the syn-
chronization operation (using the resolveValid() routine).

A pending thunk transitions to invalid (state transition
4©) if any earlier thunk of the same thread is invalid

or resolved-invalid. The invalid thunk transitions to
resolved-invalid (state transition 5©) when the thread
re-executes the thunk and adds the write set to the dirty
set (including any missing writes). The executing thread
continues to resolve all the remaining invalid thunks to
resolved-invalid until the thread terminates. To do so,
we re-initialize the read/write sets of the new thunk to the
empty set and start the re-execution, similarly to the initial run
algorithm (using the resolveInvalid() routine). While re-
executing, the thread updates the CDDG, and also records
the state of the newly formed thunks for the next run.

5. Implementation
We implemented iThreads as a 32-bit dynamically link-
able shared library for the GNU/Linux OS (Figure 5).
iThreads reuses two mechanisms of the Dthreads imple-
mentation [63]: the memory subsystem (§5.1) and a custom
memory allocator (§5.4). Additionally, our implementation
also includes the iThreads memoizer, which is a stand-alone
application. We next describe the implementation in detail.

5.1 iThreads Library: Memory Subsystem
The iThreads memory subsystem implements the RC mem-
ory model and derives per-thunk read/write sets.

Release consistency memory model. To implement the RC
memory model, iThreads converts threads into separate
processes using a previously proposed mechanism [17]. This
“thread-as-a-process” approach provides each thread with its
own private address space, and thus allows iThreads to
restrict inter-thread communication. In practice, iThreads
forks a new process on pthread create() and includes
a shared memory commit mechanism [28, 56] that enables
communication between processes at the synchronization
points, as required by the RC memory model.

At a high level, throughout the application execution,
iThreads maintains a copy of the address space contents in a
(shared) reference buffer, and it is through this buffer, with in-
strumentation provided by iThreads at the synchronization
points, that the processes transparently communicate (Fig-
ure 6). Communication between processes is implemented

CDDG

Application

OS

Memoizer
iThreads library

Memory subsystem OS support

Recorder / Replayer

Figure 5. iThreads implementation architecture. Shaded
boxes represent the main components of the system.

by determining the thunk write-set, as explained next, which
is then used to calculate a byte-level delta [63].

To compute the byte-level delta for each dirty page,
iThreads performs a byte-level comparison between the
dirty page and the corresponding page in the reference buffer,
and then applies atomically the deltas to the reference buffer.
In case there are concurrent writes by different processes to
the same memory location, iThreads resolves the conflict
by using a last-writer wins policy.

Furthermore, for efficiency reasons, the implementation
of the communication mechanism relies on private memory-
mapped files—this allows different processes to share phys-
ical pages until processes actually write to the pages, and
still keeps performance overheads low by virtue of the OS
copy-on-write mechanism.

Read and write set. Besides serving as the foundation for
the RC memory model, the adopted thread-as-a-process
mechanism is also essential for easily deriving per-thread
read and write sets. More specifically, iThreads uses the OS
memory protection mechanism to efficiently track the read
and write sets. In particular, iThreads renders the address
space inaccessible by invoking mprotect(PROT NONE) at
the beginning of each thunk, which ensures that a signal is
triggered the first time a page is read or written by the thunk.
Hence, within the respective signal handler, iThreads is able
to record the locations of the accesses made to memory at the
granularity of pages. Immediately after recording a memory
access, the iThreads library proceeds to reset the page
protection bits, allowing the thunk to resume the read/write
operation as soon as the handler returns. In addition, resetting
the permissions also ensures that subsequent accesses proceed
without further page faults. In this way, iThreads incurs at
most two page faults (one for reads & one for writes) for each
accessed page during a thunk execution.

5.2 iThreads Library: Recorder and Replayer
The iThreads library executes the application in either
recording or replaying mode. We next describe the two sub-
components, recorder and replayer, that realize these modes
of execution by implementing the algorithms described in §4.

Recorder. Since iThreads reuses the Dthreads memory
subsystem, which serializes memory commit operations
from different threads, the implementation of the recording
algorithm is greatly simplified. Due to the resulting implicit
serialization of thunk boundaries, the employed thread, thunk,

651

Implementation

I Dthreads

I Separate address spaces for threads

I Page read/write protection

I Byte-level delta

Shared

address space
Thread-1

private address space

Thread-2

private address space

Shared memory

 commit

Sync
Sync

Thunk execution

Thunk execution

Write
Write

Shared memory

 commit

Thunk execution

Thunk execution

Figure 6. Overview of the RC model implementation

and synchronization vector clocks effectively reduce to scalar
sequence numbers, which allows the recorder to simply
encode the thread schedule using thunk sequence numbers.

The recorder is further responsible for memoizing the state
of the process at the end of each thunk. To this end, using
an assembly routine, iThreads stores the register values on
the stack, takes a snapshot of the dirty pages in the address
space, and stores the snapshot in the memoizer (§5.4). In
addition, the recorder also stores the CDDG, consisting of
thunk identifiers (thread number and thunk sequence number)
and their corresponding read/write sets, to an external file.

Replayer. Similarly to the recorder, the replayer relies on
thunk sequence numbers to enforce the recorded schedule
order. The replayer first reads the file with the input changes
and the CDDG to initialize the replay algorithm. During an
incremental run, whenever memoized thunks can be reused,
the replayer retrieves the appropriate state from the memoizer,
patches the address space and restores the state of registers.

5.3 iThreads Library: OS Support
As practical applications depend on OS services, there are
two important aspects related to the OS that iThreads needs
to address. First, system calls are used by the application
to communicate with the rest of the system, so the effects
of system calls (on the system and application) need to be
addressed; in particular, input changes made by the user need
to be handled. Second, there are OS mechanisms that can
unnecessarily change the memory layout of the application
across runs, preventing the reuse of memoized thunks.

System calls and input changes. Since iThreads is a user-
space library running on top of an unmodified Linux kernel, it
has no access to kernel data structures. The effects of system
calls thus cannot be memoized or replayed. To support system
calls, iThreads instead considers system calls to be thunk
delimiters (in addition to synchronization calls). Hence, im-
mediately before a system call takes place, iThreads mem-
oizes the thunk state, and immediately after the system call
returns, iThreads determines whether it still can reuse the
subsequent thunks according to the replayer algorithm.

To ensure that system calls take effect (externally and inter-
nally), iThreads invokes system calls in all executions, even

during replay runs. To guarantee that effects of system calls
on the application (i.e., the return values and writes made to
the address space) are accounted for by the thunk invalidation
rules, iThreads infers the write-set of the system calls and
checks whether the write-set contents match previous runs by
leveraging knowledge of system call semantics (e.g., some
system call parameters return pointers where data is written).

An important special case is that of reading the potentially
large input to the computation (e.g., using mmap). In this
case, iThreads efficiently identifies the content that does
not match across runs by allowing the user to specify input
changes explicitly. This relies on an external file, either
written manually by users or produced by external tools, that
lists the modified offset ranges (Figure 1).

In practice, our implementation intercepts system calls
through wrappers at the level of glibc library calls.

Memory layout stability. To avoid causing unnecessary
data dependencies between threads, iThreads reuses the
custom memory allocator of Dthreads, which is based
on HeapLayer [16]. The allocator isolates allocation and
deallocation requests on a per-thread basis by dividing the
application heap into a fixed number of per-thread sub-heaps.
This ensures that the sequence of allocations in one thread
does not impact the layout of allocations in another thread,
which otherwise might trigger unnecessary re-computations.

In addition, iThreads disables Address Space Layout
Randomization (ASLR) [1], an OS feature that deliberately
randomizes the memory layout.

5.4 iThreads Memoizer
The memoizer is responsible for storing the end state of
each thunk so that its effects can be replayed in subsequent
incremental runs. The memoizer is implemented as a separate
program that stores the memoized state in a shared memory
segment, which serves as the substrate to implement a key-
value store that is accessible by the recorder/replayer.

6. Evaluation
Our evaluation answers the following three main questions:

• What performance gains does iThreads provide for the
incremental run? (§ 6.1)

• How do these gains scale with increases in the size of the
input, the computation, and the input change? (§ 6.2)

• What overheads does iThreads impose for memoization
and for the initial run? (§ 6.3)

Experimental setup. We evaluated iThreads on a six-core
Intel(R) Xeon(R) CPU X5650 platform with 12 hardware
threads running at 2.67 GHz and 32 GB of main memory.

Applications and datasets. We evaluated iThreads with
applications from two benchmark suites: PARSEC [24] and
Phoenix [74]. Table 1 lists the applications evaluated and their

652

Table of Contents

Motivation

Details

Evaluation

Conclusion

Metrics

Time runtime of the slowest thread

Work sum of the total runtime of all threads

Benchmarks: PARSEC and Phoenix

 0.01

 0.1

 1

 10

 100

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

W
o

rk
 s

p
e

e
d

u
p

Number of threads
12 24 48 64

 0.1

 1

 10

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

T
im

e
 s

p
e

e
d

u
p

<0.1

Number of threads
12 24 48 64

Figure 7. Performance gains of iThreads with respect to pthreads for the incremental run

 0.1

 1

 10

 100

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

W
o

rk
 s

p
e

e
d

u
p

Number of threads
12 24 48 64

 0.1

 1

 10

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

T
im

e
 s

p
e

e
d

u
p

Number of threads
12 24 48 64

Figure 8. Performance gains of iThreads with respect to Dthreads for the incremental run

respective input sizes in terms of 4KB pages. In addition, we
also report the gains with two case studies (§6.4).
Metrics: work and time. We consider two types of measures,
work and time. Work refers to the total amount of computation
performed by all threads and is measured as the sum of the
total runtime of all threads. Time refers to the end-to-end
runtime to complete the parallel computation. Time savings
reflect reduced end user perceived latency, whereas work
savings reflect improved resource utilization.
Measurements. For all measurements, each application was
executed 12 times. We exclude the lowest and highest mea-
surements, and report the average over the 10 remaining runs.

6.1 Performance Gains
We first present a comparison of iThreads’s incremental run
with pthreads and Dthreads, as shown in Figures 7 and 8
respectively. In this experiment, we modified one randomly
chosen page of the input file prior to the incremental run. We
then measured the work and time required by iThreads’s
incremental run, as well as by pthreads and Dthreads,
which re-compute everything from scratch. We report the
work and time speedups (i.e., iThreads’s performance nor-
malized by the performance of pthreads/Dthreads) for a
varying number of threads ranging from 12 to 64 threads.
When comparing the performance, we use the same number
of threads in iThreads and pthreads/Dthreads.

The experiment shows that the benefits of using iThreads
vary significantly across applications. In over half of the evalu-
ated benchmarks (7 out of 11), iThreads was able to achieve
at least 2X time speedups. In contrast, for applications such

as canneal and reverseindex, iThreads can be very in-
efficient, by a factor of more than 15X , an effect that we
explain in further detail in §6.3. Overall, the results show that
iThreads is effective across a wide range of applications,
but also that the library is not a one-size-fits-all solution.

As expected, we observed that increasing the number of
threads tended to yield higher speedups. This is because,
for a fixed input size, a larger number of threads translates
to less work per thread. As a result, iThreads is forced to
recompute fewer thunks when a single input page is modified.

Note that work speedups do not directly translate into
time speedups. This is because even if just a single thread is
affected by changes, the end-to-end runtime is still dominated
by the (slowest) invalidated thread’s execution time.

6.2 iThreads Scalability
In a second experiment, we investigated the scalability of
iThreads w.r.t. increases in the size of the input, the amount
of computation (work), and the size of the input change.
Input size. We first present the performance of iThreads
as we increase the input data size for the three applica-
tion benchmarks (histogram, linear regression, and
string match) that are available in three input sizes: small
(S), medium (M), and large (L). (We used the large size
in §6.1.) Figure 9 shows a bar plot of the work and time
speedups w.r.t. pthreads for different input sizes (S, M, L)
with a single modified page for 64 threads. For reference,
the normalized input size is also shown by the line plot in
the same figure. In summary, this result shows that speedups
increase with the input size due to increased work savings.

653

 0.01

 0.1

 1

 10

 100

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

W
o

rk
 s

p
e

e
d

u
p

Number of threads
12 24 48 64

 0.1

 1

 10

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

T
im

e
 s

p
e

e
d

u
p

<0.1

Number of threads
12 24 48 64

Figure 7. Performance gains of iThreads with respect to pthreads for the incremental run

 0.1

 1

 10

 100

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

W
o

rk
 s

p
e

e
d

u
p

Number of threads
12 24 48 64

 0.1

 1

 10

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

T
im

e
 s

p
e

e
d

u
p

Number of threads
12 24 48 64

Figure 8. Performance gains of iThreads with respect to Dthreads for the incremental run

respective input sizes in terms of 4KB pages. In addition, we
also report the gains with two case studies (§6.4).
Metrics: work and time. We consider two types of measures,
work and time. Work refers to the total amount of computation
performed by all threads and is measured as the sum of the
total runtime of all threads. Time refers to the end-to-end
runtime to complete the parallel computation. Time savings
reflect reduced end user perceived latency, whereas work
savings reflect improved resource utilization.
Measurements. For all measurements, each application was
executed 12 times. We exclude the lowest and highest mea-
surements, and report the average over the 10 remaining runs.

6.1 Performance Gains
We first present a comparison of iThreads’s incremental run
with pthreads and Dthreads, as shown in Figures 7 and 8
respectively. In this experiment, we modified one randomly
chosen page of the input file prior to the incremental run. We
then measured the work and time required by iThreads’s
incremental run, as well as by pthreads and Dthreads,
which re-compute everything from scratch. We report the
work and time speedups (i.e., iThreads’s performance nor-
malized by the performance of pthreads/Dthreads) for a
varying number of threads ranging from 12 to 64 threads.
When comparing the performance, we use the same number
of threads in iThreads and pthreads/Dthreads.

The experiment shows that the benefits of using iThreads
vary significantly across applications. In over half of the evalu-
ated benchmarks (7 out of 11), iThreads was able to achieve
at least 2X time speedups. In contrast, for applications such

as canneal and reverseindex, iThreads can be very in-
efficient, by a factor of more than 15X , an effect that we
explain in further detail in §6.3. Overall, the results show that
iThreads is effective across a wide range of applications,
but also that the library is not a one-size-fits-all solution.

As expected, we observed that increasing the number of
threads tended to yield higher speedups. This is because,
for a fixed input size, a larger number of threads translates
to less work per thread. As a result, iThreads is forced to
recompute fewer thunks when a single input page is modified.

Note that work speedups do not directly translate into
time speedups. This is because even if just a single thread is
affected by changes, the end-to-end runtime is still dominated
by the (slowest) invalidated thread’s execution time.

6.2 iThreads Scalability
In a second experiment, we investigated the scalability of
iThreads w.r.t. increases in the size of the input, the amount
of computation (work), and the size of the input change.
Input size. We first present the performance of iThreads
as we increase the input data size for the three applica-
tion benchmarks (histogram, linear regression, and
string match) that are available in three input sizes: small
(S), medium (M), and large (L). (We used the large size
in §6.1.) Figure 9 shows a bar plot of the work and time
speedups w.r.t. pthreads for different input sizes (S, M, L)
with a single modified page for 64 threads. For reference,
the normalized input size is also shown by the line plot in
the same figure. In summary, this result shows that speedups
increase with the input size due to increased work savings.

653

 0.01

 0.1

 1

 10

 100

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

W
o

rk
 s

p
e

e
d

u
p

Number of threads
12 24 48 64

 0.1

 1

 10

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

T
im

e
 s

p
e

e
d

u
p

<0.1

Number of threads
12 24 48 64

Figure 7. Performance gains of iThreads with respect to pthreads for the incremental run

 0.1

 1

 10

 100

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

W
o

rk
 s

p
e

e
d

u
p

Number of threads
12 24 48 64

 0.1

 1

 10

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

T
im

e
 s

p
e

e
d

u
p

Number of threads
12 24 48 64

Figure 8. Performance gains of iThreads with respect to Dthreads for the incremental run

respective input sizes in terms of 4KB pages. In addition, we
also report the gains with two case studies (§6.4).
Metrics: work and time. We consider two types of measures,
work and time. Work refers to the total amount of computation
performed by all threads and is measured as the sum of the
total runtime of all threads. Time refers to the end-to-end
runtime to complete the parallel computation. Time savings
reflect reduced end user perceived latency, whereas work
savings reflect improved resource utilization.
Measurements. For all measurements, each application was
executed 12 times. We exclude the lowest and highest mea-
surements, and report the average over the 10 remaining runs.

6.1 Performance Gains
We first present a comparison of iThreads’s incremental run
with pthreads and Dthreads, as shown in Figures 7 and 8
respectively. In this experiment, we modified one randomly
chosen page of the input file prior to the incremental run. We
then measured the work and time required by iThreads’s
incremental run, as well as by pthreads and Dthreads,
which re-compute everything from scratch. We report the
work and time speedups (i.e., iThreads’s performance nor-
malized by the performance of pthreads/Dthreads) for a
varying number of threads ranging from 12 to 64 threads.
When comparing the performance, we use the same number
of threads in iThreads and pthreads/Dthreads.

The experiment shows that the benefits of using iThreads
vary significantly across applications. In over half of the evalu-
ated benchmarks (7 out of 11), iThreads was able to achieve
at least 2X time speedups. In contrast, for applications such

as canneal and reverseindex, iThreads can be very in-
efficient, by a factor of more than 15X , an effect that we
explain in further detail in §6.3. Overall, the results show that
iThreads is effective across a wide range of applications,
but also that the library is not a one-size-fits-all solution.

As expected, we observed that increasing the number of
threads tended to yield higher speedups. This is because,
for a fixed input size, a larger number of threads translates
to less work per thread. As a result, iThreads is forced to
recompute fewer thunks when a single input page is modified.

Note that work speedups do not directly translate into
time speedups. This is because even if just a single thread is
affected by changes, the end-to-end runtime is still dominated
by the (slowest) invalidated thread’s execution time.

6.2 iThreads Scalability
In a second experiment, we investigated the scalability of
iThreads w.r.t. increases in the size of the input, the amount
of computation (work), and the size of the input change.
Input size. We first present the performance of iThreads
as we increase the input data size for the three applica-
tion benchmarks (histogram, linear regression, and
string match) that are available in three input sizes: small
(S), medium (M), and large (L). (We used the large size
in §6.1.) Figure 9 shows a bar plot of the work and time
speedups w.r.t. pthreads for different input sizes (S, M, L)
with a single modified page for 64 threads. For reference,
the normalized input size is also shown by the line plot in
the same figure. In summary, this result shows that speedups
increase with the input size due to increased work savings.

653

Single modi�ed page

 0.01

 0.1

 1

 10

 100

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

W
o

rk
 s

p
e

e
d

u
p

Number of threads
12 24 48 64

 0.1

 1

 10

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

T
im

e
 s

p
e

e
d

u
p

<0.1

Number of threads
12 24 48 64

Figure 7. Performance gains of iThreads with respect to pthreads for the incremental run

 0.1

 1

 10

 100

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

W
o

rk
 s

p
e

e
d

u
p

Number of threads
12 24 48 64

 0.1

 1

 10

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

T
im

e
 s

p
e

e
d

u
p

Number of threads
12 24 48 64

Figure 8. Performance gains of iThreads with respect to Dthreads for the incremental run

respective input sizes in terms of 4KB pages. In addition, we
also report the gains with two case studies (§6.4).
Metrics: work and time. We consider two types of measures,
work and time. Work refers to the total amount of computation
performed by all threads and is measured as the sum of the
total runtime of all threads. Time refers to the end-to-end
runtime to complete the parallel computation. Time savings
reflect reduced end user perceived latency, whereas work
savings reflect improved resource utilization.
Measurements. For all measurements, each application was
executed 12 times. We exclude the lowest and highest mea-
surements, and report the average over the 10 remaining runs.

6.1 Performance Gains
We first present a comparison of iThreads’s incremental run
with pthreads and Dthreads, as shown in Figures 7 and 8
respectively. In this experiment, we modified one randomly
chosen page of the input file prior to the incremental run. We
then measured the work and time required by iThreads’s
incremental run, as well as by pthreads and Dthreads,
which re-compute everything from scratch. We report the
work and time speedups (i.e., iThreads’s performance nor-
malized by the performance of pthreads/Dthreads) for a
varying number of threads ranging from 12 to 64 threads.
When comparing the performance, we use the same number
of threads in iThreads and pthreads/Dthreads.

The experiment shows that the benefits of using iThreads
vary significantly across applications. In over half of the evalu-
ated benchmarks (7 out of 11), iThreads was able to achieve
at least 2X time speedups. In contrast, for applications such

as canneal and reverseindex, iThreads can be very in-
efficient, by a factor of more than 15X , an effect that we
explain in further detail in §6.3. Overall, the results show that
iThreads is effective across a wide range of applications,
but also that the library is not a one-size-fits-all solution.

As expected, we observed that increasing the number of
threads tended to yield higher speedups. This is because,
for a fixed input size, a larger number of threads translates
to less work per thread. As a result, iThreads is forced to
recompute fewer thunks when a single input page is modified.

Note that work speedups do not directly translate into
time speedups. This is because even if just a single thread is
affected by changes, the end-to-end runtime is still dominated
by the (slowest) invalidated thread’s execution time.

6.2 iThreads Scalability
In a second experiment, we investigated the scalability of
iThreads w.r.t. increases in the size of the input, the amount
of computation (work), and the size of the input change.
Input size. We first present the performance of iThreads
as we increase the input data size for the three applica-
tion benchmarks (histogram, linear regression, and
string match) that are available in three input sizes: small
(S), medium (M), and large (L). (We used the large size
in §6.1.) Figure 9 shows a bar plot of the work and time
speedups w.r.t. pthreads for different input sizes (S, M, L)
with a single modified page for 64 threads. For reference,
the normalized input size is also shown by the line plot in
the same figure. In summary, this result shows that speedups
increase with the input size due to increased work savings.

653

 0.01

 0.1

 1

 10

 100

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

W
o

rk
 s

p
e

e
d

u
p

Number of threads
12 24 48 64

 0.1

 1

 10

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

T
im

e
 s

p
e

e
d

u
p

<0.1

Number of threads
12 24 48 64

Figure 7. Performance gains of iThreads with respect to pthreads for the incremental run

 0.1

 1

 10

 100

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

W
o

rk
 s

p
e

e
d

u
p

Number of threads
12 24 48 64

 0.1

 1

 10

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

T
im

e
 s

p
e

e
d

u
p

Number of threads
12 24 48 64

Figure 8. Performance gains of iThreads with respect to Dthreads for the incremental run

respective input sizes in terms of 4KB pages. In addition, we
also report the gains with two case studies (§6.4).
Metrics: work and time. We consider two types of measures,
work and time. Work refers to the total amount of computation
performed by all threads and is measured as the sum of the
total runtime of all threads. Time refers to the end-to-end
runtime to complete the parallel computation. Time savings
reflect reduced end user perceived latency, whereas work
savings reflect improved resource utilization.
Measurements. For all measurements, each application was
executed 12 times. We exclude the lowest and highest mea-
surements, and report the average over the 10 remaining runs.

6.1 Performance Gains
We first present a comparison of iThreads’s incremental run
with pthreads and Dthreads, as shown in Figures 7 and 8
respectively. In this experiment, we modified one randomly
chosen page of the input file prior to the incremental run. We
then measured the work and time required by iThreads’s
incremental run, as well as by pthreads and Dthreads,
which re-compute everything from scratch. We report the
work and time speedups (i.e., iThreads’s performance nor-
malized by the performance of pthreads/Dthreads) for a
varying number of threads ranging from 12 to 64 threads.
When comparing the performance, we use the same number
of threads in iThreads and pthreads/Dthreads.

The experiment shows that the benefits of using iThreads
vary significantly across applications. In over half of the evalu-
ated benchmarks (7 out of 11), iThreads was able to achieve
at least 2X time speedups. In contrast, for applications such

as canneal and reverseindex, iThreads can be very in-
efficient, by a factor of more than 15X , an effect that we
explain in further detail in §6.3. Overall, the results show that
iThreads is effective across a wide range of applications,
but also that the library is not a one-size-fits-all solution.

As expected, we observed that increasing the number of
threads tended to yield higher speedups. This is because,
for a fixed input size, a larger number of threads translates
to less work per thread. As a result, iThreads is forced to
recompute fewer thunks when a single input page is modified.

Note that work speedups do not directly translate into
time speedups. This is because even if just a single thread is
affected by changes, the end-to-end runtime is still dominated
by the (slowest) invalidated thread’s execution time.

6.2 iThreads Scalability
In a second experiment, we investigated the scalability of
iThreads w.r.t. increases in the size of the input, the amount
of computation (work), and the size of the input change.
Input size. We first present the performance of iThreads
as we increase the input data size for the three applica-
tion benchmarks (histogram, linear regression, and
string match) that are available in three input sizes: small
(S), medium (M), and large (L). (We used the large size
in §6.1.) Figure 9 shows a bar plot of the work and time
speedups w.r.t. pthreads for different input sizes (S, M, L)
with a single modified page for 64 threads. For reference,
the normalized input size is also shown by the line plot in
the same figure. In summary, this result shows that speedups
increase with the input size due to increased work savings.

653

 0.01

 0.1

 1

 10

 100

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

W
o

rk
 s

p
e

e
d

u
p

Number of threads
12 24 48 64

 0.1

 1

 10

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

T
im

e
 s

p
e

e
d

u
p

<0.1

Number of threads
12 24 48 64

Figure 7. Performance gains of iThreads with respect to pthreads for the incremental run

 0.1

 1

 10

 100

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

W
o

rk
 s

p
e

e
d

u
p

Number of threads
12 24 48 64

 0.1

 1

 10

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

T
im

e
 s

p
e

e
d

u
p

Number of threads
12 24 48 64

Figure 8. Performance gains of iThreads with respect to Dthreads for the incremental run

respective input sizes in terms of 4KB pages. In addition, we
also report the gains with two case studies (§6.4).
Metrics: work and time. We consider two types of measures,
work and time. Work refers to the total amount of computation
performed by all threads and is measured as the sum of the
total runtime of all threads. Time refers to the end-to-end
runtime to complete the parallel computation. Time savings
reflect reduced end user perceived latency, whereas work
savings reflect improved resource utilization.
Measurements. For all measurements, each application was
executed 12 times. We exclude the lowest and highest mea-
surements, and report the average over the 10 remaining runs.

6.1 Performance Gains
We first present a comparison of iThreads’s incremental run
with pthreads and Dthreads, as shown in Figures 7 and 8
respectively. In this experiment, we modified one randomly
chosen page of the input file prior to the incremental run. We
then measured the work and time required by iThreads’s
incremental run, as well as by pthreads and Dthreads,
which re-compute everything from scratch. We report the
work and time speedups (i.e., iThreads’s performance nor-
malized by the performance of pthreads/Dthreads) for a
varying number of threads ranging from 12 to 64 threads.
When comparing the performance, we use the same number
of threads in iThreads and pthreads/Dthreads.

The experiment shows that the benefits of using iThreads
vary significantly across applications. In over half of the evalu-
ated benchmarks (7 out of 11), iThreads was able to achieve
at least 2X time speedups. In contrast, for applications such

as canneal and reverseindex, iThreads can be very in-
efficient, by a factor of more than 15X , an effect that we
explain in further detail in §6.3. Overall, the results show that
iThreads is effective across a wide range of applications,
but also that the library is not a one-size-fits-all solution.

As expected, we observed that increasing the number of
threads tended to yield higher speedups. This is because,
for a fixed input size, a larger number of threads translates
to less work per thread. As a result, iThreads is forced to
recompute fewer thunks when a single input page is modified.

Note that work speedups do not directly translate into
time speedups. This is because even if just a single thread is
affected by changes, the end-to-end runtime is still dominated
by the (slowest) invalidated thread’s execution time.

6.2 iThreads Scalability
In a second experiment, we investigated the scalability of
iThreads w.r.t. increases in the size of the input, the amount
of computation (work), and the size of the input change.
Input size. We first present the performance of iThreads
as we increase the input data size for the three applica-
tion benchmarks (histogram, linear regression, and
string match) that are available in three input sizes: small
(S), medium (M), and large (L). (We used the large size
in §6.1.) Figure 9 shows a bar plot of the work and time
speedups w.r.t. pthreads for different input sizes (S, M, L)
with a single modified page for 64 threads. For reference,
the normalized input size is also shown by the line plot in
the same figure. In summary, this result shows that speedups
increase with the input size due to increased work savings.

653

Single modi�ed page, di�erent input sizes

 1

 10

 100

S M L S M L S M L
 1

 4

 7

 10

 13

W
o
rk

 s
p
e
e
d
u
p

N
o
rm

a
liz

e
d
 i
n
p
u
t
s
iz

e
Histogram Linear-reg. String-match

 Work

 Input

 1

 10

 100

S M L S M L S M L
 1

 4

 7

 10

 13

W
o
rk

 s
p
e
e
d
u
p

N
o
rm

a
liz

e
d
 i
n
p
u
t
s
iz

e
Histogram Linear-reg. String-match

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

S M L S M L S M L
 1

 4

 7

 10

 13

T
im

e
 s

p
e
e
d
u
p

N
o
rm

a
liz

e
d
 i
n
p
u
t
s
iz

e

Histogram Linear-reg. String-match

 Time

 Input

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

S M L S M L S M L
 1

 4

 7

 10

 13

T
im

e
 s

p
e
e
d
u
p

N
o
rm

a
liz

e
d
 i
n
p
u
t
s
iz

e

Histogram Linear-reg. String-match

Figure 9. Scalability with data (work and time speedups)

 0

 2

 4

 6

 8

 10

 12

 14

 16

1X2X 4X 8X 16X

N
o

rm
a

liz
e

d
 t

o
ta

l
w

o
rk

Normalized computation size

pthreads Blackscholes
iThreads Blackscholes

pthreads Swapations
iThreads Swapations

Figure 10. Scalability with work

 0.01

 0.1

 1

 10

 100

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

W
o

rk
 s

p
e

e
d

u
p

<0.01 <0.01

Number of dirty pages
2 4 8 16 32 64

 0.1

 1

 10

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

T
im

e
 s

p
e

e
d

u
p

<0.1 <0.1

Number of dirty pages
2 4 8 16 32 64

Figure 11. Scalability with input change compared to pthreads for 64 threads

Computation (work). We next present iThreads’s incre-
mental run performance for two applications (swapations
and blackscholes) that allow the amount of work required
to be tuned with a parameter. Figure 10 reports work speedups
as the normalized work is increased (from 1X to 16X) for
a single modified page and 64 threads. The result shows the
gap between pthreads and iThreads widens as the total
work increases, which directly translates to higher speedups.
Input change. Finally, we present iThreads’s incremental
run performance in the case of multiple modified input pages.
To avoid confining changes to a single thread, we modified
multiple non-contiguous pages of the input that are read by
different threads. Figure 11 shows speedups w.r.t. pthreads
with different change sizes (ranging 2 to 64 dirty pages) for 64
threads. As expected, the results show that speedups decrease
as larger portions of the input are changed because more
threads are invalidated.

6.3 Overheads
iThreads imposes two types of overheads: (1) space over-
heads; and (2) performance overheads during the initial run.
Space overheads. Table 1 shows the space overheads for
memoizing the end state of the thunks and storing the CDDG.
We report the overheads in terms of 4KB pages for 64 threads
(space overhead grows with the number of threads). To put
the overheads into perspective, we also report overheads as a
percentage of the input size.

The space overheads varied significantly across ap-
plications. We found that three applications (canneal,
swapations and reverse-index) incur very high over-
heads (exceeding 1000% of the input size), but, interestingly,

Application Input size Memoized state CDDG
Histogram 230400 347 (0.15%) 57 (0.02%)
Linear-reg. 132436 192 (0.14%) 33 (0.02%)
Kmeans 586 1145 (195.39%) 27 (4.61%)
Matrix-mul. 41609 4162 (10.00%) 64 (0.15%)
Swapations 143 1473 (1030.07%) 1 (0.70%)
Blackscholes 155 201 (129.68%) 1 (0.65%)
String match 132436 128 (0.10%) 33 (0.02%)
PCA 140625 3777 (2.69%) 43 (0.03%)
Canneal 9 15381 (170900.00%) 4 (44.44%)
Word count 12811 10191 (79.55%) 24 (0.19%)
Rev-index 359 260679 (72612.53%) 64 (17.83%)

Table 1. Space overheads in pages and input percentage

nearly half of the applications (5/11) have a very low over-
head (ranging from 0.1% to 10% of the input size).

Performance overheads. We measured iThreads’s perfor-
mance overheads during the initial run (in terms of work and
time) by comparing it against both pthreads and Dthreads

(Figures 12 and 13). Our results show that most of the appli-
cations (7/11) incur modest overheads when compared with
either pthreads (i.e., lower than 50%) or Dthreads (i.e.,
lower than 25%). In fact, linear-reg and string-match

even performed better during the initial run of iThreads than
with pthreads, which is explained by the fact that private
address space mechanism avoid false sharing, as previously
noted by Sheriff [62]. At the other end of the spectrum, ap-
plications such as canneal and reverse-index incur high
overheads mainly due to the high number of memory pages
written by these applications (as shown in Table 1).

When compared to Dthreads as the baseline, iThreads
incurs work overheads of up to 3.58X and time overheads
of up to 3.13X . iThreads incurs additional overheads on

654

Single modi�ed page, di�erent work amount

 1

 10

 100

S M L S M L S M L
 1

 4

 7

 10

 13

W
o
rk

 s
p
e
e
d
u
p

N
o
rm

a
liz

e
d
 i
n
p
u
t
s
iz

e

Histogram Linear-reg. String-match

 Work

 Input

 1

 10

 100

S M L S M L S M L
 1

 4

 7

 10

 13

W
o
rk

 s
p
e
e
d
u
p

N
o
rm

a
liz

e
d
 i
n
p
u
t
s
iz

e

Histogram Linear-reg. String-match

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

S M L S M L S M L
 1

 4

 7

 10

 13

T
im

e
 s

p
e
e
d
u
p

N
o
rm

a
liz

e
d
 i
n
p
u
t
s
iz

e

Histogram Linear-reg. String-match

 Time

 Input

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

S M L S M L S M L
 1

 4

 7

 10

 13

T
im

e
 s

p
e
e
d
u
p

N
o
rm

a
liz

e
d
 i
n
p
u
t
s
iz

e

Histogram Linear-reg. String-match

Figure 9. Scalability with data (work and time speedups)

 0

 2

 4

 6

 8

 10

 12

 14

 16

1X2X 4X 8X 16X

N
o

rm
a

liz
e

d
 t

o
ta

l
w

o
rk

Normalized computation size

pthreads Blackscholes
iThreads Blackscholes

pthreads Swapations
iThreads Swapations

Figure 10. Scalability with work

 0.01

 0.1

 1

 10

 100

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

W
o
rk

 s
p
e
e
d
u
p

<0.01 <0.01

Number of dirty pages
2 4 8 16 32 64

 0.1

 1

 10

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

T
im

e
 s

p
e
e
d
u
p

<0.1 <0.1

Number of dirty pages
2 4 8 16 32 64

Figure 11. Scalability with input change compared to pthreads for 64 threads

Computation (work). We next present iThreads’s incre-
mental run performance for two applications (swapations
and blackscholes) that allow the amount of work required
to be tuned with a parameter. Figure 10 reports work speedups
as the normalized work is increased (from 1X to 16X) for
a single modified page and 64 threads. The result shows the
gap between pthreads and iThreads widens as the total
work increases, which directly translates to higher speedups.
Input change. Finally, we present iThreads’s incremental
run performance in the case of multiple modified input pages.
To avoid confining changes to a single thread, we modified
multiple non-contiguous pages of the input that are read by
different threads. Figure 11 shows speedups w.r.t. pthreads
with different change sizes (ranging 2 to 64 dirty pages) for 64
threads. As expected, the results show that speedups decrease
as larger portions of the input are changed because more
threads are invalidated.

6.3 Overheads
iThreads imposes two types of overheads: (1) space over-
heads; and (2) performance overheads during the initial run.
Space overheads. Table 1 shows the space overheads for
memoizing the end state of the thunks and storing the CDDG.
We report the overheads in terms of 4KB pages for 64 threads
(space overhead grows with the number of threads). To put
the overheads into perspective, we also report overheads as a
percentage of the input size.

The space overheads varied significantly across ap-
plications. We found that three applications (canneal,
swapations and reverse-index) incur very high over-
heads (exceeding 1000% of the input size), but, interestingly,

Application Input size Memoized state CDDG
Histogram 230400 347 (0.15%) 57 (0.02%)
Linear-reg. 132436 192 (0.14%) 33 (0.02%)
Kmeans 586 1145 (195.39%) 27 (4.61%)
Matrix-mul. 41609 4162 (10.00%) 64 (0.15%)
Swapations 143 1473 (1030.07%) 1 (0.70%)
Blackscholes 155 201 (129.68%) 1 (0.65%)
String match 132436 128 (0.10%) 33 (0.02%)
PCA 140625 3777 (2.69%) 43 (0.03%)
Canneal 9 15381 (170900.00%) 4 (44.44%)
Word count 12811 10191 (79.55%) 24 (0.19%)
Rev-index 359 260679 (72612.53%) 64 (17.83%)

Table 1. Space overheads in pages and input percentage

nearly half of the applications (5/11) have a very low over-
head (ranging from 0.1% to 10% of the input size).

Performance overheads. We measured iThreads’s perfor-
mance overheads during the initial run (in terms of work and
time) by comparing it against both pthreads and Dthreads

(Figures 12 and 13). Our results show that most of the appli-
cations (7/11) incur modest overheads when compared with
either pthreads (i.e., lower than 50%) or Dthreads (i.e.,
lower than 25%). In fact, linear-reg and string-match

even performed better during the initial run of iThreads than
with pthreads, which is explained by the fact that private
address space mechanism avoid false sharing, as previously
noted by Sheriff [62]. At the other end of the spectrum, ap-
plications such as canneal and reverse-index incur high
overheads mainly due to the high number of memory pages
written by these applications (as shown in Table 1).

When compared to Dthreads as the baseline, iThreads
incurs work overheads of up to 3.58X and time overheads
of up to 3.13X . iThreads incurs additional overheads on

654

Several modi�ed pages

 1

 10

 100

S M L S M L S M L
 1

 4

 7

 10

 13

W
o
rk

 s
p
e
e
d
u
p

N
o
rm

a
liz

e
d
 i
n
p
u
t
s
iz

e

Histogram Linear-reg. String-match

 Work

 Input

 1

 10

 100

S M L S M L S M L
 1

 4

 7

 10

 13

W
o
rk

 s
p
e
e
d
u
p

N
o
rm

a
liz

e
d
 i
n
p
u
t
s
iz

e

Histogram Linear-reg. String-match

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

S M L S M L S M L
 1

 4

 7

 10

 13

T
im

e
 s

p
e
e
d
u
p

N
o
rm

a
liz

e
d
 i
n
p
u
t
s
iz

e

Histogram Linear-reg. String-match

 Time

 Input

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

S M L S M L S M L
 1

 4

 7

 10

 13

T
im

e
 s

p
e
e
d
u
p

N
o
rm

a
liz

e
d
 i
n
p
u
t
s
iz

e

Histogram Linear-reg. String-match

Figure 9. Scalability with data (work and time speedups)

 0

 2

 4

 6

 8

 10

 12

 14

 16

1X2X 4X 8X 16X

N
o

rm
a

liz
e

d
 t

o
ta

l
w

o
rk

Normalized computation size

pthreads Blackscholes
iThreads Blackscholes

pthreads Swapations
iThreads Swapations

Figure 10. Scalability with work

 0.01

 0.1

 1

 10

 100

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

W
o
rk

 s
p
e
e
d
u
p

<0.01 <0.01

Number of dirty pages
2 4 8 16 32 64

 0.1

 1

 10

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

T
im

e
 s

p
e
e
d
u
p

<0.1 <0.1

Number of dirty pages
2 4 8 16 32 64

Figure 11. Scalability with input change compared to pthreads for 64 threads

Computation (work). We next present iThreads’s incre-
mental run performance for two applications (swapations
and blackscholes) that allow the amount of work required
to be tuned with a parameter. Figure 10 reports work speedups
as the normalized work is increased (from 1X to 16X) for
a single modified page and 64 threads. The result shows the
gap between pthreads and iThreads widens as the total
work increases, which directly translates to higher speedups.
Input change. Finally, we present iThreads’s incremental
run performance in the case of multiple modified input pages.
To avoid confining changes to a single thread, we modified
multiple non-contiguous pages of the input that are read by
different threads. Figure 11 shows speedups w.r.t. pthreads
with different change sizes (ranging 2 to 64 dirty pages) for 64
threads. As expected, the results show that speedups decrease
as larger portions of the input are changed because more
threads are invalidated.

6.3 Overheads
iThreads imposes two types of overheads: (1) space over-
heads; and (2) performance overheads during the initial run.
Space overheads. Table 1 shows the space overheads for
memoizing the end state of the thunks and storing the CDDG.
We report the overheads in terms of 4KB pages for 64 threads
(space overhead grows with the number of threads). To put
the overheads into perspective, we also report overheads as a
percentage of the input size.

The space overheads varied significantly across ap-
plications. We found that three applications (canneal,
swapations and reverse-index) incur very high over-
heads (exceeding 1000% of the input size), but, interestingly,

Application Input size Memoized state CDDG
Histogram 230400 347 (0.15%) 57 (0.02%)
Linear-reg. 132436 192 (0.14%) 33 (0.02%)
Kmeans 586 1145 (195.39%) 27 (4.61%)
Matrix-mul. 41609 4162 (10.00%) 64 (0.15%)
Swapations 143 1473 (1030.07%) 1 (0.70%)
Blackscholes 155 201 (129.68%) 1 (0.65%)
String match 132436 128 (0.10%) 33 (0.02%)
PCA 140625 3777 (2.69%) 43 (0.03%)
Canneal 9 15381 (170900.00%) 4 (44.44%)
Word count 12811 10191 (79.55%) 24 (0.19%)
Rev-index 359 260679 (72612.53%) 64 (17.83%)

Table 1. Space overheads in pages and input percentage

nearly half of the applications (5/11) have a very low over-
head (ranging from 0.1% to 10% of the input size).

Performance overheads. We measured iThreads’s perfor-
mance overheads during the initial run (in terms of work and
time) by comparing it against both pthreads and Dthreads

(Figures 12 and 13). Our results show that most of the appli-
cations (7/11) incur modest overheads when compared with
either pthreads (i.e., lower than 50%) or Dthreads (i.e.,
lower than 25%). In fact, linear-reg and string-match

even performed better during the initial run of iThreads than
with pthreads, which is explained by the fact that private
address space mechanism avoid false sharing, as previously
noted by Sheriff [62]. At the other end of the spectrum, ap-
plications such as canneal and reverse-index incur high
overheads mainly due to the high number of memory pages
written by these applications (as shown in Table 1).

When compared to Dthreads as the baseline, iThreads
incurs work overheads of up to 3.58X and time overheads
of up to 3.13X . iThreads incurs additional overheads on

654

 1

 10

 100

S M L S M L S M L
 1

 4

 7

 10

 13

W
o
rk

 s
p
e
e
d
u
p

N
o
rm

a
liz

e
d
 i
n
p
u
t
s
iz

e

Histogram Linear-reg. String-match

 Work

 Input

 1

 10

 100

S M L S M L S M L
 1

 4

 7

 10

 13

W
o
rk

 s
p
e
e
d
u
p

N
o
rm

a
liz

e
d
 i
n
p
u
t
s
iz

e

Histogram Linear-reg. String-match

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

S M L S M L S M L
 1

 4

 7

 10

 13

T
im

e
 s

p
e
e
d
u
p

N
o
rm

a
liz

e
d
 i
n
p
u
t
s
iz

e

Histogram Linear-reg. String-match

 Time

 Input

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

S M L S M L S M L
 1

 4

 7

 10

 13

T
im

e
 s

p
e
e
d
u
p

N
o
rm

a
liz

e
d
 i
n
p
u
t
s
iz

e

Histogram Linear-reg. String-match

Figure 9. Scalability with data (work and time speedups)

 0

 2

 4

 6

 8

 10

 12

 14

 16

1X2X 4X 8X 16X

N
o

rm
a

liz
e

d
 t

o
ta

l
w

o
rk

Normalized computation size

pthreads Blackscholes
iThreads Blackscholes

pthreads Swapations
iThreads Swapations

Figure 10. Scalability with work

 0.01

 0.1

 1

 10

 100

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

W
o
rk

 s
p
e
e
d
u
p

<0.01 <0.01

Number of dirty pages
2 4 8 16 32 64

 0.1

 1

 10

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

T
im

e
 s

p
e
e
d
u
p

<0.1 <0.1

Number of dirty pages
2 4 8 16 32 64

Figure 11. Scalability with input change compared to pthreads for 64 threads

Computation (work). We next present iThreads’s incre-
mental run performance for two applications (swapations
and blackscholes) that allow the amount of work required
to be tuned with a parameter. Figure 10 reports work speedups
as the normalized work is increased (from 1X to 16X) for
a single modified page and 64 threads. The result shows the
gap between pthreads and iThreads widens as the total
work increases, which directly translates to higher speedups.
Input change. Finally, we present iThreads’s incremental
run performance in the case of multiple modified input pages.
To avoid confining changes to a single thread, we modified
multiple non-contiguous pages of the input that are read by
different threads. Figure 11 shows speedups w.r.t. pthreads
with different change sizes (ranging 2 to 64 dirty pages) for 64
threads. As expected, the results show that speedups decrease
as larger portions of the input are changed because more
threads are invalidated.

6.3 Overheads
iThreads imposes two types of overheads: (1) space over-
heads; and (2) performance overheads during the initial run.
Space overheads. Table 1 shows the space overheads for
memoizing the end state of the thunks and storing the CDDG.
We report the overheads in terms of 4KB pages for 64 threads
(space overhead grows with the number of threads). To put
the overheads into perspective, we also report overheads as a
percentage of the input size.

The space overheads varied significantly across ap-
plications. We found that three applications (canneal,
swapations and reverse-index) incur very high over-
heads (exceeding 1000% of the input size), but, interestingly,

Application Input size Memoized state CDDG
Histogram 230400 347 (0.15%) 57 (0.02%)
Linear-reg. 132436 192 (0.14%) 33 (0.02%)
Kmeans 586 1145 (195.39%) 27 (4.61%)
Matrix-mul. 41609 4162 (10.00%) 64 (0.15%)
Swapations 143 1473 (1030.07%) 1 (0.70%)
Blackscholes 155 201 (129.68%) 1 (0.65%)
String match 132436 128 (0.10%) 33 (0.02%)
PCA 140625 3777 (2.69%) 43 (0.03%)
Canneal 9 15381 (170900.00%) 4 (44.44%)
Word count 12811 10191 (79.55%) 24 (0.19%)
Rev-index 359 260679 (72612.53%) 64 (17.83%)

Table 1. Space overheads in pages and input percentage

nearly half of the applications (5/11) have a very low over-
head (ranging from 0.1% to 10% of the input size).

Performance overheads. We measured iThreads’s perfor-
mance overheads during the initial run (in terms of work and
time) by comparing it against both pthreads and Dthreads

(Figures 12 and 13). Our results show that most of the appli-
cations (7/11) incur modest overheads when compared with
either pthreads (i.e., lower than 50%) or Dthreads (i.e.,
lower than 25%). In fact, linear-reg and string-match

even performed better during the initial run of iThreads than
with pthreads, which is explained by the fact that private
address space mechanism avoid false sharing, as previously
noted by Sheriff [62]. At the other end of the spectrum, ap-
plications such as canneal and reverse-index incur high
overheads mainly due to the high number of memory pages
written by these applications (as shown in Table 1).

When compared to Dthreads as the baseline, iThreads
incurs work overheads of up to 3.58X and time overheads
of up to 3.13X . iThreads incurs additional overheads on

654

 1

 10

 100

S M L S M L S M L
 1

 4

 7

 10

 13

W
o

rk
 s

p
e

e
d

u
p

N
o

rm
a

liz
e

d
 i
n

p
u

t
s
iz

e
Histogram Linear-reg. String-match

 Work

 Input

 1

 10

 100

S M L S M L S M L
 1

 4

 7

 10

 13

W
o

rk
 s

p
e

e
d

u
p

N
o

rm
a

liz
e

d
 i
n

p
u

t
s
iz

e
Histogram Linear-reg. String-match

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

S M L S M L S M L
 1

 4

 7

 10

 13

T
im

e
 s

p
e

e
d

u
p

N
o

rm
a

liz
e

d
 i
n

p
u

t
s
iz

e

Histogram Linear-reg. String-match

 Time

 Input

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

S M L S M L S M L
 1

 4

 7

 10

 13

T
im

e
 s

p
e

e
d

u
p

N
o

rm
a

liz
e

d
 i
n

p
u

t
s
iz

e

Histogram Linear-reg. String-match

Figure 9. Scalability with data (work and time speedups)

 0

 2

 4

 6

 8

 10

 12

 14

 16

1X2X 4X 8X 16X

N
o

rm
a

liz
e

d
 t

o
ta

l
w

o
rk

Normalized computation size

pthreads Blackscholes
iThreads Blackscholes

pthreads Swapations
iThreads Swapations

Figure 10. Scalability with work

 0.01

 0.1

 1

 10

 100

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

W
o

rk
 s

p
e

e
d

u
p

<0.01 <0.01

Number of dirty pages
2 4 8 16 32 64

 0.1

 1

 10

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

T
im

e
 s

p
e

e
d

u
p

<0.1 <0.1

Number of dirty pages
2 4 8 16 32 64

Figure 11. Scalability with input change compared to pthreads for 64 threads

Computation (work). We next present iThreads’s incre-
mental run performance for two applications (swapations
and blackscholes) that allow the amount of work required
to be tuned with a parameter. Figure 10 reports work speedups
as the normalized work is increased (from 1X to 16X) for
a single modified page and 64 threads. The result shows the
gap between pthreads and iThreads widens as the total
work increases, which directly translates to higher speedups.
Input change. Finally, we present iThreads’s incremental
run performance in the case of multiple modified input pages.
To avoid confining changes to a single thread, we modified
multiple non-contiguous pages of the input that are read by
different threads. Figure 11 shows speedups w.r.t. pthreads
with different change sizes (ranging 2 to 64 dirty pages) for 64
threads. As expected, the results show that speedups decrease
as larger portions of the input are changed because more
threads are invalidated.

6.3 Overheads
iThreads imposes two types of overheads: (1) space over-
heads; and (2) performance overheads during the initial run.
Space overheads. Table 1 shows the space overheads for
memoizing the end state of the thunks and storing the CDDG.
We report the overheads in terms of 4KB pages for 64 threads
(space overhead grows with the number of threads). To put
the overheads into perspective, we also report overheads as a
percentage of the input size.

The space overheads varied significantly across ap-
plications. We found that three applications (canneal,
swapations and reverse-index) incur very high over-
heads (exceeding 1000% of the input size), but, interestingly,

Application Input size Memoized state CDDG
Histogram 230400 347 (0.15%) 57 (0.02%)
Linear-reg. 132436 192 (0.14%) 33 (0.02%)
Kmeans 586 1145 (195.39%) 27 (4.61%)
Matrix-mul. 41609 4162 (10.00%) 64 (0.15%)
Swapations 143 1473 (1030.07%) 1 (0.70%)
Blackscholes 155 201 (129.68%) 1 (0.65%)
String match 132436 128 (0.10%) 33 (0.02%)
PCA 140625 3777 (2.69%) 43 (0.03%)
Canneal 9 15381 (170900.00%) 4 (44.44%)
Word count 12811 10191 (79.55%) 24 (0.19%)
Rev-index 359 260679 (72612.53%) 64 (17.83%)

Table 1. Space overheads in pages and input percentage

nearly half of the applications (5/11) have a very low over-
head (ranging from 0.1% to 10% of the input size).

Performance overheads. We measured iThreads’s perfor-
mance overheads during the initial run (in terms of work and
time) by comparing it against both pthreads and Dthreads

(Figures 12 and 13). Our results show that most of the appli-
cations (7/11) incur modest overheads when compared with
either pthreads (i.e., lower than 50%) or Dthreads (i.e.,
lower than 25%). In fact, linear-reg and string-match

even performed better during the initial run of iThreads than
with pthreads, which is explained by the fact that private
address space mechanism avoid false sharing, as previously
noted by Sheriff [62]. At the other end of the spectrum, ap-
plications such as canneal and reverse-index incur high
overheads mainly due to the high number of memory pages
written by these applications (as shown in Table 1).

When compared to Dthreads as the baseline, iThreads
incurs work overheads of up to 3.58X and time overheads
of up to 3.13X . iThreads incurs additional overheads on

654

Overhead of iThreads system data

 1

 10

 100

S M L S M L S M L
 1

 4

 7

 10

 13

W
o
rk

 s
p
e
e
d
u
p

N
o
rm

a
liz

e
d
 i
n
p
u
t
s
iz

e

Histogram Linear-reg. String-match

 Work

 Input

 1

 10

 100

S M L S M L S M L
 1

 4

 7

 10

 13

W
o
rk

 s
p
e
e
d
u
p

N
o
rm

a
liz

e
d
 i
n
p
u
t
s
iz

e

Histogram Linear-reg. String-match

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

S M L S M L S M L
 1

 4

 7

 10

 13

T
im

e
 s

p
e
e
d
u
p

N
o
rm

a
liz

e
d
 i
n
p
u
t
s
iz

e

Histogram Linear-reg. String-match

 Time

 Input

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

S M L S M L S M L
 1

 4

 7

 10

 13

T
im

e
 s

p
e
e
d
u
p

N
o
rm

a
liz

e
d
 i
n
p
u
t
s
iz

e

Histogram Linear-reg. String-match

Figure 9. Scalability with data (work and time speedups)

 0

 2

 4

 6

 8

 10

 12

 14

 16

1X2X 4X 8X 16X

N
o

rm
a

liz
e

d
 t

o
ta

l
w

o
rk

Normalized computation size

pthreads Blackscholes
iThreads Blackscholes

pthreads Swapations
iThreads Swapations

Figure 10. Scalability with work

 0.01

 0.1

 1

 10

 100

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

W
o
rk

 s
p
e
e
d
u
p

<0.01 <0.01

Number of dirty pages
2 4 8 16 32 64

 0.1

 1

 10

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

T
im

e
 s

p
e
e
d
u
p

<0.1 <0.1

Number of dirty pages
2 4 8 16 32 64

Figure 11. Scalability with input change compared to pthreads for 64 threads

Computation (work). We next present iThreads’s incre-
mental run performance for two applications (swapations
and blackscholes) that allow the amount of work required
to be tuned with a parameter. Figure 10 reports work speedups
as the normalized work is increased (from 1X to 16X) for
a single modified page and 64 threads. The result shows the
gap between pthreads and iThreads widens as the total
work increases, which directly translates to higher speedups.
Input change. Finally, we present iThreads’s incremental
run performance in the case of multiple modified input pages.
To avoid confining changes to a single thread, we modified
multiple non-contiguous pages of the input that are read by
different threads. Figure 11 shows speedups w.r.t. pthreads
with different change sizes (ranging 2 to 64 dirty pages) for 64
threads. As expected, the results show that speedups decrease
as larger portions of the input are changed because more
threads are invalidated.

6.3 Overheads
iThreads imposes two types of overheads: (1) space over-
heads; and (2) performance overheads during the initial run.
Space overheads. Table 1 shows the space overheads for
memoizing the end state of the thunks and storing the CDDG.
We report the overheads in terms of 4KB pages for 64 threads
(space overhead grows with the number of threads). To put
the overheads into perspective, we also report overheads as a
percentage of the input size.

The space overheads varied significantly across ap-
plications. We found that three applications (canneal,
swapations and reverse-index) incur very high over-
heads (exceeding 1000% of the input size), but, interestingly,

Application Input size Memoized state CDDG
Histogram 230400 347 (0.15%) 57 (0.02%)
Linear-reg. 132436 192 (0.14%) 33 (0.02%)
Kmeans 586 1145 (195.39%) 27 (4.61%)
Matrix-mul. 41609 4162 (10.00%) 64 (0.15%)
Swapations 143 1473 (1030.07%) 1 (0.70%)
Blackscholes 155 201 (129.68%) 1 (0.65%)
String match 132436 128 (0.10%) 33 (0.02%)
PCA 140625 3777 (2.69%) 43 (0.03%)
Canneal 9 15381 (170900.00%) 4 (44.44%)
Word count 12811 10191 (79.55%) 24 (0.19%)
Rev-index 359 260679 (72612.53%) 64 (17.83%)

Table 1. Space overheads in pages and input percentage

nearly half of the applications (5/11) have a very low over-
head (ranging from 0.1% to 10% of the input size).

Performance overheads. We measured iThreads’s perfor-
mance overheads during the initial run (in terms of work and
time) by comparing it against both pthreads and Dthreads

(Figures 12 and 13). Our results show that most of the appli-
cations (7/11) incur modest overheads when compared with
either pthreads (i.e., lower than 50%) or Dthreads (i.e.,
lower than 25%). In fact, linear-reg and string-match

even performed better during the initial run of iThreads than
with pthreads, which is explained by the fact that private
address space mechanism avoid false sharing, as previously
noted by Sheriff [62]. At the other end of the spectrum, ap-
plications such as canneal and reverse-index incur high
overheads mainly due to the high number of memory pages
written by these applications (as shown in Table 1).

When compared to Dthreads as the baseline, iThreads
incurs work overheads of up to 3.58X and time overheads
of up to 3.13X . iThreads incurs additional overheads on

654

Initial run overhead

 0.1

 1

 10

 100

 1000

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

W
o

rk
 o

v
e

rh
e

a
d

Number of threads
12 24 48 64

 0.1

 1

 10

 100

 1000

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

T
im

e
 o

v
e

rh
e

a
d

Number of threads
12 24 48 64

Figure 12. Performance overheads of iThreads with respect to pthreads for the initial run

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

W
o

rk
 o

v
e

rh
e

a
d

Histogram = 3.58X maximum

Number of threads
12 24 48 64

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

T
im

e
 o

v
e

rh
e

a
d

Histogram = 3.13X maximum

Number of threads
12 24 48 64

Figure 13. Performance overheads of iThreads with respect to Dthreads for the initial run

top of Dthreads mainly from two sources: memoization
of the intermediate address space state and read page faults
(Dthreads incurs write faults only). We show the work over-
heads along with a breakdown of these two sources of over-
heads with respect to Dthreads for 64 threads in Figure 14.
The overheads are dominated by read page faults (around
98%) for most applications. For instance, histogram in-
curs overheads of roughly 3.5X due the large number of
page faults while reading a large input file (as shown in Ta-
ble 1). In contrast, some application such as canneal and
reverse-index suffer a significant overhead for memoiza-
tion (around 24%) due to a large number of dirtied pages.

6.4 Case-study Applications
In addition to the benchmark applications, we report the per-
formance gains for two case-study applications: (1) Pigz [3],
a parallel gzip compression library compressing a 50MB file,
and (2) a monte-carlo simulation [2]. To compute speedups,
we modified a random input block and compared the perfor-
mance of the iThreads incremental run with the pthreads
run. Figure 15 shows the work and time speedups with a
varying number of threads (from 12 to 64). The performance
gains peak at 24 threads for both applications. In particular,
iThreads achieves a time speedup of 1.45X and a work
speedup of 4X for Pigz, and a time speedup of 2.28X and a
work speedup of 22.5X for the monte-carlo simulation.

To conclude, while there exist specific workloads for
which our OS-based approach is not suitable, our evaluation
is overall positive: iThreads is able to achieve significant

time and work speedups both for many of the benchmark
applications and also for the two considered case-studies.

7. Related Work
Researchers in the algorithms community proposed several
dynamic algorithms, a class of algorithms that take advantage
of application-specific properties to incrementally update
the output. Dynamic algorithms have been shown to be
asymptotically more efficient than their conventional non-
dynamic versions (e.g., [25, 30, 37, 38, 42, 46, 68]). However,
they can be difficult to design, implement, and maintain
even for simple problems [10, 45]. Moreover, most dynamic
algorithms are sequential, and cannot be easily parallelized
due to their highly specialized nature. In contrast, iThreads
provides incremental computation in a transparent way.

Incremental computation is a well-studied area in the pro-
gramming languages community; see [73] for a classic survey.
Earlier work on incremental computation was primarily based
on dependence graphs [36, 53] and memoization [5, 51, 72].
In the past decade, with the development of self-adjusting
computation [6–8, 29, 49, 50, 60, 61], the efficiency of in-
cremental computation has much improved. In contrast to
iThreads, however, most prior work in this area targets
sequential programs only. Nonetheless, iThreads’s central
data structure, the CDDG, is based on these foundations.

For supporting parallel incremental computation, exist-
ing proposals [27, 48] require a strict fork-join programming
model without supporting other synchronization primitives.
Furthermore, these proposals rely on the use of a new pro-
gramming language with special data types (e.g., isolation,

655

 0.1

 1

 10

 100

 1000

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

W
o

rk
 o

v
e

rh
e

a
d

Number of threads
12 24 48 64

 0.1

 1

 10

 100

 1000

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

T
im

e
 o

v
e

rh
e

a
d

Number of threads
12 24 48 64

Figure 12. Performance overheads of iThreads with respect to pthreads for the initial run

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

W
o

rk
 o

v
e

rh
e

a
d

Histogram = 3.58X maximum

Number of threads
12 24 48 64

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

T
im

e
 o

v
e

rh
e

a
d

Histogram = 3.13X maximum

Number of threads
12 24 48 64

Figure 13. Performance overheads of iThreads with respect to Dthreads for the initial run

top of Dthreads mainly from two sources: memoization
of the intermediate address space state and read page faults
(Dthreads incurs write faults only). We show the work over-
heads along with a breakdown of these two sources of over-
heads with respect to Dthreads for 64 threads in Figure 14.
The overheads are dominated by read page faults (around
98%) for most applications. For instance, histogram in-
curs overheads of roughly 3.5X due the large number of
page faults while reading a large input file (as shown in Ta-
ble 1). In contrast, some application such as canneal and
reverse-index suffer a significant overhead for memoiza-
tion (around 24%) due to a large number of dirtied pages.

6.4 Case-study Applications
In addition to the benchmark applications, we report the per-
formance gains for two case-study applications: (1) Pigz [3],
a parallel gzip compression library compressing a 50MB file,
and (2) a monte-carlo simulation [2]. To compute speedups,
we modified a random input block and compared the perfor-
mance of the iThreads incremental run with the pthreads
run. Figure 15 shows the work and time speedups with a
varying number of threads (from 12 to 64). The performance
gains peak at 24 threads for both applications. In particular,
iThreads achieves a time speedup of 1.45X and a work
speedup of 4X for Pigz, and a time speedup of 2.28X and a
work speedup of 22.5X for the monte-carlo simulation.

To conclude, while there exist specific workloads for
which our OS-based approach is not suitable, our evaluation
is overall positive: iThreads is able to achieve significant

time and work speedups both for many of the benchmark
applications and also for the two considered case-studies.

7. Related Work
Researchers in the algorithms community proposed several
dynamic algorithms, a class of algorithms that take advantage
of application-specific properties to incrementally update
the output. Dynamic algorithms have been shown to be
asymptotically more efficient than their conventional non-
dynamic versions (e.g., [25, 30, 37, 38, 42, 46, 68]). However,
they can be difficult to design, implement, and maintain
even for simple problems [10, 45]. Moreover, most dynamic
algorithms are sequential, and cannot be easily parallelized
due to their highly specialized nature. In contrast, iThreads
provides incremental computation in a transparent way.

Incremental computation is a well-studied area in the pro-
gramming languages community; see [73] for a classic survey.
Earlier work on incremental computation was primarily based
on dependence graphs [36, 53] and memoization [5, 51, 72].
In the past decade, with the development of self-adjusting
computation [6–8, 29, 49, 50, 60, 61], the efficiency of in-
cremental computation has much improved. In contrast to
iThreads, however, most prior work in this area targets
sequential programs only. Nonetheless, iThreads’s central
data structure, the CDDG, is based on these foundations.

For supporting parallel incremental computation, exist-
ing proposals [27, 48] require a strict fork-join programming
model without supporting other synchronization primitives.
Furthermore, these proposals rely on the use of a new pro-
gramming language with special data types (e.g., isolation,

655

 0.1

 1

 10

 100

 1000

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

W
o

rk
 o

v
e

rh
e

a
d

Number of threads
12 24 48 64

 0.1

 1

 10

 100

 1000

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

T
im

e
 o

v
e

rh
e

a
d

Number of threads
12 24 48 64

Figure 12. Performance overheads of iThreads with respect to pthreads for the initial run

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

W
o

rk
 o

v
e

rh
e

a
d

Histogram = 3.58X maximum

Number of threads
12 24 48 64

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

T
im

e
 o

v
e

rh
e

a
d

Histogram = 3.13X maximum

Number of threads
12 24 48 64

Figure 13. Performance overheads of iThreads with respect to Dthreads for the initial run

top of Dthreads mainly from two sources: memoization
of the intermediate address space state and read page faults
(Dthreads incurs write faults only). We show the work over-
heads along with a breakdown of these two sources of over-
heads with respect to Dthreads for 64 threads in Figure 14.
The overheads are dominated by read page faults (around
98%) for most applications. For instance, histogram in-
curs overheads of roughly 3.5X due the large number of
page faults while reading a large input file (as shown in Ta-
ble 1). In contrast, some application such as canneal and
reverse-index suffer a significant overhead for memoiza-
tion (around 24%) due to a large number of dirtied pages.

6.4 Case-study Applications
In addition to the benchmark applications, we report the per-
formance gains for two case-study applications: (1) Pigz [3],
a parallel gzip compression library compressing a 50MB file,
and (2) a monte-carlo simulation [2]. To compute speedups,
we modified a random input block and compared the perfor-
mance of the iThreads incremental run with the pthreads
run. Figure 15 shows the work and time speedups with a
varying number of threads (from 12 to 64). The performance
gains peak at 24 threads for both applications. In particular,
iThreads achieves a time speedup of 1.45X and a work
speedup of 4X for Pigz, and a time speedup of 2.28X and a
work speedup of 22.5X for the monte-carlo simulation.

To conclude, while there exist specific workloads for
which our OS-based approach is not suitable, our evaluation
is overall positive: iThreads is able to achieve significant

time and work speedups both for many of the benchmark
applications and also for the two considered case-studies.

7. Related Work
Researchers in the algorithms community proposed several
dynamic algorithms, a class of algorithms that take advantage
of application-specific properties to incrementally update
the output. Dynamic algorithms have been shown to be
asymptotically more efficient than their conventional non-
dynamic versions (e.g., [25, 30, 37, 38, 42, 46, 68]). However,
they can be difficult to design, implement, and maintain
even for simple problems [10, 45]. Moreover, most dynamic
algorithms are sequential, and cannot be easily parallelized
due to their highly specialized nature. In contrast, iThreads
provides incremental computation in a transparent way.

Incremental computation is a well-studied area in the pro-
gramming languages community; see [73] for a classic survey.
Earlier work on incremental computation was primarily based
on dependence graphs [36, 53] and memoization [5, 51, 72].
In the past decade, with the development of self-adjusting
computation [6–8, 29, 49, 50, 60, 61], the efficiency of in-
cremental computation has much improved. In contrast to
iThreads, however, most prior work in this area targets
sequential programs only. Nonetheless, iThreads’s central
data structure, the CDDG, is based on these foundations.

For supporting parallel incremental computation, exist-
ing proposals [27, 48] require a strict fork-join programming
model without supporting other synchronization primitives.
Furthermore, these proposals rely on the use of a new pro-
gramming language with special data types (e.g., isolation,

655

Initial run overhead

 0.1

 1

 10

 100

 1000

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

W
o

rk
 o

v
e

rh
e

a
d

Number of threads
12 24 48 64

 0.1

 1

 10

 100

 1000

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

T
im

e
 o

v
e

rh
e

a
d

Number of threads
12 24 48 64

Figure 12. Performance overheads of iThreads with respect to pthreads for the initial run

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

W
o

rk
 o

v
e

rh
e

a
d

Histogram = 3.58X maximum

Number of threads
12 24 48 64

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

T
im

e
 o

v
e

rh
e

a
d

Histogram = 3.13X maximum

Number of threads
12 24 48 64

Figure 13. Performance overheads of iThreads with respect to Dthreads for the initial run

top of Dthreads mainly from two sources: memoization
of the intermediate address space state and read page faults
(Dthreads incurs write faults only). We show the work over-
heads along with a breakdown of these two sources of over-
heads with respect to Dthreads for 64 threads in Figure 14.
The overheads are dominated by read page faults (around
98%) for most applications. For instance, histogram in-
curs overheads of roughly 3.5X due the large number of
page faults while reading a large input file (as shown in Ta-
ble 1). In contrast, some application such as canneal and
reverse-index suffer a significant overhead for memoiza-
tion (around 24%) due to a large number of dirtied pages.

6.4 Case-study Applications
In addition to the benchmark applications, we report the per-
formance gains for two case-study applications: (1) Pigz [3],
a parallel gzip compression library compressing a 50MB file,
and (2) a monte-carlo simulation [2]. To compute speedups,
we modified a random input block and compared the perfor-
mance of the iThreads incremental run with the pthreads
run. Figure 15 shows the work and time speedups with a
varying number of threads (from 12 to 64). The performance
gains peak at 24 threads for both applications. In particular,
iThreads achieves a time speedup of 1.45X and a work
speedup of 4X for Pigz, and a time speedup of 2.28X and a
work speedup of 22.5X for the monte-carlo simulation.

To conclude, while there exist specific workloads for
which our OS-based approach is not suitable, our evaluation
is overall positive: iThreads is able to achieve significant

time and work speedups both for many of the benchmark
applications and also for the two considered case-studies.

7. Related Work
Researchers in the algorithms community proposed several
dynamic algorithms, a class of algorithms that take advantage
of application-specific properties to incrementally update
the output. Dynamic algorithms have been shown to be
asymptotically more efficient than their conventional non-
dynamic versions (e.g., [25, 30, 37, 38, 42, 46, 68]). However,
they can be difficult to design, implement, and maintain
even for simple problems [10, 45]. Moreover, most dynamic
algorithms are sequential, and cannot be easily parallelized
due to their highly specialized nature. In contrast, iThreads
provides incremental computation in a transparent way.

Incremental computation is a well-studied area in the pro-
gramming languages community; see [73] for a classic survey.
Earlier work on incremental computation was primarily based
on dependence graphs [36, 53] and memoization [5, 51, 72].
In the past decade, with the development of self-adjusting
computation [6–8, 29, 49, 50, 60, 61], the efficiency of in-
cremental computation has much improved. In contrast to
iThreads, however, most prior work in this area targets
sequential programs only. Nonetheless, iThreads’s central
data structure, the CDDG, is based on these foundations.

For supporting parallel incremental computation, exist-
ing proposals [27, 48] require a strict fork-join programming
model without supporting other synchronization primitives.
Furthermore, these proposals rely on the use of a new pro-
gramming language with special data types (e.g., isolation,

655

 0.1

 1

 10

 100

 1000

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

W
o

rk
 o

v
e

rh
e

a
d

Number of threads
12 24 48 64

 0.1

 1

 10

 100

 1000

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

T
im

e
 o

v
e

rh
e

a
d

Number of threads
12 24 48 64

Figure 12. Performance overheads of iThreads with respect to pthreads for the initial run

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

W
o

rk
 o

v
e

rh
e

a
d

Histogram = 3.58X maximum

Number of threads
12 24 48 64

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

T
im

e
 o

v
e

rh
e

a
d

Histogram = 3.13X maximum

Number of threads
12 24 48 64

Figure 13. Performance overheads of iThreads with respect to Dthreads for the initial run

top of Dthreads mainly from two sources: memoization
of the intermediate address space state and read page faults
(Dthreads incurs write faults only). We show the work over-
heads along with a breakdown of these two sources of over-
heads with respect to Dthreads for 64 threads in Figure 14.
The overheads are dominated by read page faults (around
98%) for most applications. For instance, histogram in-
curs overheads of roughly 3.5X due the large number of
page faults while reading a large input file (as shown in Ta-
ble 1). In contrast, some application such as canneal and
reverse-index suffer a significant overhead for memoiza-
tion (around 24%) due to a large number of dirtied pages.

6.4 Case-study Applications
In addition to the benchmark applications, we report the per-
formance gains for two case-study applications: (1) Pigz [3],
a parallel gzip compression library compressing a 50MB file,
and (2) a monte-carlo simulation [2]. To compute speedups,
we modified a random input block and compared the perfor-
mance of the iThreads incremental run with the pthreads
run. Figure 15 shows the work and time speedups with a
varying number of threads (from 12 to 64). The performance
gains peak at 24 threads for both applications. In particular,
iThreads achieves a time speedup of 1.45X and a work
speedup of 4X for Pigz, and a time speedup of 2.28X and a
work speedup of 22.5X for the monte-carlo simulation.

To conclude, while there exist specific workloads for
which our OS-based approach is not suitable, our evaluation
is overall positive: iThreads is able to achieve significant

time and work speedups both for many of the benchmark
applications and also for the two considered case-studies.

7. Related Work
Researchers in the algorithms community proposed several
dynamic algorithms, a class of algorithms that take advantage
of application-specific properties to incrementally update
the output. Dynamic algorithms have been shown to be
asymptotically more efficient than their conventional non-
dynamic versions (e.g., [25, 30, 37, 38, 42, 46, 68]). However,
they can be difficult to design, implement, and maintain
even for simple problems [10, 45]. Moreover, most dynamic
algorithms are sequential, and cannot be easily parallelized
due to their highly specialized nature. In contrast, iThreads
provides incremental computation in a transparent way.

Incremental computation is a well-studied area in the pro-
gramming languages community; see [73] for a classic survey.
Earlier work on incremental computation was primarily based
on dependence graphs [36, 53] and memoization [5, 51, 72].
In the past decade, with the development of self-adjusting
computation [6–8, 29, 49, 50, 60, 61], the efficiency of in-
cremental computation has much improved. In contrast to
iThreads, however, most prior work in this area targets
sequential programs only. Nonetheless, iThreads’s central
data structure, the CDDG, is based on these foundations.

For supporting parallel incremental computation, exist-
ing proposals [27, 48] require a strict fork-join programming
model without supporting other synchronization primitives.
Furthermore, these proposals rely on the use of a new pro-
gramming language with special data types (e.g., isolation,

655

 0.1

 1

 10

 100

 1000

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

W
o

rk
 o

v
e

rh
e

a
d

Number of threads
12 24 48 64

 0.1

 1

 10

 100

 1000

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

T
im

e
 o

v
e

rh
e

a
d

Number of threads
12 24 48 64

Figure 12. Performance overheads of iThreads with respect to pthreads for the initial run

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

W
o

rk
 o

v
e

rh
e

a
d

Histogram = 3.58X maximum

Number of threads
12 24 48 64

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

T
im

e
 o

v
e

rh
e

a
d

Histogram = 3.13X maximum

Number of threads
12 24 48 64

Figure 13. Performance overheads of iThreads with respect to Dthreads for the initial run

top of Dthreads mainly from two sources: memoization
of the intermediate address space state and read page faults
(Dthreads incurs write faults only). We show the work over-
heads along with a breakdown of these two sources of over-
heads with respect to Dthreads for 64 threads in Figure 14.
The overheads are dominated by read page faults (around
98%) for most applications. For instance, histogram in-
curs overheads of roughly 3.5X due the large number of
page faults while reading a large input file (as shown in Ta-
ble 1). In contrast, some application such as canneal and
reverse-index suffer a significant overhead for memoiza-
tion (around 24%) due to a large number of dirtied pages.

6.4 Case-study Applications
In addition to the benchmark applications, we report the per-
formance gains for two case-study applications: (1) Pigz [3],
a parallel gzip compression library compressing a 50MB file,
and (2) a monte-carlo simulation [2]. To compute speedups,
we modified a random input block and compared the perfor-
mance of the iThreads incremental run with the pthreads
run. Figure 15 shows the work and time speedups with a
varying number of threads (from 12 to 64). The performance
gains peak at 24 threads for both applications. In particular,
iThreads achieves a time speedup of 1.45X and a work
speedup of 4X for Pigz, and a time speedup of 2.28X and a
work speedup of 22.5X for the monte-carlo simulation.

To conclude, while there exist specific workloads for
which our OS-based approach is not suitable, our evaluation
is overall positive: iThreads is able to achieve significant

time and work speedups both for many of the benchmark
applications and also for the two considered case-studies.

7. Related Work
Researchers in the algorithms community proposed several
dynamic algorithms, a class of algorithms that take advantage
of application-specific properties to incrementally update
the output. Dynamic algorithms have been shown to be
asymptotically more efficient than their conventional non-
dynamic versions (e.g., [25, 30, 37, 38, 42, 46, 68]). However,
they can be difficult to design, implement, and maintain
even for simple problems [10, 45]. Moreover, most dynamic
algorithms are sequential, and cannot be easily parallelized
due to their highly specialized nature. In contrast, iThreads
provides incremental computation in a transparent way.

Incremental computation is a well-studied area in the pro-
gramming languages community; see [73] for a classic survey.
Earlier work on incremental computation was primarily based
on dependence graphs [36, 53] and memoization [5, 51, 72].
In the past decade, with the development of self-adjusting
computation [6–8, 29, 49, 50, 60, 61], the efficiency of in-
cremental computation has much improved. In contrast to
iThreads, however, most prior work in this area targets
sequential programs only. Nonetheless, iThreads’s central
data structure, the CDDG, is based on these foundations.

For supporting parallel incremental computation, exist-
ing proposals [27, 48] require a strict fork-join programming
model without supporting other synchronization primitives.
Furthermore, these proposals rely on the use of a new pro-
gramming language with special data types (e.g., isolation,

655

Case-study applications

 0.01

 0.1

 1

 10

 100

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

P
e

rc
e

n
ta

g
e

 (
%

)
b

re
a

k
d

o
w

n

W
o

rk
 O

v
e

rh
e

a
d

Histogram = 3.58X

Read fault
Memoization

 Work overhead

Figure 14. Work overheads breakdown w.r.t Dthreads

 1

 10

 100

12 24 48 64

S
p

e
e

d
u

p

Number of threads

Work - Parallel Gzip
Time - Parallel Gzip

Work - Monte-carlo
Time - Monte-carlo

Figure 15. Work & time speedups for case-studies

versioned, cumulative, merge function [27] and read, write,
mod, and letpar [48]). In contrast, our approach targets un-
modified multithreaded programs supporting the full range
of synchronization primitives in the POSIX API.

In very recent work, Tseng and Tullsen [78] proposed
compiler-based whole-program transformations to eliminate
redundant computation, which can be leveraged for faster
incremental computation. The transformed programs rely
on underlying hardware [76] and software [77] support to
dynamically identify redundant code that can be skipped. In
contrast, our approach directly operates at the binary level
without requiring access to source code. A further design
difference is that iThreads realizes incremental computation
based on explicit change propagation, and that iThreads
memoizes and reuses intermediate results of previous runs.

Incremental processing of “big data” is an active area of
research [18–20, 22, 23, 26, 31, 47, 64, 70]. These “big data”
systems exploit the underlying data-parallel programming
model such as MapReduce [35] or Dryad [55] for supporting
incremental computation. In contrast to these structured ap-
proaches where the dependence graph is explicitly available
based on the programming model, iThreads is designed to
support general shared-memory multithreaded programs.

In the context of increased reliability, prior work has
yielded a large range of solutions to eliminate non-determinism
from multithreaded programs. Most relevant to iThreads

are the wide range record and replay techniques (e.g., [12, 41,
52, 57, 59, 69, 75, 79–81]) and deterministic multithreading
approaches (e.g., [13–15, 17, 32–34, 39, 40, 54, 63, 67]). As
described throughout the paper, these proven techniques are
leveraged by iThreads, which applies them in a novel con-
text, namely transparent parallel incremental computation.

8. Conclusion
We have presented iThreads, a practical, transparent, and
efficient solution for parallel incremental computation. Our
approach targets unmodified, multithreaded programs and
supports the full range of synchronization primitives in
the POSIX API. The iThreads library is easy to use: it
simply replaces the pthreads library. Our experience with
iThreads shows that significant performance gains (time

savings) and efficient resource utilization (work savings) can
be achieved for incremental workflows in many applications.

Limitations and future work. While iThreads is a signifi-
cant step towards general and practical support for parallel
incremental computation, plenty of opportunities remain to
further increase the range of supported workloads.

For one, iThreads’s memory model currently lacks sup-
port for ad-hoc synchronization mechanisms [82]. While such
mechanisms are error-prone [82], they are nonetheless used
for either flexibility or performance reasons in some applica-
tions. Replacing the ad-hoc synchronization calls with equiv-
alent pthread calls might solve the problem in some cases, but
perhaps a better solution would be to extend iThreads with
an interface for annotating ad-hoc synchronization primitives
(e.g., at the level of gcc’s built-in atomic primitives).

Another interesting research challenge is improving sup-
port for small, localized insertions and deletions in the input
data. Since iThreads is currently tuned for in-place modifi-
cations of the input data, insertions and deletions lead to the
displacement of otherwise unchanged data, which causes
an excessively large dirty-set. Prior work has solved the
displacement problem in the context of data-deduplication
by replacing fixed-size input chunking with variable-size,
content-based chunking [21, 66]. We plan to explore similar
approaches in the context of iThreads.

Lastly, our current implementation assumes the number
of threads in the system remains the same. However, our
approach can be extended to handle dynamically varying
number of threads by considering newly forked threads
or deleted threads as invalidated threads, where the writes
of deleted threads are handled as “missing writes”. The
happens-before relationship for dynamically varying number
of threads can be detected using interval tree clocks [11].

Acknowledgments
We are thankful to Remzi Arpaci-Dusseau, Rose Hoberman,
Tongping Liu, and the reviewers for their valuable feedback.
Umut Acar is partially supported by ERC (ERC-2012-StG-
308246) and NSF (CCF-1320563 and CCF-1408940). Ro-
drigo Rodrigues is partially supported by ERC (ERC-2012-
StG-307732).

656

Table of Contents

Motivation

Details

Evaluation

Conclusion

Limitations

I No support for ad-hoc synchronization
I No C++ atomics

I No support for small localized insertions

I Assumes constant amount of threads

I May have signi�cant overhead

I Narrow application area

Outcome

I Nice idea

I Practical

I Transparent

I E�cient

I Works for some applications

I Way signi�cantly decrease required work

Discussion

I Units for scales are not speci�ed:
Sometimes percentage, sometimes times

I Interactive applications

I Vector clock for each thunk { not too much?

I IO memory { can you do something? For instance frame
bu�er.

I Can be combined with dynamic algorithms?

Explanation of Dthreads high overhead

 0.01

 0.1

 1

 10

 100

Histogram
Linear_reg

Kmeans
Matrix_mul

Swapations

Blackscholes

String_match

PCA Canneal
Word_count

Reverse_index

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

P
e

rc
e

n
ta

g
e

 (
%

)
b

re
a

k
d

o
w

n

W
o

rk
 O

v
e

rh
e

a
d

Histogram = 3.58X

Read fault
Memoization

 Work overhead

Figure 14. Work overheads breakdown w.r.t Dthreads

 1

 10

 100

12 24 48 64

S
p

e
e

d
u

p

Number of threads

Work - Parallel Gzip
Time - Parallel Gzip

Work - Monte-carlo
Time - Monte-carlo

Figure 15. Work & time speedups for case-studies

versioned, cumulative, merge function [27] and read, write,
mod, and letpar [48]). In contrast, our approach targets un-
modified multithreaded programs supporting the full range
of synchronization primitives in the POSIX API.

In very recent work, Tseng and Tullsen [78] proposed
compiler-based whole-program transformations to eliminate
redundant computation, which can be leveraged for faster
incremental computation. The transformed programs rely
on underlying hardware [76] and software [77] support to
dynamically identify redundant code that can be skipped. In
contrast, our approach directly operates at the binary level
without requiring access to source code. A further design
difference is that iThreads realizes incremental computation
based on explicit change propagation, and that iThreads
memoizes and reuses intermediate results of previous runs.

Incremental processing of “big data” is an active area of
research [18–20, 22, 23, 26, 31, 47, 64, 70]. These “big data”
systems exploit the underlying data-parallel programming
model such as MapReduce [35] or Dryad [55] for supporting
incremental computation. In contrast to these structured ap-
proaches where the dependence graph is explicitly available
based on the programming model, iThreads is designed to
support general shared-memory multithreaded programs.

In the context of increased reliability, prior work has
yielded a large range of solutions to eliminate non-determinism
from multithreaded programs. Most relevant to iThreads

are the wide range record and replay techniques (e.g., [12, 41,
52, 57, 59, 69, 75, 79–81]) and deterministic multithreading
approaches (e.g., [13–15, 17, 32–34, 39, 40, 54, 63, 67]). As
described throughout the paper, these proven techniques are
leveraged by iThreads, which applies them in a novel con-
text, namely transparent parallel incremental computation.

8. Conclusion
We have presented iThreads, a practical, transparent, and
efficient solution for parallel incremental computation. Our
approach targets unmodified, multithreaded programs and
supports the full range of synchronization primitives in
the POSIX API. The iThreads library is easy to use: it
simply replaces the pthreads library. Our experience with
iThreads shows that significant performance gains (time

savings) and efficient resource utilization (work savings) can
be achieved for incremental workflows in many applications.

Limitations and future work. While iThreads is a signifi-
cant step towards general and practical support for parallel
incremental computation, plenty of opportunities remain to
further increase the range of supported workloads.

For one, iThreads’s memory model currently lacks sup-
port for ad-hoc synchronization mechanisms [82]. While such
mechanisms are error-prone [82], they are nonetheless used
for either flexibility or performance reasons in some applica-
tions. Replacing the ad-hoc synchronization calls with equiv-
alent pthread calls might solve the problem in some cases, but
perhaps a better solution would be to extend iThreads with
an interface for annotating ad-hoc synchronization primitives
(e.g., at the level of gcc’s built-in atomic primitives).

Another interesting research challenge is improving sup-
port for small, localized insertions and deletions in the input
data. Since iThreads is currently tuned for in-place modifi-
cations of the input data, insertions and deletions lead to the
displacement of otherwise unchanged data, which causes
an excessively large dirty-set. Prior work has solved the
displacement problem in the context of data-deduplication
by replacing fixed-size input chunking with variable-size,
content-based chunking [21, 66]. We plan to explore similar
approaches in the context of iThreads.

Lastly, our current implementation assumes the number
of threads in the system remains the same. However, our
approach can be extended to handle dynamically varying
number of threads by considering newly forked threads
or deleted threads as invalidated threads, where the writes
of deleted threads are handled as “missing writes”. The
happens-before relationship for dynamically varying number
of threads can be detected using interval tree clocks [11].

Acknowledgments
We are thankful to Remzi Arpaci-Dusseau, Rose Hoberman,
Tongping Liu, and the reviewers for their valuable feedback.
Umut Acar is partially supported by ERC (ERC-2012-StG-
308246) and NSF (CCF-1320563 and CCF-1408940). Ro-
drigo Rodrigues is partially supported by ERC (ERC-2012-
StG-307732).

656

Release consistency

I Objects are acquired and released

I Critical section between acquire and release

I Guaranteed correctness and liveness for data-race-free
programs

Vector clocks

I Used for invalidation propagation

I Maintained for:
I Objects
I Threads
I Thunks

	Motivation
	Details
	Evaluation
	Conclusion
	Appendix

