Hints to improve automatic load balancing with LeWI for hybrid applications

Marta Garcia, Jesus Labarta, Julita Corbalan

Journal of Parallel and Distributed Computing — Volume 74, Issue 9 September 2014

Motivation

- Loss of efficiency
- Hybrid programming models (MPI + X)
- Manual tuning of parallel codes (load-balancing, data redistribution)

The X (in this paper)

OpenMP

- Directives to annotate parallel code
- Fork/join model with shared memory
- Number of threads may change between parallel regions

SMPSs (SMPSuperscalar)

- Task as basic element
- Annotate taskifiable functions and their parameters (in/out/inout)
- Task graph to track dependencies
- Number of threads may change any time

DLB and LeWI

DLB (dynamic load balancing)

- "Runtime interposition to [...] intercept MPI calls"
- Balance load on the inner level (OpenMP/SMPSs)
- Several load balancing algorithms

LeWI (Lend CPU when Idle)

- CPUs of rank in blocking MPI call are idle
- Lend CPUs to other ranks and recover them after MPI call completes

LeWI

Approach

- "Extensive performance evaluation"
- "Modeling parallelization characteristics that limit the automatic load balancing potential"
- "Improving automatic load balancing"

Performance evaluation

- Marenostrum 2: 2 × IBM PowerPC 970MP (2 cores); 8 GiB RAM
 - Linux 2.6.5-7.244-pseries64; MPICH; IBM XL C/C++ compiler w/o optimizations
- Metrics
 - $Speedup = \frac{parallel_execution_time}{serial_execution_time}$
 - $Efficiency = \frac{useful_cpu_time}{elapsed_time*cpus} \text{ where } \\ useful_cpu_time = cpu_time (mpi_time + openmp/smpss_time + dlb_time)$
 - $CPUs_used$ to simultaneously run application code
- 3 benchmarks + 2 real applications

PILS (Parallel ImbaLance Simulation)

- Synthetic benchmark
- Core: "floating point operations without data involved"
- Tunable parameters
 - Programming model (MPI, MPI + OpenMP, MPI + SMPSs)
 - Load distribution
 - Parallelism grain (= $\frac{1}{\#parallel\ regions}$)
 - Iterations

PILS

Parallelism Grain

a) Parallelism Grain: 1. b) Parallelism Grain: 0.5. c) Parallelism Grain: 0.25.

Other Codes

- Benchmarks
 - BT-MZ: block tri-diagonal solver
 - LUB: LU matrix factorization
- Applications
 - Gromacs: molecular dynamics, MPI-only
 - Gadget: cosmological N-body/SPH (smoothed-particle hydrodynamics) simulation

Other Codes

- Benchmarks
 - BT-MZ: block tri-diagonal solver
 - LUB: LU matrix factorization
- Applications
 - Gromacs: molecular dynamics, MPI-only
 - Gadget: cosmological N-body/SPH (smoothed-particle hydrodynamics) simulation

Application	Original version	MPI + OpenMP	MPI + SMPSs	Executed in nodes (cpus)
PILS	MPI + OpenMP MPI + SMPSs	Х	х	1 (4)
BT-MZ	$\mathrm{MPI} + \mathrm{OpenMP}$	x	X	1, 2, 4 (4, 8, 16)
LUB	MPI + OpenMP MPI + SMPSs	X	х	1, 2, 4 (4, 8, 16)
Gromacs Gadget	MPI MPI	х	x	1.64 (4.256) 200 (800)

PILS, 2 and 4 MPI processes

BT-MZ; 1 node

BT-MZ; 2,4 nodes; Class C

BT-MZ; 1 node; 4 MPI processes

LUB; 1 node; Block size 200

Gromacs; 1–64 nodes + Details for 16 nodes

Gromacs; Efficiency + CPUs used per Node

Gadget; 200 nodes

Factors Limiting Performance Improvement with LeWI

- "Parallelism Grain in OpenMP applications"
- "Task duration in SMPSs applications"
- "Distribution of MPI processes among computation nodes"

Parallelism Grain

a) Parallelism Grain: 1. b) Parallelism Grain: 0.5. c) Parallelism Grain: 0.25.

Modified Parallelism Grain in LUB

Performance of Modified LUB

Rank Distribution — BT-MZ

Rank Distribution — Gromacs

Rank Distribution — Gadget

Conclusion

Summary

- DLB/LeWI can improve performance transparently
- Inter-node load imbalances not handled
- Granularity of parallelism and placement as important factors
- Optimal configuration with vs. without DLB/LeWI

Conclusion

Summary

- DLB/LeWI can improve performance transparently
- Inter-node load imbalances not handled
- Granularity of parallelism and placement as important factors
- Optimal configuration with vs. without DLB/LeWI

Discussion

- Interaction with MPI
- Benchmarks (1.5 of 3 NPB-MZ, arbitrary load distribution)
- How to find "the right" granularity