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Motivation

Loss of efficiency
Hybrid programming models (MPI+X )
Manual tuning of parallel codes (load-balancing, data redistribution)
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The X (in this paper)

OpenMP
Directives to annotate
parallel code
Fork/join model with
shared memory
Number of threads may
change between parallel
regions

SMPSs (SMPSuperscalar)
Task as basic element
Annotate taskifiable
functions and their
parameters (in/out/inout)
Task graph to track
dependencies
Number of threads may
change any time

3 / 27



DLB and LeWI

DLB (dynamic load balancing)
“Runtime interposition to [...] intercept MPI calls”
Balance load on the inner level (OpenMP/SMPSs)
Several load balancing algorithms

LeWI (Lend CPU when Idle)
CPUs of rank in blocking MPI call are idle
Lend CPUs to other ranks and recover them after MPI call completes
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(a) No load balancing. (b) LeWI algorithm with SMPSs. (c) LeWI algorithm with OpenMP.

Fig. 1. LeWI algorithm behavior.

In Fig. 1 we can see an example of how the algorithm works. In
the example, the application is running in a node with 4 CPUs. It
starts two MPI processes in the same node and each MPI process
spawns 2 threads. In Fig. 1(a) we can see the original behavior of
the application, MPI process 1 is more loaded, MPI process 0 must
wait in a blocking MPI call.

Fig. 1(b) shows the execution of the same application with the
balancing library and the LeWI algorithm. We can see that when
the MPI process 0 gets into the MPI blocking call it will lend two
threads to the MPI process 1. The MPI process 1 will use the newly
acquired CPUs as fast as the programming model allows it. When
the MPI process 0 gets out of the blocking call it retrieves its CPUs
from the MPI process 1 and the execution continues with a CPU
equipartition until another blocking call is met.

We can see how the malleability of the programming model
affects the behavior of the load balancing algorithm comparing
Figs. 1(c) and (b). When using OpenMP (Fig. 1(c)) the number of
threads cannot be changed until reaching a new parallel region.
While in the case of SMPSs (Fig. 1(b)), the number of threads can
be changed at any point during the execution. This difference is
aggravated because parallel programmers tend to make parallel
regions large to avoid overheads.

If there are more than two MPI processes running in the same
node, the algorithmmust decide to whichMPI process (of the ones
still running) to lend the idle CPUs. An idle CPUwill be given to the
first process that is available to spawn the new thread, In the case
of an MPI + OpenMP application the first MPI process starting a
new parallel region, and in the case of an MPI+SMPSs application
the first MPI process with a thread outside a task.

The CPUs will be assigned one by one. That is, if the process
that is blocked and lending the CPUs had two threads, the first
MPI process that sees the available CPUs will get one, and the other
one will remain available for another (or the same) MPI process to
claim it.

5. Environment, methodology and applications

5.1. Environment

As our target was a clustered architecture, all our experiments
have been run in Marenostrum 2 [13]. Marenostrum 2 is based on
Power PC processors, its nodes are JS21 bladeswith two IBMPower
PC 970MP processors with two cores each and 8 GB of shared
memory. This means that we have nodes of 4 cores with shared
memory.

We have used theMPICH library as the underlyingMPI runtime
and the IBM XL C/C++ version 8.0 compiler without optimization.
The operating system is a Linux 2.6.5-7.244-pseries64.

5.2. Methodology

The different metrics used in this work:

• Speedup or elapsed time: We have used speedup or elapsed
time as the main performance metrics.
speedup =

parallel_execution_time
Serial_execution_time .

• Efficiency: Percentage of the CPU time consumed that is
running pure application code.1

Efficiency =
useful_cpu_time

elapsed_time∗cpus ∗ 100
useful_cpu_time = cpu_time − (MPI_time + OpenMP/SMPSs

_time + DLB_time)
• Cpus used: Number of CPUs running at the same time pure

application code.
Speedup evaluates how well the application is running

compared with the baseline version (usually sequential version).
Efficiency (and CPUs used) evaluates how close (or far) is the
utilization of resources from the desired one (100%).

The Speedup and Time have been computed as the average of
5 identical executions. The Efficiency and Cpus used have been
computed froma trace of an execution. The trace has been obtained
using the Extrae library [5] and analyzed with Paraver [19].

The performance section is organized in three subsections that
correspond to the steps followed during the analysis. The steps are
the following:

• Extensive performance evaluation: An in-depth analysis of
the performance obtained by each application in order to
detect those cases where LeWI does not reach the expected
performance.

• Modeling parallelization characteristics that limit the au-
tomatic load balancing potential: Reproduce the paralleliza-
tion characteristics that limit the capacity of LeWI, model those
characteristics with the synthetic benchmark and validate our
hypothesis.

• Improving automatic load balancing: Apply the guidelines to
some of the real applications to verify our hypothesis.

5.3. Applications

We will explain and analyze 3 different benchmarks (one of
them developed specially to test and evaluate load balancing
mechanism) and 2 real applications used in production.We choose
these applications because load imbalance is an important problem
for their performance.

1 Pure application code: Code inside the application, not including runtime
overheads (OpenMP or SMPSs runtime code) or MPI calls.
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Approach

“Extensive performance evaluation”
“Modeling parallelization characteristics that limit the automatic
load balancing potential”
“Improving automatic load balancing”
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Performance evaluation

Marenostrum 2: 2 × IBM PowerPC 970MP (2 cores); 8 GiB RAM
Linux 2.6.5-7.244-pseries64; MPICH; IBM XL C/C++ compiler w/o optimizations

Metrics
Speedup = parallel_execution_time

serial_execution_time

Efficiency = useful_cpu_time
elapsed_time ∗ cpus where

useful_cpu_time = cpu_time − (mpi_time + openmp/smpss_time + dlb_time)
CPUs_used to simultaneously run application code

3 benchmarks + 2 real applications

7 / 27



PILS (Parallel ImbaLance Simulation)

Synthetic benchmark
Core: “floating point operations without data involved”
Tunable parameters

Programming model (MPI, MPI+OpenMP, MPI+SMPSs)
Load distribution
Parallelism grain (= 1

#parallel regions )
Iterations
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Fig. 2. Parallelism grain explanation.

Fig. 3. PILS benchmark.

5.3.1. PILS: Parallel ImbaLance Simulation
PILS (Parallel ImbaLance Simulation) is a synthetic benchmark

to model hybrid parallel applications (MPI + OpenMP and MPI +
SMPSs).

The different parameters are the following:

• Programming model:MPI, MPI + OpenMP or MPI+SMPSs
• Load distribution: We can introduce the load balance of the

application as the different loads for each MPI process.
• Parallelism grain: Represents the percentage of computations

that can run in parallel between MPI synchronizations. It is
computed as the reciprocal of the number of parallel regions
betweenMPI blocking calls (Par.Grain =

1
Par.Regions ). You can see

an example about the relationship between Parallelism Grain
and the number of parallel regions in Fig. 2.

• Iterations: Number of times the algorithm will be executed.

The core of the synthetic benchmark is a function that will do
several floating point operations without data involved.

In Fig. 3 we can see a schematic representation of PILS. The
work load is given at the beginning of the execution to each
MPI process (work distribution). This work load is computed in
the parallel regions. The number of parallel regions depends on
the parallelism grain parameter. A parallel region in the OpenMP
version corresponds to a parallel loop. In the SMPSs version, a
parallel region is a loop that creates several tasks and finishes with
a SMPSs barrier. At the end of the iteration, there is an MPI barrier
to synchronize all the processes.

5.3.2. Benchmarks: BT-MZ (NAS benchmarks) and LUB
The BT application is one of the benchmarks in the NAS

Multizone suite [8]. The original version is a hybrid parallelization
of MPI + OpenMP that we will see in the charts as OMP1. We have

modified this benchmark to be parallelized with SMPSs (labeled
SMPSs).

LUB is a kernel performing an LU matrix factorization [8]. The
structure is a twodimensionalmatrix organized byblocks. The data
is distributed by blocks of rows among the differentMPI processes.
In Fig. 4 we can see a schematic representation of the LUB kernel
that consists of several iterations and each iteration of four steps.

This application is available in MPI+SMPSs and MPI+OpenMP.
The MPI+SMPSs parallelization considers each block as a task,
while the MPI + OpenMP version parallelizes the loops executing
the fwd, bdiv and bmod blocks.

5.3.3. Production codes: Gromacs and Gadget
GROMACS [11] is a versatile package to perform molecular

dynamics, i.e. simulate the Newtonian equations of motion for
systems with hundreds to millions of particles.

We started with an MPI version of GROMACS and parallelized
some parts of its code to have a hybrid MPI+SMPSs version. It is
important to mention that this application was not parallelized
completely with SMPSs. For this reason, the executions are done
like the MPI only version, meaning that we run 4 MPI processes
per node (Marenostrum nodes have 4 cores). SMPSs parallelism is
only exploited when we need to load balance.

The imbalance of this application depends heavily on the
number of MPI process used, for this reason we will be doing
experiments with different number of nodes. We will use from 1
to 64 nodes (4 to 256 CPUs).

Gadget [25] is a production code that performs a cosmological
N-body/SPH simulation. It can be used to address different
astrophysical problems such as colliding and merging galaxies or
the formation of a large-scale structure in the Universe.

The original version of Gadget was MPI only. Although
the application comes with its own load balancing code that
dynamically updates the tree, there were still some imbalance
problems that were not solved.

In this applicationwe only parallelized the parts of the code that
could benefit from the load balancing mechanism (like Gromacs),
they were 3 loops out of 35.000 lines of code. The input we used
runs in 800 CPUs and has a high load imbalance.

In Table 1 we can see for each application used its original
version, the available versions for execution, and the amount of
nodes in which the application will be executed.

6. Performance analysis: Sources of efficiency loss with LeWI

6.1. PILS: Parallel ImbaLance Simulation

Figs. 5 and 6 show the speedup obtained with different
configurations of PILS with 2 and 4 MPIs respectively.
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SMPSs).

The different parameters are the following:

• Programming model:MPI, MPI + OpenMP or MPI+SMPSs
• Load distribution: We can introduce the load balance of the

application as the different loads for each MPI process.
• Parallelism grain: Represents the percentage of computations

that can run in parallel between MPI synchronizations. It is
computed as the reciprocal of the number of parallel regions
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1
Par.Regions ). You can see

an example about the relationship between Parallelism Grain
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• Iterations: Number of times the algorithm will be executed.

The core of the synthetic benchmark is a function that will do
several floating point operations without data involved.

In Fig. 3 we can see a schematic representation of PILS. The
work load is given at the beginning of the execution to each
MPI process (work distribution). This work load is computed in
the parallel regions. The number of parallel regions depends on
the parallelism grain parameter. A parallel region in the OpenMP
version corresponds to a parallel loop. In the SMPSs version, a
parallel region is a loop that creates several tasks and finishes with
a SMPSs barrier. At the end of the iteration, there is an MPI barrier
to synchronize all the processes.

5.3.2. Benchmarks: BT-MZ (NAS benchmarks) and LUB
The BT application is one of the benchmarks in the NAS

Multizone suite [8]. The original version is a hybrid parallelization
of MPI + OpenMP that we will see in the charts as OMP1. We have

modified this benchmark to be parallelized with SMPSs (labeled
SMPSs).

LUB is a kernel performing an LU matrix factorization [8]. The
structure is a twodimensionalmatrix organized byblocks. The data
is distributed by blocks of rows among the differentMPI processes.
In Fig. 4 we can see a schematic representation of the LUB kernel
that consists of several iterations and each iteration of four steps.

This application is available in MPI+SMPSs and MPI+OpenMP.
The MPI+SMPSs parallelization considers each block as a task,
while the MPI + OpenMP version parallelizes the loops executing
the fwd, bdiv and bmod blocks.

5.3.3. Production codes: Gromacs and Gadget
GROMACS [11] is a versatile package to perform molecular

dynamics, i.e. simulate the Newtonian equations of motion for
systems with hundreds to millions of particles.

We started with an MPI version of GROMACS and parallelized
some parts of its code to have a hybrid MPI+SMPSs version. It is
important to mention that this application was not parallelized
completely with SMPSs. For this reason, the executions are done
like the MPI only version, meaning that we run 4 MPI processes
per node (Marenostrum nodes have 4 cores). SMPSs parallelism is
only exploited when we need to load balance.

The imbalance of this application depends heavily on the
number of MPI process used, for this reason we will be doing
experiments with different number of nodes. We will use from 1
to 64 nodes (4 to 256 CPUs).

Gadget [25] is a production code that performs a cosmological
N-body/SPH simulation. It can be used to address different
astrophysical problems such as colliding and merging galaxies or
the formation of a large-scale structure in the Universe.

The original version of Gadget was MPI only. Although
the application comes with its own load balancing code that
dynamically updates the tree, there were still some imbalance
problems that were not solved.

In this applicationwe only parallelized the parts of the code that
could benefit from the load balancing mechanism (like Gromacs),
they were 3 loops out of 35.000 lines of code. The input we used
runs in 800 CPUs and has a high load imbalance.

In Table 1 we can see for each application used its original
version, the available versions for execution, and the amount of
nodes in which the application will be executed.

6. Performance analysis: Sources of efficiency loss with LeWI

6.1. PILS: Parallel ImbaLance Simulation

Figs. 5 and 6 show the speedup obtained with different
configurations of PILS with 2 and 4 MPIs respectively.
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Other Codes

Benchmarks
BT-MZ: block tri-diagonal solver
LUB: LU matrix factorization

Applications
Gromacs: molecular dynamics, MPI-only
Gadget: cosmological N-body/SPH (smoothed-particle hydrodynamics) simulation
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Fig. 4. LUB behavior.

Table 1
Summary of applications used for the evaluation.

Application Original version MPI + OpenMP MPI + SMPSs Executed in nodes (cpus)

PILS MPI + OpenMP X X 1 (4)
MPI + SMPSs

BT-MZ MPI + OpenMP X X 1, 2, 4 (4, 8, 16)

LUB MPI + OpenMP X X 1, 2, 4 (4, 8, 16)
MPI + SMPSs

Gromacs MPI X 1.64 (4.256)
Gadget MPI X 200 (800)

Fig. 5. PILS 2 MPI processes.

Fig. 6. PILS 4 MPI processes.

On the Y axis, we present speedup with respect to the serial
execution, and on the X axis we present the load distribution
(coarse grain scale) and the parallelism grain (fine grain scale).

ORIG versions achieve exactly the same performance with
OpenMP and with SMPSs, and because of this, only the SMPSs

performance values are visible since they completely cover
OpenMP values.

The LeWI versions show us two interesting facts. On one
hand, the LeWI execution of both OpenMP and SMPSs versions
has a higher speedup than the ORIG execution of the same
version; therefore, LeWI improves the performance of hybrid
microbenchmarks independently of the level of imbalance that it
presents.

On the other hand, we can observe a big difference in
performance results of SMPSs and OpenMP versions with LeWI.
SMPSs + LeWI version is close to the optimal in both versions (2
and 4 MPIs), obtaining almost a speedup of 4. But OpenMP+ LeWI
version is significantly influenced by parallelism grain, needing
the application to have enough malleability to obtain a good
performance when load balancing.

6.2. BT-MZ

Fig. 7 shows the BT-MZ speedup with respect to the serial
execution when running in one node. We can observe how in
all cases the baseline with SMPSs is slightly better than with
OpenMP, but themaximum improvement is less than 7% sowe can
say they have similar performance. However, when running with
LeWI, the differenceswith the baseline and between programming
models are quite significant. The SMPSs-LeWI version achieves
between 97% and 80% of the maximum speedup with the different
configurations. OMP-LeWI version can obtain up to an 83% of the
maximum speedup (note that the maximum speedup is 4 because
we are running in a single node with 4 cores).

An interesting observation from this chart is to compare for the
same class the original execution without load balancing. We can
see that the speedup with 2 MPI processes is always better than
with 4 MPI processes, independently of the programming model
(OpenMPor SMPSs). This is because this applicationpresents a high
level of imbalance between MPI processes, thus using more MPI
processes causes a more inefficient execution. When using load
balancing the best performance is obtained when running with 4
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Fig. 7. BT-MZ in 1 node (class A, B, C).

Fig. 8. BT-MZ in 2 and 4 nodes (class C).

MPIprocesses instead of 2. This is because LeWIhasmore flexibility
to load balance when running with more MPI processes.

The relevance of these observations is that, in some cases, the
best performance that we can achieve from an application when
using load balancing is not obtained using the best configuration
of the application, but the one that helps the load balancing
mechanism.

In Fig. 8we can see the speedup of BT-MZwhen running in 2 and
4 nodes respectively. Since each node has four CPUs, themaximum
number of MPIs per node is four processes.

As before, the performance when running the original SMPSs
version is slightly better than the original OpenMP version. Also,
the LeWI version always obtains a better performance than the
original execution.

In this case, the maximum performance is limited to 67% of
the ideal speedup for the SMPSs version with LeWI and 2 MPI
processes. As we will see in next sections, this is because we are
running in several nodes and inter-node load distribution cannot
be handled by LeWI.

In Fig. 9 we can see two charts both obtained from real
executions of the application in one node, with 4 MPI processes
and class A. The left hand chart shows the Efficiency obtained with
every combination of programming models and load balancing. In
the right side chart,we see the execution time of each combination,
and amount of time that was running with the different number of
CPUs.

The amount of time the application is runningwith the different
number of CPUs gives us an interesting extra information. We can
seehowOMP1ORIGversion runsmost of the timewith 2CPUs (and
a negligible amount of time with 4 CPUs) and how that situation is
improvedby LeWI. In the case ofOpenMPand LeWI, the application
is running most of the time with 3 and 4 CPUs. With SMPSs and
LeWI it is still better, running around the 75% of the time with 4
CPUs.

Even though results are better with SMPSs than with OpenMP,
they are still far from the potential showed by PILS in the
previous section. In Section 7 we will show which parallelization
characteristics can limit the performance improvements.

6.3. LUB

Fig. 10 shows the LUB speedup when running in 1 node,
we can compare the speedup of the different versions (OpenMP
or SMPSs and Original or LeWI) combined with different block
sizes. Results are quite similar to those presented in the previous
section with BT-MZ application. Baseline configurations (ORIG)
reach similar speedup with OpenMP and SMPSs, but LeWI is able
to improve SMPSs version more than the OpenMP version. While
LeWI improves the speedup of OpenMP from 2, 9 (on average) to
3, 5, it is able to improve SMPSs from 2, 9 (also on average) to close
to 4.

In Fig. 11we can see the speedup obtainedwhen running LUB in
2 and 4 nodes. We can see that, in multiple nodes, LeWI is also able
to help SMPSs more than OpenMP, and the general comparison
between the different versions is similar at the execution in one
node. In absolute values, the speedup obtained is not close to the
optimum as obtained when running in a single node. The best

Fig. 9. BT-MZ efficiency and CPUs used (1 node).
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Fig. 7. BT-MZ in 1 node (class A, B, C).

Fig. 8. BT-MZ in 2 and 4 nodes (class C).

MPIprocesses instead of 2. This is because LeWIhasmore flexibility
to load balance when running with more MPI processes.

The relevance of these observations is that, in some cases, the
best performance that we can achieve from an application when
using load balancing is not obtained using the best configuration
of the application, but the one that helps the load balancing
mechanism.

In Fig. 8we can see the speedup of BT-MZwhen running in 2 and
4 nodes respectively. Since each node has four CPUs, themaximum
number of MPIs per node is four processes.

As before, the performance when running the original SMPSs
version is slightly better than the original OpenMP version. Also,
the LeWI version always obtains a better performance than the
original execution.

In this case, the maximum performance is limited to 67% of
the ideal speedup for the SMPSs version with LeWI and 2 MPI
processes. As we will see in next sections, this is because we are
running in several nodes and inter-node load distribution cannot
be handled by LeWI.

In Fig. 9 we can see two charts both obtained from real
executions of the application in one node, with 4 MPI processes
and class A. The left hand chart shows the Efficiency obtained with
every combination of programming models and load balancing. In
the right side chart,we see the execution time of each combination,
and amount of time that was running with the different number of
CPUs.

The amount of time the application is runningwith the different
number of CPUs gives us an interesting extra information. We can
seehowOMP1ORIGversion runsmost of the timewith 2CPUs (and
a negligible amount of time with 4 CPUs) and how that situation is
improvedby LeWI. In the case ofOpenMPand LeWI, the application
is running most of the time with 3 and 4 CPUs. With SMPSs and
LeWI it is still better, running around the 75% of the time with 4
CPUs.

Even though results are better with SMPSs than with OpenMP,
they are still far from the potential showed by PILS in the
previous section. In Section 7 we will show which parallelization
characteristics can limit the performance improvements.

6.3. LUB

Fig. 10 shows the LUB speedup when running in 1 node,
we can compare the speedup of the different versions (OpenMP
or SMPSs and Original or LeWI) combined with different block
sizes. Results are quite similar to those presented in the previous
section with BT-MZ application. Baseline configurations (ORIG)
reach similar speedup with OpenMP and SMPSs, but LeWI is able
to improve SMPSs version more than the OpenMP version. While
LeWI improves the speedup of OpenMP from 2, 9 (on average) to
3, 5, it is able to improve SMPSs from 2, 9 (also on average) to close
to 4.

In Fig. 11we can see the speedup obtainedwhen running LUB in
2 and 4 nodes. We can see that, in multiple nodes, LeWI is also able
to help SMPSs more than OpenMP, and the general comparison
between the different versions is similar at the execution in one
node. In absolute values, the speedup obtained is not close to the
optimum as obtained when running in a single node. The best

Fig. 9. BT-MZ efficiency and CPUs used (1 node).
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Fig. 7. BT-MZ in 1 node (class A, B, C).

Fig. 8. BT-MZ in 2 and 4 nodes (class C).

MPIprocesses instead of 2. This is because LeWIhasmore flexibility
to load balance when running with more MPI processes.

The relevance of these observations is that, in some cases, the
best performance that we can achieve from an application when
using load balancing is not obtained using the best configuration
of the application, but the one that helps the load balancing
mechanism.

In Fig. 8we can see the speedup of BT-MZwhen running in 2 and
4 nodes respectively. Since each node has four CPUs, themaximum
number of MPIs per node is four processes.

As before, the performance when running the original SMPSs
version is slightly better than the original OpenMP version. Also,
the LeWI version always obtains a better performance than the
original execution.

In this case, the maximum performance is limited to 67% of
the ideal speedup for the SMPSs version with LeWI and 2 MPI
processes. As we will see in next sections, this is because we are
running in several nodes and inter-node load distribution cannot
be handled by LeWI.

In Fig. 9 we can see two charts both obtained from real
executions of the application in one node, with 4 MPI processes
and class A. The left hand chart shows the Efficiency obtained with
every combination of programming models and load balancing. In
the right side chart,we see the execution time of each combination,
and amount of time that was running with the different number of
CPUs.

The amount of time the application is runningwith the different
number of CPUs gives us an interesting extra information. We can
seehowOMP1ORIGversion runsmost of the timewith 2CPUs (and
a negligible amount of time with 4 CPUs) and how that situation is
improvedby LeWI. In the case ofOpenMPand LeWI, the application
is running most of the time with 3 and 4 CPUs. With SMPSs and
LeWI it is still better, running around the 75% of the time with 4
CPUs.

Even though results are better with SMPSs than with OpenMP,
they are still far from the potential showed by PILS in the
previous section. In Section 7 we will show which parallelization
characteristics can limit the performance improvements.

6.3. LUB

Fig. 10 shows the LUB speedup when running in 1 node,
we can compare the speedup of the different versions (OpenMP
or SMPSs and Original or LeWI) combined with different block
sizes. Results are quite similar to those presented in the previous
section with BT-MZ application. Baseline configurations (ORIG)
reach similar speedup with OpenMP and SMPSs, but LeWI is able
to improve SMPSs version more than the OpenMP version. While
LeWI improves the speedup of OpenMP from 2, 9 (on average) to
3, 5, it is able to improve SMPSs from 2, 9 (also on average) to close
to 4.

In Fig. 11we can see the speedup obtainedwhen running LUB in
2 and 4 nodes. We can see that, in multiple nodes, LeWI is also able
to help SMPSs more than OpenMP, and the general comparison
between the different versions is similar at the execution in one
node. In absolute values, the speedup obtained is not close to the
optimum as obtained when running in a single node. The best

Fig. 9. BT-MZ efficiency and CPUs used (1 node).
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Fig. 7. BT-MZ in 1 node (class A, B, C).

Fig. 8. BT-MZ in 2 and 4 nodes (class C).

MPIprocesses instead of 2. This is because LeWIhasmore flexibility
to load balance when running with more MPI processes.

The relevance of these observations is that, in some cases, the
best performance that we can achieve from an application when
using load balancing is not obtained using the best configuration
of the application, but the one that helps the load balancing
mechanism.

In Fig. 8we can see the speedup of BT-MZwhen running in 2 and
4 nodes respectively. Since each node has four CPUs, themaximum
number of MPIs per node is four processes.

As before, the performance when running the original SMPSs
version is slightly better than the original OpenMP version. Also,
the LeWI version always obtains a better performance than the
original execution.

In this case, the maximum performance is limited to 67% of
the ideal speedup for the SMPSs version with LeWI and 2 MPI
processes. As we will see in next sections, this is because we are
running in several nodes and inter-node load distribution cannot
be handled by LeWI.

In Fig. 9 we can see two charts both obtained from real
executions of the application in one node, with 4 MPI processes
and class A. The left hand chart shows the Efficiency obtained with
every combination of programming models and load balancing. In
the right side chart,we see the execution time of each combination,
and amount of time that was running with the different number of
CPUs.

The amount of time the application is runningwith the different
number of CPUs gives us an interesting extra information. We can
seehowOMP1ORIGversion runsmost of the timewith 2CPUs (and
a negligible amount of time with 4 CPUs) and how that situation is
improvedby LeWI. In the case ofOpenMPand LeWI, the application
is running most of the time with 3 and 4 CPUs. With SMPSs and
LeWI it is still better, running around the 75% of the time with 4
CPUs.

Even though results are better with SMPSs than with OpenMP,
they are still far from the potential showed by PILS in the
previous section. In Section 7 we will show which parallelization
characteristics can limit the performance improvements.

6.3. LUB

Fig. 10 shows the LUB speedup when running in 1 node,
we can compare the speedup of the different versions (OpenMP
or SMPSs and Original or LeWI) combined with different block
sizes. Results are quite similar to those presented in the previous
section with BT-MZ application. Baseline configurations (ORIG)
reach similar speedup with OpenMP and SMPSs, but LeWI is able
to improve SMPSs version more than the OpenMP version. While
LeWI improves the speedup of OpenMP from 2, 9 (on average) to
3, 5, it is able to improve SMPSs from 2, 9 (also on average) to close
to 4.

In Fig. 11we can see the speedup obtainedwhen running LUB in
2 and 4 nodes. We can see that, in multiple nodes, LeWI is also able
to help SMPSs more than OpenMP, and the general comparison
between the different versions is similar at the execution in one
node. In absolute values, the speedup obtained is not close to the
optimum as obtained when running in a single node. The best
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Fig. 10. LUB running in 1 node.

Fig. 11. LUB running in 2 and 4 nodes.

speedup in two nodes is close to 6 obtained by the SMPSs and
LeWI version and far from the ideal speedup of 8. In four nodes,
the maximum speedup obtained by the SMPSs and LeWI version is
10 being only the 62% of the ideal speedup of 16.

Fig. 12 shows two charts obtained fromexecutions of LUB in one
node and block size 200. The left side chart shows the Efficiency of
the execution (percentage of time that the CPUs were used to do
useful work). We can see that the efficiency obtained is better than
the one reached with BT specifically the LeWI-SMPSs version (up
to 97% compared with 87% in BT).

The right side chart of Fig. 12 shows the time each version is
running with 0, 1, 2, 3, and 4 CPUs. In this application, we can

Fig. 13. Gromacs in 4–256 CPUs (1–64 nodes).

see that the two original versions (SMPSs-ORIG and OMP1-ORIG)
have a very similar behavior in the use of the CPUs (this is also
reflected in the Efficiency measure). Rather, there is a significant
difference between LeWI versions. When running with SMPSs and
LeWI almost 95% of the time the application uses the 4 CPUSs
available while in the execution with OpenMP and LeWI, the four
CPUs are used 71% of the time.

In this application, we can observe how starting from the same
base point LeWI is able to help the SMPSs programming model
much more than the OpenMP programming model. In Section 7.1
we will study the reason for this difference further.

6.4. Gromacs

In this section, we will compare the MPI + SMPSs version of
the application when running with LeWI and without it (ORIG).
It is important to notice that when running without LeWI the
application will not be able to use the SMPSs parallelization, it will
be like an MPI only execution.

In Fig. 13 we can see the execution time of Gromacs when
running in 4–256 cores (1–64 nodes). The LeWI version improves
the execution of the original run in all cases. It can run in 65% less
time in the case of 64 cores, or what is the same speed up the
execution by almost 3 with the same number of computational
resources.

.

.

.

.

Fig. 12. LUB efficiency and time (number of CPUs used).
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Fig. 10. LUB running in 1 node.

Fig. 11. LUB running in 2 and 4 nodes.

speedup in two nodes is close to 6 obtained by the SMPSs and
LeWI version and far from the ideal speedup of 8. In four nodes,
the maximum speedup obtained by the SMPSs and LeWI version is
10 being only the 62% of the ideal speedup of 16.

Fig. 12 shows two charts obtained fromexecutions of LUB in one
node and block size 200. The left side chart shows the Efficiency of
the execution (percentage of time that the CPUs were used to do
useful work). We can see that the efficiency obtained is better than
the one reached with BT specifically the LeWI-SMPSs version (up
to 97% compared with 87% in BT).

The right side chart of Fig. 12 shows the time each version is
running with 0, 1, 2, 3, and 4 CPUs. In this application, we can

Fig. 13. Gromacs in 4–256 CPUs (1–64 nodes).

see that the two original versions (SMPSs-ORIG and OMP1-ORIG)
have a very similar behavior in the use of the CPUs (this is also
reflected in the Efficiency measure). Rather, there is a significant
difference between LeWI versions. When running with SMPSs and
LeWI almost 95% of the time the application uses the 4 CPUSs
available while in the execution with OpenMP and LeWI, the four
CPUs are used 71% of the time.

In this application, we can observe how starting from the same
base point LeWI is able to help the SMPSs programming model
much more than the OpenMP programming model. In Section 7.1
we will study the reason for this difference further.

6.4. Gromacs

In this section, we will compare the MPI + SMPSs version of
the application when running with LeWI and without it (ORIG).
It is important to notice that when running without LeWI the
application will not be able to use the SMPSs parallelization, it will
be like an MPI only execution.

In Fig. 13 we can see the execution time of Gromacs when
running in 4–256 cores (1–64 nodes). The LeWI version improves
the execution of the original run in all cases. It can run in 65% less
time in the case of 64 cores, or what is the same speed up the
execution by almost 3 with the same number of computational
resources.
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Fig. 12. LUB efficiency and time (number of CPUs used).
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Fig. 14. Gromacs efficiency and number of CPUs used.

Fig. 15. Gromacs efficiency per node.

On the left hand side of Fig. 14 we can see the Efficiency
obtained by the execution of Gromacs in 64 cores (16 nodes). We
can see how the efficiency of the original execution is very low,
only 32% and when running with LeWI it is almost doubled to 62%
of efficiency.

On the right hand chart of Fig. 14 is shown the percentage of the
available CPUs that the application is using. The top color means
that between 90% and 100% of the CPUs are being used, we can
see that the amount of time that we are using all the CPUs is very
similar in the two versions. The main difference between the two
executions is in the time that they are using between 0% and 9%
(between 0 and 5 cores of the 64 available).

We can understand the behavior of the application and its
performance better with Figs. 15 and 16. In these charts, we can
see the same information separated by nodes.

In Fig. 15 is shown the efficiency in each node, we can see
how the average efficiency per node in the original execution is
40% while the LeWI version can achieve a 60% of efficiency in
average.We observe that there are two nodes that achieve a higher
efficiency, when running with LeWI more than 80% of efficiency,
they are nodes 6 and 7. From this, we can deduce that these two
nodes have a higher computational load than the other nodes,
and the low efficiency of the other nodes is because they do not
have work to do and are waiting for nodes 6 and 7 to finish their
computation.

If we look at Fig. 16 at first sight we can see that almost all
the nodes reduce at less than half the time they are doing nothing
(using 0 CPUs). For all of them, there is still some time that they are
not using any CPU. This time is when they are waiting for node 6

Fig. 16. Gromacs CPUs used per node.

or 7. Aswe can see the nodes 6 and 7 spendmuch less time running
with 0 CPUs than the others.

We can say that this application presents internode imbalance
that LeWI cannot solve. We will analyze it further and try to
improve it in Section 8.2.

6.5. Gadget

In Fig. 17we can see the execution time spent by the application
when runningwith andwithout LeWI. On the left side of the figure,
we can see the time in seconds of the whole application. On the
right side, as the application is organized in time steps independent
from each other, we can see the time spent in each time step.

The LeWI execution is able to speed up the application 2.5 times
with the same number of computational resources.

7. Analyzing parallelization aspects that limit LeWI perfor-
mance

In the previous section, while analyzing the performance of
the applications, we pointed out different characteristics of the
parallelization of the applications that could be limiting the
performance when using the automatic load balancing.

In this section, we are going to quantify these characteristics
in the applications and reproduce them in PILS (the synthetic
benchmark) and to finally confirm its impact in the performance.

The three aspects that we have identified are the following:

• Parallelism Grain in OpenMP applications
• Task duration in SMPSs applications
• Distribution of MPI processes among computation nodes

7.1. Parallelism Grain in OpenMP applications

The parallelism grain is the amount of computation that
can be done in parallel between MPI calls. Typically in parallel
applications the higher the parallelism grain the better.

In Fig. 2 we can see a schematic representation of a piece of
hybrid MPI + OpenMP code. The usual way to parallelize this
code (if possible) would be version a. Because it is the most
efficient option. As we explained in Section 4.1 LeWI improves
the performance of applications changing the number of OpenMP
threads during the execution. As OpenMP threads can only be
changed outside parallel regions, in version a it would not be
possible to change the number of threads between the 2 MPI calls.

If we divided the work in 2 parallel regions (version b,
parallelism grain 0.5), the number of threads could be changed at
point 2. If we had 4 parallel regions (version c, parallelism grain
0.25), there would be 3 points in the code (2, 3 and 4) where the
number of threads could be updated. For this reason the lower the
parallelism grain in the parallelization the higher the flexibility
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Fig. 14. Gromacs efficiency and number of CPUs used.

Fig. 15. Gromacs efficiency per node.

On the left hand side of Fig. 14 we can see the Efficiency
obtained by the execution of Gromacs in 64 cores (16 nodes). We
can see how the efficiency of the original execution is very low,
only 32% and when running with LeWI it is almost doubled to 62%
of efficiency.

On the right hand chart of Fig. 14 is shown the percentage of the
available CPUs that the application is using. The top color means
that between 90% and 100% of the CPUs are being used, we can
see that the amount of time that we are using all the CPUs is very
similar in the two versions. The main difference between the two
executions is in the time that they are using between 0% and 9%
(between 0 and 5 cores of the 64 available).

We can understand the behavior of the application and its
performance better with Figs. 15 and 16. In these charts, we can
see the same information separated by nodes.

In Fig. 15 is shown the efficiency in each node, we can see
how the average efficiency per node in the original execution is
40% while the LeWI version can achieve a 60% of efficiency in
average.We observe that there are two nodes that achieve a higher
efficiency, when running with LeWI more than 80% of efficiency,
they are nodes 6 and 7. From this, we can deduce that these two
nodes have a higher computational load than the other nodes,
and the low efficiency of the other nodes is because they do not
have work to do and are waiting for nodes 6 and 7 to finish their
computation.

If we look at Fig. 16 at first sight we can see that almost all
the nodes reduce at less than half the time they are doing nothing
(using 0 CPUs). For all of them, there is still some time that they are
not using any CPU. This time is when they are waiting for node 6

Fig. 16. Gromacs CPUs used per node.

or 7. Aswe can see the nodes 6 and 7 spendmuch less time running
with 0 CPUs than the others.

We can say that this application presents internode imbalance
that LeWI cannot solve. We will analyze it further and try to
improve it in Section 8.2.

6.5. Gadget

In Fig. 17we can see the execution time spent by the application
when runningwith andwithout LeWI. On the left side of the figure,
we can see the time in seconds of the whole application. On the
right side, as the application is organized in time steps independent
from each other, we can see the time spent in each time step.

The LeWI execution is able to speed up the application 2.5 times
with the same number of computational resources.

7. Analyzing parallelization aspects that limit LeWI perfor-
mance

In the previous section, while analyzing the performance of
the applications, we pointed out different characteristics of the
parallelization of the applications that could be limiting the
performance when using the automatic load balancing.

In this section, we are going to quantify these characteristics
in the applications and reproduce them in PILS (the synthetic
benchmark) and to finally confirm its impact in the performance.

The three aspects that we have identified are the following:

• Parallelism Grain in OpenMP applications
• Task duration in SMPSs applications
• Distribution of MPI processes among computation nodes

7.1. Parallelism Grain in OpenMP applications

The parallelism grain is the amount of computation that
can be done in parallel between MPI calls. Typically in parallel
applications the higher the parallelism grain the better.

In Fig. 2 we can see a schematic representation of a piece of
hybrid MPI + OpenMP code. The usual way to parallelize this
code (if possible) would be version a. Because it is the most
efficient option. As we explained in Section 4.1 LeWI improves
the performance of applications changing the number of OpenMP
threads during the execution. As OpenMP threads can only be
changed outside parallel regions, in version a it would not be
possible to change the number of threads between the 2 MPI calls.

If we divided the work in 2 parallel regions (version b,
parallelism grain 0.5), the number of threads could be changed at
point 2. If we had 4 parallel regions (version c, parallelism grain
0.25), there would be 3 points in the code (2, 3 and 4) where the
number of threads could be updated. For this reason the lower the
parallelism grain in the parallelization the higher the flexibility
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Fig. 14. Gromacs efficiency and number of CPUs used.

Fig. 15. Gromacs efficiency per node.

On the left hand side of Fig. 14 we can see the Efficiency
obtained by the execution of Gromacs in 64 cores (16 nodes). We
can see how the efficiency of the original execution is very low,
only 32% and when running with LeWI it is almost doubled to 62%
of efficiency.

On the right hand chart of Fig. 14 is shown the percentage of the
available CPUs that the application is using. The top color means
that between 90% and 100% of the CPUs are being used, we can
see that the amount of time that we are using all the CPUs is very
similar in the two versions. The main difference between the two
executions is in the time that they are using between 0% and 9%
(between 0 and 5 cores of the 64 available).

We can understand the behavior of the application and its
performance better with Figs. 15 and 16. In these charts, we can
see the same information separated by nodes.

In Fig. 15 is shown the efficiency in each node, we can see
how the average efficiency per node in the original execution is
40% while the LeWI version can achieve a 60% of efficiency in
average.We observe that there are two nodes that achieve a higher
efficiency, when running with LeWI more than 80% of efficiency,
they are nodes 6 and 7. From this, we can deduce that these two
nodes have a higher computational load than the other nodes,
and the low efficiency of the other nodes is because they do not
have work to do and are waiting for nodes 6 and 7 to finish their
computation.

If we look at Fig. 16 at first sight we can see that almost all
the nodes reduce at less than half the time they are doing nothing
(using 0 CPUs). For all of them, there is still some time that they are
not using any CPU. This time is when they are waiting for node 6

Fig. 16. Gromacs CPUs used per node.

or 7. Aswe can see the nodes 6 and 7 spendmuch less time running
with 0 CPUs than the others.

We can say that this application presents internode imbalance
that LeWI cannot solve. We will analyze it further and try to
improve it in Section 8.2.

6.5. Gadget

In Fig. 17we can see the execution time spent by the application
when runningwith andwithout LeWI. On the left side of the figure,
we can see the time in seconds of the whole application. On the
right side, as the application is organized in time steps independent
from each other, we can see the time spent in each time step.

The LeWI execution is able to speed up the application 2.5 times
with the same number of computational resources.

7. Analyzing parallelization aspects that limit LeWI perfor-
mance

In the previous section, while analyzing the performance of
the applications, we pointed out different characteristics of the
parallelization of the applications that could be limiting the
performance when using the automatic load balancing.

In this section, we are going to quantify these characteristics
in the applications and reproduce them in PILS (the synthetic
benchmark) and to finally confirm its impact in the performance.

The three aspects that we have identified are the following:

• Parallelism Grain in OpenMP applications
• Task duration in SMPSs applications
• Distribution of MPI processes among computation nodes

7.1. Parallelism Grain in OpenMP applications

The parallelism grain is the amount of computation that
can be done in parallel between MPI calls. Typically in parallel
applications the higher the parallelism grain the better.

In Fig. 2 we can see a schematic representation of a piece of
hybrid MPI + OpenMP code. The usual way to parallelize this
code (if possible) would be version a. Because it is the most
efficient option. As we explained in Section 4.1 LeWI improves
the performance of applications changing the number of OpenMP
threads during the execution. As OpenMP threads can only be
changed outside parallel regions, in version a it would not be
possible to change the number of threads between the 2 MPI calls.

If we divided the work in 2 parallel regions (version b,
parallelism grain 0.5), the number of threads could be changed at
point 2. If we had 4 parallel regions (version c, parallelism grain
0.25), there would be 3 points in the code (2, 3 and 4) where the
number of threads could be updated. For this reason the lower the
parallelism grain in the parallelization the higher the flexibility
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Fig. 17. Gadget running in 800 cpus (200 nodes).

Fig. 18. Parallelism grain of LUB and BT-MZ.

Fig. 19. PILS efficiency depending on parallelism grain.

we have to improve the performance using the load balancing
algorithm LeWI.

We analyzed the parallelism grain in LUB and BT-MZ applica-
tions and presented it in Fig. 18. (This data was obtained from
Paraver trace of a real execution.) On the x axis, we can see the
parallelism grain that goes from 0 to 0.28 and on the Y axis the
percentage of time that this parallelism grain appears during the
execution of the application (frequency).

In the case of LUB, we can see that most of the parallel time it
has a parallelism grain of 0.16 and in general it goes from 0.14 to
0.28. BT-MZ presents a lower parallelism grain that is distributed
between 0.01 and 0.13.

In Fig. 19 we show the Efficiency obtained with PILS with a
parallelism grain similar to the ones observed in the applications.
The different series presented show different Load Distributions
between MPI processes, and the average between them. We can

see that the efficiency obtained by PILS still depends a lot on the
Load Distribution between MPI processes although the average
efficiency decreases as the parallelism grain increases.

In the case of LUB, we can simplify that the parallelism grain
is around 0.15 and if we recall the efficiency obtained with LUB
in Section 5.3.2 it was 88%. We can see that, for some load
distributions, this efficiency corresponds with the one obtained
with PILS. We cannot match LUB with any Load Distribution
because this application presents dynamic load distribution during
the execution.

The parallelism grain in BT is distributed between less than
0.01 and 0.13, this is because there are different regions of code
that present different parallelism grain inside the application.
Therefore, it will be more difficult to match with the PILS results.
On the other hand, BT-MZ has a quite fixed load distribution
between MPI processes that is stable for the whole execution of
the application. The approximate load distribution, when running
with 4 MPI processes, is 9-16-28-47 respectively which would be
between the 5-17-18-60 and 10-20-30-40 distributions of PILS.
The efficiency obtained by BT in the previous section was 76%
which would be an efficiency close to the average one obtained
with 5-17-18-60 distribution.

7.2. Task duration in SMPSs applications

The task duration in SMPSs is analogous to the parallelism grain
in OpenMP applications. We need to find the trade off between
tasks big enough not to introduce much overhead and small
enough to have enough flexibility to load balance the execution.

Fig. 20 shows the duration of tasks in microseconds of LUB, BT-
MZ and Gromacs (for LUB and BT-MZ executions in one node with
4 MPIs, for Gromacs in 16 nodes with 64 MPIs). In the X axis, we
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Fig. 2. Parallelism grain explanation.

Fig. 3. PILS benchmark.

5.3.1. PILS: Parallel ImbaLance Simulation
PILS (Parallel ImbaLance Simulation) is a synthetic benchmark

to model hybrid parallel applications (MPI + OpenMP and MPI +
SMPSs).

The different parameters are the following:

• Programming model:MPI, MPI + OpenMP or MPI+SMPSs
• Load distribution: We can introduce the load balance of the

application as the different loads for each MPI process.
• Parallelism grain: Represents the percentage of computations

that can run in parallel between MPI synchronizations. It is
computed as the reciprocal of the number of parallel regions
betweenMPI blocking calls (Par.Grain =

1
Par.Regions ). You can see

an example about the relationship between Parallelism Grain
and the number of parallel regions in Fig. 2.

• Iterations: Number of times the algorithm will be executed.

The core of the synthetic benchmark is a function that will do
several floating point operations without data involved.

In Fig. 3 we can see a schematic representation of PILS. The
work load is given at the beginning of the execution to each
MPI process (work distribution). This work load is computed in
the parallel regions. The number of parallel regions depends on
the parallelism grain parameter. A parallel region in the OpenMP
version corresponds to a parallel loop. In the SMPSs version, a
parallel region is a loop that creates several tasks and finishes with
a SMPSs barrier. At the end of the iteration, there is an MPI barrier
to synchronize all the processes.

5.3.2. Benchmarks: BT-MZ (NAS benchmarks) and LUB
The BT application is one of the benchmarks in the NAS

Multizone suite [8]. The original version is a hybrid parallelization
of MPI + OpenMP that we will see in the charts as OMP1. We have

modified this benchmark to be parallelized with SMPSs (labeled
SMPSs).

LUB is a kernel performing an LU matrix factorization [8]. The
structure is a twodimensionalmatrix organized byblocks. The data
is distributed by blocks of rows among the differentMPI processes.
In Fig. 4 we can see a schematic representation of the LUB kernel
that consists of several iterations and each iteration of four steps.

This application is available in MPI+SMPSs and MPI+OpenMP.
The MPI+SMPSs parallelization considers each block as a task,
while the MPI + OpenMP version parallelizes the loops executing
the fwd, bdiv and bmod blocks.

5.3.3. Production codes: Gromacs and Gadget
GROMACS [11] is a versatile package to perform molecular

dynamics, i.e. simulate the Newtonian equations of motion for
systems with hundreds to millions of particles.

We started with an MPI version of GROMACS and parallelized
some parts of its code to have a hybrid MPI+SMPSs version. It is
important to mention that this application was not parallelized
completely with SMPSs. For this reason, the executions are done
like the MPI only version, meaning that we run 4 MPI processes
per node (Marenostrum nodes have 4 cores). SMPSs parallelism is
only exploited when we need to load balance.

The imbalance of this application depends heavily on the
number of MPI process used, for this reason we will be doing
experiments with different number of nodes. We will use from 1
to 64 nodes (4 to 256 CPUs).

Gadget [25] is a production code that performs a cosmological
N-body/SPH simulation. It can be used to address different
astrophysical problems such as colliding and merging galaxies or
the formation of a large-scale structure in the Universe.

The original version of Gadget was MPI only. Although
the application comes with its own load balancing code that
dynamically updates the tree, there were still some imbalance
problems that were not solved.

In this applicationwe only parallelized the parts of the code that
could benefit from the load balancing mechanism (like Gromacs),
they were 3 loops out of 35.000 lines of code. The input we used
runs in 800 CPUs and has a high load imbalance.

In Table 1 we can see for each application used its original
version, the available versions for execution, and the amount of
nodes in which the application will be executed.

6. Performance analysis: Sources of efficiency loss with LeWI

6.1. PILS: Parallel ImbaLance Simulation

Figs. 5 and 6 show the speedup obtained with different
configurations of PILS with 2 and 4 MPIs respectively.
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Fig. 22. Parallelism grain of LUB modified.

Fig. 23. LUB performance with modified parallel grain.

In the previous section, we analyzed the parallelism grain of
different applications. We saw that the parallelism grain of BT-
MZ and GROMACS was small enough to satisfy the load balancing
mechanism needs. For the LUB application, the parallelism grain
was limiting the efficacy of the automatic load balancing.

Wemodified the LUBparallelization by parallelizing some inner
loops instead of the outer ones, with this change the parallelism
grain of the application decreases.

In Fig. 22 we can see the parallelism grain of the original
parallelization and the modified one for the LUB application. The
series labeled as OMP1 is the original LUB application while the
series labeled OMP2 is the modified version. We can see how the
parallelism grain of LUB has clearly been reduced. With the new
version, the parallelism grain is 0, 01 or less most of the time.

Fig. 23 shows the performance obtained with LUB when
running in a single node. We can see how the best performance
is obtained when running with LeWI the modified version (series
labeled OMP2-LeWI). The new version obtains a speedup close to
the optimum one (4) in all cases.

The new parallelization we suggest decreases the performance
of the application because it stresses out the programming model.
When running with LeWI, it can overcome that loss. The speedup
obtained by the OMP2-LeWI version is better than the original
application (OMP1-ORIG) and even the original application with
load balancing (OMP1-LeWI).

8.2. MPIs distribution in MPI applications running in several nodes

When analyzing the efficiency obtained by applications running
in several nodes, we identified the distribution of MPI processes
among the nodes as a factor that can affect the performance. In this
case, it is not a parallelization decision but an execution decision.

This makes it even easier to change it and as we will see with an
important impact in the efficient use of the resources.

Usually by default the applications will be executed with
consecutive assignment of MPIs (i.e. an application running in 2
nodes with 8 MPI processes will run MPI processes 0, 1, 2 and 3 in
node 0 and MPI processes 4, 5, 6, and 7 in node 1). Moreover, the
communication pattern of some applications is designed to work
with this kind of distribution.

In almost all HPC systems,we can choose a different distribution
or even decide one by hand. We are using a common distribution
known as CYCLIC that distributes theMPI processes in a cyclic way
among the nodes (i.e. an application running in 2 nodes with 8MPI
processes will run MPI processes 0, 2, 4 and 6 in node 0 and MPI
processes 1, 3, 5 and 7 in node 1).

All the executions shown until this point have been done using
a consecutive assignment of MPI processes.

In Fig. 24 we can see how the distribution of MPI processes
affects the performance of the BT-MZ application when running in
2 and 4 nodes.We see 4 series representing the 2MPI distributions
and the application running with and without LeWI. We can
observe that the speedup of the application is much better when
running with LeWI and the cyclic distribution. It is important to
notice that the original execution is not improved when using
the cyclic distribution (ORIG-CYCLC compared with ORIG-BASE).
This means that the communication pattern of this application is
not affected by the MPI distribution. It is just the automatic load
balancing mechanism that is benefited with the MPI distribution.

The impact of the MPI distribution in the performance of
Gromacs can be seen in Fig. 25. In this case, the data that is shown
is execution time in seconds. We can see that, in this application,
the cyclic distribution is not always beneficial for the application.
In almost all cases, the performance is improved with the cyclic
distribution and specially in executions with a high number of
nodes. In Gromacs, we can see that the original application is
also affected by the distribution of MPI processes. This means that
the communication pattern is decisive in the performance of the
application.

In Fig. 26we can see the execution time of Gadgetwith different
MPI distributions with and without load balancing. Gadget in
general is benefited with the cyclic distribution. Although, in the
details of the time steps, we can see that some of them are affected
negatively by the cyclic distribution.

9. Conclusions and future work

The load balancing algorithm LeWI offers an easy and flexible
way of improving the performance of hybrid applications. LeWI
can be used out of the box to speedup hybrid applications with
imbalance problems.

22 / 27



Performance of Modified LUB

2792 M. Garcia et al. / J. Parallel Distrib. Comput. 74 (2014) 2781–2794

Fig. 22. Parallelism grain of LUB modified.

Fig. 23. LUB performance with modified parallel grain.

In the previous section, we analyzed the parallelism grain of
different applications. We saw that the parallelism grain of BT-
MZ and GROMACS was small enough to satisfy the load balancing
mechanism needs. For the LUB application, the parallelism grain
was limiting the efficacy of the automatic load balancing.

Wemodified the LUBparallelization by parallelizing some inner
loops instead of the outer ones, with this change the parallelism
grain of the application decreases.

In Fig. 22 we can see the parallelism grain of the original
parallelization and the modified one for the LUB application. The
series labeled as OMP1 is the original LUB application while the
series labeled OMP2 is the modified version. We can see how the
parallelism grain of LUB has clearly been reduced. With the new
version, the parallelism grain is 0, 01 or less most of the time.

Fig. 23 shows the performance obtained with LUB when
running in a single node. We can see how the best performance
is obtained when running with LeWI the modified version (series
labeled OMP2-LeWI). The new version obtains a speedup close to
the optimum one (4) in all cases.

The new parallelization we suggest decreases the performance
of the application because it stresses out the programming model.
When running with LeWI, it can overcome that loss. The speedup
obtained by the OMP2-LeWI version is better than the original
application (OMP1-ORIG) and even the original application with
load balancing (OMP1-LeWI).

8.2. MPIs distribution in MPI applications running in several nodes

When analyzing the efficiency obtained by applications running
in several nodes, we identified the distribution of MPI processes
among the nodes as a factor that can affect the performance. In this
case, it is not a parallelization decision but an execution decision.

This makes it even easier to change it and as we will see with an
important impact in the efficient use of the resources.

Usually by default the applications will be executed with
consecutive assignment of MPIs (i.e. an application running in 2
nodes with 8 MPI processes will run MPI processes 0, 1, 2 and 3 in
node 0 and MPI processes 4, 5, 6, and 7 in node 1). Moreover, the
communication pattern of some applications is designed to work
with this kind of distribution.

In almost all HPC systems,we can choose a different distribution
or even decide one by hand. We are using a common distribution
known as CYCLIC that distributes theMPI processes in a cyclic way
among the nodes (i.e. an application running in 2 nodes with 8MPI
processes will run MPI processes 0, 2, 4 and 6 in node 0 and MPI
processes 1, 3, 5 and 7 in node 1).

All the executions shown until this point have been done using
a consecutive assignment of MPI processes.

In Fig. 24 we can see how the distribution of MPI processes
affects the performance of the BT-MZ application when running in
2 and 4 nodes.We see 4 series representing the 2MPI distributions
and the application running with and without LeWI. We can
observe that the speedup of the application is much better when
running with LeWI and the cyclic distribution. It is important to
notice that the original execution is not improved when using
the cyclic distribution (ORIG-CYCLC compared with ORIG-BASE).
This means that the communication pattern of this application is
not affected by the MPI distribution. It is just the automatic load
balancing mechanism that is benefited with the MPI distribution.

The impact of the MPI distribution in the performance of
Gromacs can be seen in Fig. 25. In this case, the data that is shown
is execution time in seconds. We can see that, in this application,
the cyclic distribution is not always beneficial for the application.
In almost all cases, the performance is improved with the cyclic
distribution and specially in executions with a high number of
nodes. In Gromacs, we can see that the original application is
also affected by the distribution of MPI processes. This means that
the communication pattern is decisive in the performance of the
application.

In Fig. 26we can see the execution time of Gadgetwith different
MPI distributions with and without load balancing. Gadget in
general is benefited with the cyclic distribution. Although, in the
details of the time steps, we can see that some of them are affected
negatively by the cyclic distribution.

9. Conclusions and future work

The load balancing algorithm LeWI offers an easy and flexible
way of improving the performance of hybrid applications. LeWI
can be used out of the box to speedup hybrid applications with
imbalance problems.
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Fig. 24. MPIs’ distribution impact in BT-MZ.

Fig. 25. MPIs’ distribution impact in Gromacs.

We have analyzed in detail the performance of LeWI with very
different applications. On one hand, 3 benchmarks allowed us to
test the behavior changing several parameters. On the other hand,
2 production codes allowed us to see how LeWI can be applied to
real applications with imbalance problems.

The experiments showed that LeWI can handle very different
situations, e.g. executions in one node, in several nodes or in a high
number of nodes (Gadget with 800 CPUs, 200 nodes).

We have also seen that LeWI can work with different
programming models (in this paper MPI + OpenMP and MPI +

SMPSs), but more important that it can be easily extended to be
used with other programming models.

Although LeWI improves the performance of all the applications
tested, we detected that, in some cases, the efficiency obtained
was not close to the theoretical maximum. In this paper, we have
focused on finding the sources of efficiency loss when using LeWI.

We have identified several characteristics in the application
structure that can limit the efficiency obtained when using
LeWI. Also, some programming practices that can improve the
performance of the application.

We will summarize these findings of the paper as the following
hints to the parallel application developers.

The first advice and maybe the most important one is to
forget the previous prejudices. Our indications will improve the
execution of applications when running with LeWI, but in some
cases they can result in a worse performance of the application
without LeWI. For example, the BT-MZ application in one node
with 2 MPI processes and 2 SMPSs threads per process obtains
a speedup of 2.5 and with 4 MPI processes and 1 SMPSs thread
per process the speedup is 2.2. When running with LeWI, the best
configuration is to run 4 MPI processes and 1 SMPSs thread per
process (the SMPSs level is used only for load balancing purposes)
obtaining a speedup of 3.5 compared to 3.2 that is the speedup
obtained when running with 2MPI processes and 2 SMPSs threads
per process.

For parallel application developers will be interested to
know that a very good improvement in performance can be
obtained when using LeWI without needing to hybridize the
whole application. For instance, both Gadget and Gromacs
applications that originally were MPI only applications were
partially parallelized with OpenMP and SMPSs respectively. We
were able to obtain improvements in theperformance ofmore than
40% in both cases when using LeWI.

A decision that can have a great impact in the performance of
the application when using LeWI is the programming model used,
we have seen that themoremalleable the programmingmodel, the
best results we can obtain. In our examples, SMPSs obtains better
results than OpenMP because it is more malleable.

Regarding the parallelization decisions, for MPI + OpenMP
applications we have seen that the number of parallel loops can
affect the performance of LeWI and that it is highly correlated
with the amount of load imbalance. Our experiments showed
that in general to obtain an efficiency between 80% and 85% we
need a parallelism grain of 0.15 (equivalent to 6 parallel loops
between MPI calls). We have shown that the original efficiency of
LUB was 67%, it was increased to 80% using LeWI, but modifying
the parallelism grain when using LeWI we obtained an efficiency
up to 92.5%. Our recommendation is to have a parallel grain
below 0.1 even when that can seem to be self-defeating, we have

Total

Fig. 26. Gadget: distribution of MPIs impact.
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Fig. 24. MPIs’ distribution impact in BT-MZ.

Fig. 25. MPIs’ distribution impact in Gromacs.

We have analyzed in detail the performance of LeWI with very
different applications. On one hand, 3 benchmarks allowed us to
test the behavior changing several parameters. On the other hand,
2 production codes allowed us to see how LeWI can be applied to
real applications with imbalance problems.

The experiments showed that LeWI can handle very different
situations, e.g. executions in one node, in several nodes or in a high
number of nodes (Gadget with 800 CPUs, 200 nodes).

We have also seen that LeWI can work with different
programming models (in this paper MPI + OpenMP and MPI +

SMPSs), but more important that it can be easily extended to be
used with other programming models.

Although LeWI improves the performance of all the applications
tested, we detected that, in some cases, the efficiency obtained
was not close to the theoretical maximum. In this paper, we have
focused on finding the sources of efficiency loss when using LeWI.

We have identified several characteristics in the application
structure that can limit the efficiency obtained when using
LeWI. Also, some programming practices that can improve the
performance of the application.

We will summarize these findings of the paper as the following
hints to the parallel application developers.

The first advice and maybe the most important one is to
forget the previous prejudices. Our indications will improve the
execution of applications when running with LeWI, but in some
cases they can result in a worse performance of the application
without LeWI. For example, the BT-MZ application in one node
with 2 MPI processes and 2 SMPSs threads per process obtains
a speedup of 2.5 and with 4 MPI processes and 1 SMPSs thread
per process the speedup is 2.2. When running with LeWI, the best
configuration is to run 4 MPI processes and 1 SMPSs thread per
process (the SMPSs level is used only for load balancing purposes)
obtaining a speedup of 3.5 compared to 3.2 that is the speedup
obtained when running with 2MPI processes and 2 SMPSs threads
per process.

For parallel application developers will be interested to
know that a very good improvement in performance can be
obtained when using LeWI without needing to hybridize the
whole application. For instance, both Gadget and Gromacs
applications that originally were MPI only applications were
partially parallelized with OpenMP and SMPSs respectively. We
were able to obtain improvements in theperformance ofmore than
40% in both cases when using LeWI.

A decision that can have a great impact in the performance of
the application when using LeWI is the programming model used,
we have seen that themoremalleable the programmingmodel, the
best results we can obtain. In our examples, SMPSs obtains better
results than OpenMP because it is more malleable.

Regarding the parallelization decisions, for MPI + OpenMP
applications we have seen that the number of parallel loops can
affect the performance of LeWI and that it is highly correlated
with the amount of load imbalance. Our experiments showed
that in general to obtain an efficiency between 80% and 85% we
need a parallelism grain of 0.15 (equivalent to 6 parallel loops
between MPI calls). We have shown that the original efficiency of
LUB was 67%, it was increased to 80% using LeWI, but modifying
the parallelism grain when using LeWI we obtained an efficiency
up to 92.5%. Our recommendation is to have a parallel grain
below 0.1 even when that can seem to be self-defeating, we have
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Fig. 26. Gadget: distribution of MPIs impact.
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Fig. 24. MPIs’ distribution impact in BT-MZ.

Fig. 25. MPIs’ distribution impact in Gromacs.

We have analyzed in detail the performance of LeWI with very
different applications. On one hand, 3 benchmarks allowed us to
test the behavior changing several parameters. On the other hand,
2 production codes allowed us to see how LeWI can be applied to
real applications with imbalance problems.

The experiments showed that LeWI can handle very different
situations, e.g. executions in one node, in several nodes or in a high
number of nodes (Gadget with 800 CPUs, 200 nodes).

We have also seen that LeWI can work with different
programming models (in this paper MPI + OpenMP and MPI +

SMPSs), but more important that it can be easily extended to be
used with other programming models.

Although LeWI improves the performance of all the applications
tested, we detected that, in some cases, the efficiency obtained
was not close to the theoretical maximum. In this paper, we have
focused on finding the sources of efficiency loss when using LeWI.

We have identified several characteristics in the application
structure that can limit the efficiency obtained when using
LeWI. Also, some programming practices that can improve the
performance of the application.

We will summarize these findings of the paper as the following
hints to the parallel application developers.

The first advice and maybe the most important one is to
forget the previous prejudices. Our indications will improve the
execution of applications when running with LeWI, but in some
cases they can result in a worse performance of the application
without LeWI. For example, the BT-MZ application in one node
with 2 MPI processes and 2 SMPSs threads per process obtains
a speedup of 2.5 and with 4 MPI processes and 1 SMPSs thread
per process the speedup is 2.2. When running with LeWI, the best
configuration is to run 4 MPI processes and 1 SMPSs thread per
process (the SMPSs level is used only for load balancing purposes)
obtaining a speedup of 3.5 compared to 3.2 that is the speedup
obtained when running with 2MPI processes and 2 SMPSs threads
per process.

For parallel application developers will be interested to
know that a very good improvement in performance can be
obtained when using LeWI without needing to hybridize the
whole application. For instance, both Gadget and Gromacs
applications that originally were MPI only applications were
partially parallelized with OpenMP and SMPSs respectively. We
were able to obtain improvements in theperformance ofmore than
40% in both cases when using LeWI.

A decision that can have a great impact in the performance of
the application when using LeWI is the programming model used,
we have seen that themoremalleable the programmingmodel, the
best results we can obtain. In our examples, SMPSs obtains better
results than OpenMP because it is more malleable.

Regarding the parallelization decisions, for MPI + OpenMP
applications we have seen that the number of parallel loops can
affect the performance of LeWI and that it is highly correlated
with the amount of load imbalance. Our experiments showed
that in general to obtain an efficiency between 80% and 85% we
need a parallelism grain of 0.15 (equivalent to 6 parallel loops
between MPI calls). We have shown that the original efficiency of
LUB was 67%, it was increased to 80% using LeWI, but modifying
the parallelism grain when using LeWI we obtained an efficiency
up to 92.5%. Our recommendation is to have a parallel grain
below 0.1 even when that can seem to be self-defeating, we have
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