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Callisto-RTS

I OpenMP-like runtime system for (NUMA) shared memory
machines

I Aims to scale better than OpenMP, while requiring less
manual tuning

I ‘Automatic’ handling of nested loops
I Scales well to very small block sizes (1K cycles)
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Implementation – API

“Our initial workloads are graph analytics algorithms generated
by a compiler from the Green-Marl DSL [12]. Therefore, while
we aim for the syntax to be reasonably clear, our main goal is
performance.”

s t r u c t example_1 {
atomic<int> t o t a l {0} ;
void work ( i n t idx ) {

t o t a l += idx ;
// Atomic add

} } e1 ;

pa r a l l e l_ f o r <example_1 , int >(e1 , 0 , 1 0 ) ;
cout << e1 . t o t a l ;
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Implemenation – API 2

I Adding functions void fork(thread_data_t &) and
void join(thread_data_t &) allows thread-local
accumulation.

I They considered C++ lambdas, but “performance using
current compilers appears to depend a great deal on the
behavior of optimization heuristics.”

I Each parallel loop ends with an implicit barrier (so
preemptions are a problem).

I Nested parallized loops need an additional loop level, with
0 being the innermost loop.
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Implementation
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(a) Thread t1 executes sequential code.

Other threads wait for work.

(b) Thread t1 enters a loop at level 0.

All threads participate in the loop.

(c) Thread t1 enters a loop at level 1. Thread t1 and t5

participate. Threads t6–t8 now wait for work from t5.

(d) Threads t1 and t5 enter loops at level 0,

threads participate in the respective loops.

Figure 2: Allocation of threads to loops. Thread t1 is at
the top level, t5 at level 1, and other threads at level 0.
This allocation might be appropriate in a 2-socket ma-
chine with 4 threads per socket.

Based on this, threads are organized into a tree which
selects which threads participate in which loops. Each
thread has a level in this tree, and a parent at the next
non-empty level above it (aside from a designated top-
level thread which forms the root of the tree). Dynami-
cally, each thread has a status (leading or following). Ini-
tially, the root is leading and all other threads following.
A thread’s leader is the closest parent with leading status
(including the thread itself). A thread at level n becomes
a leader if it encounters a loop at level k≤n. A follower
at level n executes iterations from a loop if its leader en-
counters a loop at level k≤n; otherwise, it remains idle.

Figure 2 illustrates this dynamically with a possible or-
ganization of 8 threads across 2 sockets. The main thread
is t1 and is the parent to t2. . .t4 in its own socket (level 0),
and t5 in the second socket (level 1). In turn, t5 is parent
to t6. . .t8. Initially t1 is the only active thread and hence
leader to all of the threads t1. . .t8 (Figure 2a). If t1 en-
counters a loop at level 0 then all threads participate in
the same loop (Figure 2b). If, instead, t1 encounters a
loop at level 1 then just t1 and t5 participate (Figure 2c).

(a) Distribution during a level-0 loop led by t1
in which all threads participate, using separate

request combiners on each socket.

(b) Distribution during a level-0 loop

led by t1 (left) and by t5 (right).

Figure 3: Work scheduling in different loops. A top-level
loop spans the complete machine, with local requests for
work being combined in each set of nearby threads. Mul-
tiple instances of an inner loop may run concurrently on
the two parts of the machine.

If t5 then encounters a new loop at level 0 then it becomes
a leader of t5. . .t8 (Figure 2d).

3 Work scheduling

We now introduce our techniques for distributing itera-
tions. We take a hierarchical approach to defining work
scheduling policies, with a number of basic policies that
can be combined to form more complex variants. An in-
dividual thread makes a request to the leaves of a tree
of work distributors, and the implementation of this may
involve a call to a higher level distributor, and so on.

Our hierarchical approach lets us reflect the struc-
ture of the machine within the hierarchy used for work
scheduling. In addition, it lets us explore a range of
complex policies—for instance, exploring whether data
structures should be per-core, per-L2$, or per-socket,
Figure 3 illustrates this using the example 8-thread ma-
chine. Separate work distributors are used for each par-
allel loop—for instance, the 4-thread loop led by t1 is
handled separately from the 4-thread loop led by t5.

Shared counter. The simplest work distributor is a sin-
gle shared counter, initialized with loop bounds, and with
threads claiming iterations using an atomic fetch-and-
add. We include this initial implementation to reflect
the techniques used for dynamically scheduled loops in
many OpenMP runtime systems.
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3 Work scheduling

We now introduce our techniques for distributing itera-
tions. We take a hierarchical approach to defining work
scheduling policies, with a number of basic policies that
can be combined to form more complex variants. An in-
dividual thread makes a request to the leaves of a tree
of work distributors, and the implementation of this may
involve a call to a higher level distributor, and so on.

Our hierarchical approach lets us reflect the struc-
ture of the machine within the hierarchy used for work
scheduling. In addition, it lets us explore a range of
complex policies—for instance, exploring whether data
structures should be per-core, per-L2$, or per-socket,
Figure 3 illustrates this using the example 8-thread ma-
chine. Separate work distributors are used for each par-
allel loop—for instance, the 4-thread loop led by t1 is
handled separately from the 4-thread loop led by t5.

Shared counter. The simplest work distributor is a sin-
gle shared counter, initialized with loop bounds, and with
threads claiming iterations using an atomic fetch-and-
add. We include this initial implementation to reflect
the techniques used for dynamically scheduled loops in
many OpenMP runtime systems.

I Threads are organized in a tree, with a fixed level for each
thread.

I A thread at level n becomes a leader when it hits a loop
with level k 6 n.

I A follower (= not a leader) at level n executes iterations
in a loop when its leader hits a loop at level k 6 n.
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Work distributors, that are combined in a hierarchy:

Shared counter Single iteration counter, modified with atomic
instruction.

Distributed counters Work is evenly distributed among
‘stripes’, threads complete work in own stripe
before moving to others.

Request combiner Aggregate multiple requests for work, and
forward to higher level.
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Request combining
my_slot−>s t a r t = REQ;

whi le (1 ) {
i f ( ! t r y l o ck (&combiner−>lock ) ) {

whi le ( i s_locked(&combiner−>lock ) ) ;
} e l s e {

// c o l l e c t r eque s t s from other threads ,
// i s s u e aggregated request ,
// d i s t r i b u t e work
unlock(&combiner−>lock ) ;

}

i f (my_slot−>s t a r t != REQ) {
return (my_slot−>sta r t , my_slot−>end ) ;

}
}
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Evaluation – Hardware

2-socket Xeon E5-2650 IvyBridge
I 8 cores per socket
I L1 and L2 per core
I 2 hardware threads per core

8-socket SPARC T5
I 16 cores per socket
I L1 and L2 per core
I 8 hardware threads per core
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Evaluation – Microbenchmarks 1
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Figure 4: Microbenchmark scalability on X4-2 and T5-8 systems.

SPARC. We use an Oracle T5-8 machine. This is an
8-socket machine with SPARC T5 processors. Each
socket has 16 cores, and each core supports 8 h/w
contexts for a total of 1024 h/w contexts in the machine.
As with the Intel 64 system, the T5-8 has per-socket
L3$ caches, and per-core L2$ and L1$. We use Solaris
Studio 12.4 on Solaris 11.2.

Both architectures provide atomic compare-and-swap
(CAS). The Intel 64 architecture provides additional
atomic operations such as fetch-and-add. Conversely, the
T5 processor provides a user-mode-accessiblewrpause

instruction which lets a h/w context wait for a config-
urable number of cycles, avoiding it consuming pipeline
resources while waiting. This can be important in the
multi-threaded SPARC processor: when only a single
h/w context is runnable, that context can issue instruc-
tions to multiple pipelines in each clock cycle. On the
T5-8 we use wrpause for 128 cycles in loops which
are expected to unblock quickly (e.g., during request
combining), and for approximately 4096 cycles in loops
which are expected to unblock less quickly (e.g., waiting
on entry to a loop).

We spread software threads as widely as possible
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50  2015 USENIX Annual Technical Conference	 USENIX Association

Global

Per-socket

Per-core

Per-thread

Per-core combine-sync

Per-core combine-async

 0
 1
 2
 3
 4
 5
 6
 7
 8

 4 8 16 32 64 128 256 512 1024

N
o
rm

a
liz

e
d
 s

p
e
e
d
u
p

Batch size

 0

 5

 10

 15

 20

 25

 30

 4 8 16 32 64 128 256 512 1024

N
o
rm

a
liz

e
d
 s

p
e
e
d
u
p

Batch size

 0

 5

 10

 15

 20

 25

 30

 4 8 16 32 64 128 256 512 1024

N
o
rm

a
liz

e
d
 s

p
e
e
d
u
p

Batch size

Even distribution: 2-socket Xeon (X4-2), 4 threads (left), 16 threads (center), 32 threads (right)

 0
 1
 2
 3
 4
 5
 6
 7
 8

 4 8 16 32 64 128 256 512 1024

N
o
rm

a
liz

e
d
 s

p
e
e
d
u
p

Batch size

 0

 5

 10

 15

 20

 25

 30

 4 8 16 32 64 128 256 512 1024

N
o
rm

a
liz

e
d
 s

p
e
e
d
u
p

Batch size

 0

 5

 10

 15

 20

 25

 30

 4 8 16 32 64 128 256 512 1024

N
o
rm

a
liz

e
d
 s

p
e
e
d
u
p

Batch size

Skewed distribution: 2-socket Xeon (X4-2), 4 threads (left), 16 threads (center), 32 threads (right)

 0

 50

 100

 150

 200

 4 8 16 32 64 128 256 512 1024

N
o
rm

a
liz

e
d
 s

p
e
e
d
u
p

Batch size

 0

 100

 200

 300

 400

 500

 4 8 16 32 64 128 256 512 1024

N
o
rm

a
liz

e
d
 s

p
e
e
d
u
p

Batch size

 0

 100

 200

 300

 400

 500

 4 8 16 32 64 128 256 512 1024

N
o
rm

a
liz

e
d
 s

p
e
e
d
u
p

Batch size

Even distribution: 8-socket T5 (T5-8), 128 threads (left), 512 threads (center), 1024 threads (right)

 0

 50

 100

 150

 200

 4 8 16 32 64 128 256 512 1024

N
o
rm

a
liz

e
d
 s

p
e
e
d
u
p

Batch size

 0

 100

 200

 300

 400

 500

 4 8 16 32 64 128 256 512 1024

N
o
rm

a
liz

e
d
 s

p
e
e
d
u
p

Batch size

 0

 100

 200

 300

 400

 500

 4 8 16 32 64 128 256 512 1024

N
o
rm

a
liz

e
d
 s

p
e
e
d
u
p

Batch size

Skewed distribution: 8-socket T5 (T5-8), 128 threads (left), 512 threads (center), 1024 threads (right)

Figure 4: Microbenchmark scalability on X4-2 and T5-8 systems.

SPARC. We use an Oracle T5-8 machine. This is an
8-socket machine with SPARC T5 processors. Each
socket has 16 cores, and each core supports 8 h/w
contexts for a total of 1024 h/w contexts in the machine.
As with the Intel 64 system, the T5-8 has per-socket
L3$ caches, and per-core L2$ and L1$. We use Solaris
Studio 12.4 on Solaris 11.2.

Both architectures provide atomic compare-and-swap
(CAS). The Intel 64 architecture provides additional
atomic operations such as fetch-and-add. Conversely, the
T5 processor provides a user-mode-accessiblewrpause

instruction which lets a h/w context wait for a config-
urable number of cycles, avoiding it consuming pipeline
resources while waiting. This can be important in the
multi-threaded SPARC processor: when only a single
h/w context is runnable, that context can issue instruc-
tions to multiple pipelines in each clock cycle. On the
T5-8 we use wrpause for 128 cycles in loops which
are expected to unblock quickly (e.g., during request
combining), and for approximately 4096 cycles in loops
which are expected to unblock less quickly (e.g., waiting
on entry to a loop).

We spread software threads as widely as possible

50  2015 USENIX Annual Technical Conference	 USENIX Association

Global

Per-socket

Per-core

Per-thread

Per-core combine-sync

Per-core combine-async

 0
 1
 2
 3
 4
 5
 6
 7
 8

 4 8 16 32 64 128 256 512 1024

N
o
rm

a
liz

e
d
 s

p
e
e
d
u
p

Batch size

 0

 5

 10

 15

 20

 25

 30

 4 8 16 32 64 128 256 512 1024

N
o
rm

a
liz

e
d
 s

p
e
e
d
u
p

Batch size

 0

 5

 10

 15

 20

 25

 30

 4 8 16 32 64 128 256 512 1024

N
o
rm

a
liz

e
d
 s

p
e
e
d
u
p

Batch size

Even distribution: 2-socket Xeon (X4-2), 4 threads (left), 16 threads (center), 32 threads (right)

 0
 1
 2
 3
 4
 5
 6
 7
 8

 4 8 16 32 64 128 256 512 1024

N
o
rm

a
liz

e
d
 s

p
e
e
d
u
p

Batch size

 0

 5

 10

 15

 20

 25

 30

 4 8 16 32 64 128 256 512 1024

N
o
rm

a
liz

e
d
 s

p
e
e
d
u
p

Batch size

 0

 5

 10

 15

 20

 25

 30

 4 8 16 32 64 128 256 512 1024

N
o
rm

a
liz

e
d
 s

p
e
e
d
u
p

Batch size

Skewed distribution: 2-socket Xeon (X4-2), 4 threads (left), 16 threads (center), 32 threads (right)

 0

 50

 100

 150

 200

 4 8 16 32 64 128 256 512 1024

N
o
rm

a
liz

e
d
 s

p
e
e
d
u
p

Batch size

 0

 100

 200

 300

 400

 500

 4 8 16 32 64 128 256 512 1024

N
o
rm

a
liz

e
d
 s

p
e
e
d
u
p

Batch size

 0

 100

 200

 300

 400

 500

 4 8 16 32 64 128 256 512 1024

N
o
rm

a
liz

e
d
 s

p
e
e
d
u
p

Batch size

Even distribution: 8-socket T5 (T5-8), 128 threads (left), 512 threads (center), 1024 threads (right)

 0

 50

 100

 150

 200

 4 8 16 32 64 128 256 512 1024

N
o
rm

a
liz

e
d
 s

p
e
e
d
u
p

Batch size

 0

 100

 200

 300

 400

 500

 4 8 16 32 64 128 256 512 1024

N
o
rm

a
liz

e
d
 s

p
e
e
d
u
p

Batch size

 0

 100

 200

 300

 400

 500

 4 8 16 32 64 128 256 512 1024

N
o
rm

a
liz

e
d
 s

p
e
e
d
u
p

Batch size

Skewed distribution: 8-socket T5 (T5-8), 128 threads (left), 512 threads (center), 1024 threads (right)

Figure 4: Microbenchmark scalability on X4-2 and T5-8 systems.

SPARC. We use an Oracle T5-8 machine. This is an
8-socket machine with SPARC T5 processors. Each
socket has 16 cores, and each core supports 8 h/w
contexts for a total of 1024 h/w contexts in the machine.
As with the Intel 64 system, the T5-8 has per-socket
L3$ caches, and per-core L2$ and L1$. We use Solaris
Studio 12.4 on Solaris 11.2.

Both architectures provide atomic compare-and-swap
(CAS). The Intel 64 architecture provides additional
atomic operations such as fetch-and-add. Conversely, the
T5 processor provides a user-mode-accessiblewrpause

instruction which lets a h/w context wait for a config-
urable number of cycles, avoiding it consuming pipeline
resources while waiting. This can be important in the
multi-threaded SPARC processor: when only a single
h/w context is runnable, that context can issue instruc-
tions to multiple pipelines in each clock cycle. On the
T5-8 we use wrpause for 128 cycles in loops which
are expected to unblock quickly (e.g., during request
combining), and for approximately 4096 cycles in loops
which are expected to unblock less quickly (e.g., waiting
on entry to a loop).

We spread software threads as widely as possible
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T5-8, OpenMP (left), single global counter, per-socket counters, per-core counters with async combining (right),

PageRank – LiveJournal. The best OpenMP execution took 0.26s (512 threads, 1024 batch size).
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T5-8, OpenMP (left), single global counter, per-socket counters, per-core counters with async combining (right),

PageRank – Twitter. The best OpenMP execution took 6.0s (512 threads, 1024 batch size).
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T5-8, OpenMP (left), single global counter, per-socket counters, per-core counters with async combining (right),

Triangle counting – LiveJournal. The best OpenMP execution took 0.21s (256 threads, 256 batch size).
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T5-8, OpenMP (left), single global counter, per-socket counters, per-core counters with async combining (right),

Triangle counting – Twitter. The best OpenMP execution took 55.3s (256 threads, 4 batch size).

Figure 5: Graph algorithms on LiveJournal (4.8M vertices) and Twitter (42M vertices). Execution times normalized
to the best OpenMP result. Below each plot we show the ratio of the best configuration’s execution time to the best
OpenMP result.

ity algorithm [17] as an example with nested parallelism.
We use the SNAP LiveJournal dataset (4.8M vertices,

69M edges) [16] and the Twitter data set of Kwak et al.

(42M vertices, 1.5B edges) [14].
We focus on the SPARC machine. As the microbench-

mark results illustrated, the smaller 2-socket Intel 64 sys-
tem does not exhibit a great deal of sensitivity to work
scheduling techniques with per-thread counters.

For each machine-algorithm combination we show:
the original OpenMP implementation, and then
Callisto-RTS using a single global counter, per-socket
counters, and per-core counters with asynchronous com-

bining. Each plot shows the performance of the given
technique across thread counts (32. . .1024), and batch
sizes (1024. . . 4). Each square shows the execution time,
normalized to the best OpenMP result. Below each plot,
we show the time of the best configuration, normalized
to the best OpenMP result. Note that the dark rows at
the top of the plots indicate there are insufficient threads
to perform well on these scalable workloads, even with
perfect work scheduling and no overheads.

On the LiveJournal input, careful tuning is needed to
get good performance with OpenMP or with a single
counter: different numbers of threads are best for the dif-
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Figure 6: PageRank on Callisto-RTS and Galois.

ferent algorithms, and there is a sharp fall-off in perfor-
mance if the best configuration is not selected.

The OpenMP implementations often perform better
than Callisto-RTS using a single global counter. This
is because they use static scheduling on some loops
where work is known to be distributed evenly (e.g., copy-
ing from one array to another). Static scheduling works
well on such loops, but not on the main parts of the algo-
rithm.

Using a single global counter leads to poor per-
formance at small batch sizes, and work imbalance
with large batches. Per-socket counters provide signif-
icant improvement at smaller batch sizes. As in the
microbenchmark, per-core counters with asynchronous
combining provide good performance over a wide range
of configurations. We see similar trends on the Twitter
input.

Comparison with Galois. The Galois system is a
lightweight infrastructure for parallel in-memory pro-
cessing. In prior work, Nguyen et al. demonstrated
that Galois has good performance and scalability across
a range of graph benchmarks [21]. We use version
2.2.1. We adapted the Galois PageRank code to use the
same in-memory compressed sparse row representation
as with Callisto-RTS. Compared with the Galois origi-
nal, this modified implementation is faster across every
test. We disabled concurrency control and confirmed that
we obtained identical performance between Galois and
Callisto-RTS. Thread placement is identical between the

two runtime systems. We use Galois’ default batch size
(32) in both systems.

Figure 6 shows the resulting performance on the X4-
2 and T5-8. All results are normalized to the single-
threaded implementation without concurrency control.
Callisto-RTS performs better on both machines and both
inputs.

On the X4-2, Callisto-RTS scales similarly on both
graphs up to 16 threads (1 thread per core), with a slight
additional benefit from hyperthreading. Galois scales
well on the Twitter graph, with 15-20% overhead com-
pared with Callisto-RTS. Galois does not scale well on
the LiveJournal graph with shorter loop iterations. Both
differences are due to the way Galois distributes chunks
of work. Each chunk is reified in memory as a block list-
ing the iterations to execute, with each thread holding a
current working block, and per-socket queues of blocks.
On the smaller graph, the iterations are short-running and
contention on per-socket queues appears to limit scaling.
On the Twitter graph, each iteration is longer and con-
tention less significant. However, the inner loop of fetch-
ing an iteration and executing it remains slower than with
Callisto-RTS.

We see similar trends on the T5-8. Galois and
Callisto-RTS both scale well to 128 threads (1 per
core), as does the additional Callisto-RTS variant us-
ing per-socket iteration counters. Beyond this point,
Callisto-RTS continues to scale well with asynchronous
work distribution, whereas the other implementations are
harmed by contention between threads when distributing

Galios uses per-socket queues to dispatch work blocks, which
worker threads draw from.
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Figure 7: Betweenness centrality using nested paral-
lelism at different levels.

work. On both graphs, Callisto-RTS performs well using
the complete machine of 1024 threads.

Summary. Compared with the OpenMP implementa-
tion, using per-core counters with asynchronous combin-
ing improves the best-case performance in all four of the
workloads in Figure 5 by 6%, 8%, 17%, and 39%. In ad-
dition, and perhaps more significantly, the performance
achieved is more stable over different thread and batch
settings, and does not require the programmer to select
between static and dynamic scheduling.

4.3 Nested parallelism

Our final results use nested parallelism to compute be-
tweenness centrality [17]. For each vertex, the computa-
tion executes breadth-first-search (BFS) traversals. The
execution time can be large even for a modestly sized
graph. We use the SNAP Slashdot data set [16] (82.1K
vertices, 948K edges). Figure 7 compares flat parallelism
(in which we process each vertex sequentially), versus
nested parallelism at different levels. We use a parallel
BFS algorithm with 13 different parallel loops, some ini-
tializing per-BFS data structures, and others performing
parallel expansion of the next level of vertices. There is
a barrier in between each loop (just between the threads
executing that BFS, rather than system-wide).

On this workload, flat parallelism scales well to the
level of 1 thread per core (128 threads on the T5-8
SPARC system). We see little improvement from fur-
ther threads, and then some degradation at 512. . .1024
threads. We recorded values from the SPARC CPU per-
formance counters. With 1 thread per core, 9.8% of load
instructions miss in the L2-D$. With flat parallelism, this
rises steadily to 29% with 8 threads per core.

We obtain the best performance using nesting within a
single core, corresponding to the L2-D$ in this machine.
Using nested parallelism, the miss rate rises only slightly
to 10.8% when moving from 128 to 1024 threads.

In addition to the results shown here we tried (i) nested
parallelism at a per-socket level, and (ii) parallelism only

at the inner level in the BFS algorithm. Both of these al-
ternatives were substantially worse than flat parallelism.

5 Related work

We discuss related work under three sections: program-
ming models providing parallel loops, implementations
of task parallelism, and prior work on combining tech-
niques:

Parallel loops. Our techniques could be used in imple-
mentations of programming models which include paral-
lel loops. Examples include OpenMP [22], parallel loops
in Intel Threading Building Blocks (TBB) [27], and the
proposed C Parallel Language Extensions [6]. Currently,
the GCC 4.9 OpenMP implementation uses a per-loop
shared counter with atomic fetch-and-add. As our results
show, this approach requires careful tuning.

Task-parallelism. Systems such as Cilk [8], TBB [27],
Wool [7, 26], and the Java ForkJoin framework [15]
support task-parallel programming by distributing
lightweight tasks using work-stealing systems such as
those of Blumofe et al. [3] or Chase-Lev [5]. Cilk and
TBB provide parallel loops built over task-parallel ab-
stractions, recursively decomposing loops until a mini-
mum size is reached (analogous to the batch size).

Typically, the common execution path involves a
thread taking a task from a local work queue, decompos-
ing the task, pushing part of the task back onto the queue,
and executing the extracted iterations. While these steps
can remain local to a thread, they require an atomic oper-
ation or memory fence [2]. Our request combining tech-
nique avoids these operations (aside from the one thread
performing the aggregate request). Asynchronous com-
bining reduces our fast path to a read of the current batch,
followed (without a fence) by a write for a new request.

Tzannes et al. [30, 31] observe that a thread can avoid
repeated operations on a work-queue by only pushing
tasks on to the queue when it is below a threshold size
(if the queue is above this size then that indicates that
other threads are busy because otherwise items from the
queue would have been stolen).

Using work stealing provides the opportunity to bene-
fit from large amounts of prior work on scalable imple-
mentations (dating back at least as far as the work of Bur-
ton and Sleep [4], and stretching to ongoing work such
as that of Tzannes et al. [31]). As discussed in our evalu-
ation, Galois is a state-of-the-art example of this kind of
implementation, specialized to shared-memory NUMA
systems, However, reifying each loop iteration as an en-
try in a work-stealing queue introduces storage and pro-
cessing costs, especially when loops contain short itera-
tions.
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work. On both graphs, Callisto-RTS performs well using
the complete machine of 1024 threads.

Summary. Compared with the OpenMP implementa-
tion, using per-core counters with asynchronous combin-
ing improves the best-case performance in all four of the
workloads in Figure 5 by 6%, 8%, 17%, and 39%. In ad-
dition, and perhaps more significantly, the performance
achieved is more stable over different thread and batch
settings, and does not require the programmer to select
between static and dynamic scheduling.

4.3 Nested parallelism

Our final results use nested parallelism to compute be-
tweenness centrality [17]. For each vertex, the computa-
tion executes breadth-first-search (BFS) traversals. The
execution time can be large even for a modestly sized
graph. We use the SNAP Slashdot data set [16] (82.1K
vertices, 948K edges). Figure 7 compares flat parallelism
(in which we process each vertex sequentially), versus
nested parallelism at different levels. We use a parallel
BFS algorithm with 13 different parallel loops, some ini-
tializing per-BFS data structures, and others performing
parallel expansion of the next level of vertices. There is
a barrier in between each loop (just between the threads
executing that BFS, rather than system-wide).

On this workload, flat parallelism scales well to the
level of 1 thread per core (128 threads on the T5-8
SPARC system). We see little improvement from fur-
ther threads, and then some degradation at 512. . .1024
threads. We recorded values from the SPARC CPU per-
formance counters. With 1 thread per core, 9.8% of load
instructions miss in the L2-D$. With flat parallelism, this
rises steadily to 29% with 8 threads per core.

We obtain the best performance using nesting within a
single core, corresponding to the L2-D$ in this machine.
Using nested parallelism, the miss rate rises only slightly
to 10.8% when moving from 128 to 1024 threads.

In addition to the results shown here we tried (i) nested
parallelism at a per-socket level, and (ii) parallelism only

at the inner level in the BFS algorithm. Both of these al-
ternatives were substantially worse than flat parallelism.

5 Related work

We discuss related work under three sections: program-
ming models providing parallel loops, implementations
of task parallelism, and prior work on combining tech-
niques:

Parallel loops. Our techniques could be used in imple-
mentations of programming models which include paral-
lel loops. Examples include OpenMP [22], parallel loops
in Intel Threading Building Blocks (TBB) [27], and the
proposed C Parallel Language Extensions [6]. Currently,
the GCC 4.9 OpenMP implementation uses a per-loop
shared counter with atomic fetch-and-add. As our results
show, this approach requires careful tuning.

Task-parallelism. Systems such as Cilk [8], TBB [27],
Wool [7, 26], and the Java ForkJoin framework [15]
support task-parallel programming by distributing
lightweight tasks using work-stealing systems such as
those of Blumofe et al. [3] or Chase-Lev [5]. Cilk and
TBB provide parallel loops built over task-parallel ab-
stractions, recursively decomposing loops until a mini-
mum size is reached (analogous to the batch size).

Typically, the common execution path involves a
thread taking a task from a local work queue, decompos-
ing the task, pushing part of the task back onto the queue,
and executing the extracted iterations. While these steps
can remain local to a thread, they require an atomic oper-
ation or memory fence [2]. Our request combining tech-
nique avoids these operations (aside from the one thread
performing the aggregate request). Asynchronous com-
bining reduces our fast path to a read of the current batch,
followed (without a fence) by a write for a new request.

Tzannes et al. [30, 31] observe that a thread can avoid
repeated operations on a work-queue by only pushing
tasks on to the queue when it is below a threshold size
(if the queue is above this size then that indicates that
other threads are busy because otherwise items from the
queue would have been stolen).

Using work stealing provides the opportunity to bene-
fit from large amounts of prior work on scalable imple-
mentations (dating back at least as far as the work of Bur-
ton and Sleep [4], and stretching to ongoing work such
as that of Tzannes et al. [31]). As discussed in our evalu-
ation, Galois is a state-of-the-art example of this kind of
implementation, specialized to shared-memory NUMA
systems, However, reifying each loop iteration as an en-
try in a work-stealing queue introduces storage and pro-
cessing costs, especially when loops contain short itera-
tions.

I With 128 threads + flat parallelism: 9.8% misses in L2-D
Cache

I With 1024 threads + flat parallelism: 29%
I With 2014 threads + 10.8%
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Discussion

I What to do when there are other processes? Busy waiting
and barriers don’t really work then.

I What is the relation to Callisto?
I What is the problem with C++ lambdas?
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