Oversubscription on Multicore Processors

Costin lancu, Steven Hofmeyr, Filip Blagojevi¢, Yili Zheng

Lawrence Berkeley National Laboratory

Parallel & Distributed Processing (IPDPS), 2010

/11



@ Increasingly parallel and asymmetric hardware (architecture 4+ performance)
e Existing runtimes in competitive environments

o Partitioning vs. sharing on real hardware



Oversubscription

Compensate for data and control dependencies

Decrease resource contention

Improve CPU utilization

Overhead for migration, context switching and lost hardware state (negligible)

Slower synchronization due to increased contention




e MPI (MPICH 2), UPC, OpenMP

@ Synchronization: poll + yield

e Linux 2.6.27, 2.6.28, 2.6.30

@ Intel compiler with —0O3

e NPB without load imbalances (separate paper)

Processor Clock GHz Cores L1 data/instr L2 cache L3 cache Memory/core NUMA

Tigerton Intel Xeon E7310 1.6 16 (4x4) 32K/32K 4M / 2 cores none 2GB no
Barcelona AMD Opteron 8350 2 16 (4x4) 64K/64K 512K / core 2M / socket 4GB socket
Nehalem Intel Xeon ES530 24 16 (2x4x2) 32K/32K 256K / core 8M / socket 1.5G / core socket




chmark Characteristics

Barrier Performance - AMD Barcelona

Time (microsec)




Benchmark Characteristics

Barrier Performance - AMD Barcelona

=
1
-3
e
B
@
E
=
UPC NPB 2.4 Barrier Stats, 16 threads
10000
1000
£
2 100
= 10
B
1
0.1
ABC ABC ABC ABC ABC ABC ABC
cg ep t is mg sp bt



UPC — UMA vs. NUMA

Performance relative to 1/core

2

0.5

r UPC Tigerton

bl

248 248 248 24 248 248 248 248 248 4
A B C A B C A B C A
ep ft is

4 4 248 248 248 24 248 248
B C A B C A B C
sp mg cg

@ sched_yield: default vs. POSIX

@ Pinning affects variance (120 % vs.
10 %) and memory affinity



UPC — UMA vs. NUMA

@ 2r UPC Tigerton cFs
é PSX yield
= IN —
o 15}
2
s 4 | @ sched_yield: default vs. POSIX
8
S ostf @ Pinning affects variance (120 % vs.
5 10 %) and memory affinity
o
A B C A B C A B C A B C A B C A B C
ep ft is sp mg cg

@ Small overall effect (+ 2% avg)
@ EP: computationally intensive

2r UPC Barcelona

PSX yiola m—m @ FT, IS: improvement up to 46 %

@ SP, MG: problem size +»
I granularity
thIJII @ CG: degradation up to 44 %

0.5

Performance relative to 1/core
° R
g



Balance

0.3 ce-UP& TFigerton
&L
S 0.2
(&)
—
=
5 0.1
=
o
= O
D
& -o.1
o -o.
o
o
£ %
-0.3
248 248 248 24 248 248 248 248 248 4 4 4 248 248 248 24 248 248
A B C A B C A B C A B C A B C A B C

ep ft is sp mg cg

Figure 5. Changes in balance on UMA, reported
as the ratio between the lowest and highest user time
across all cores compared to the 1/core setting.



Cache Miss Rate (LLC / L2)

Cache miss rate UPC Tigerton

Improvement over 1/core

248 248 248 24 248 248 248 248 248 4 4 4 248 248 248 24 248 248
A B C A B C A B C A B C A B C A B C
ep ft is sp mg cg

Figure 6. Changes in the total number of cache
misses per 1000 instructions, across all cores com-
pared to 1/core. The EP miss rate is very low.



MPI and OpenMP

2r MPI Tigerton

@ Overall decrease by 10 %

@ Caused by barrier overhead
(cp. modified UPC)

Performance relative to 1/core
(o]
o 4
> ) —
E- E ,ﬂ



MPI and OpenMP

@ 2r MPI Tigerton cFs
§ PSX yield
— IN —
o 15}
(<5
=
5 i @ Overall decrease by 10 %
8 @ Caused by barrier overhead
< o pe
g o5 | (cp. modified UPC)
o
I3
o- o
24 24 24 24 24 24 24 24 24 4 & 4 24 24 24 24 24 24
A B C A B C A B C A B C A B C A B C

ep ft is sp mg cg
2r OMP Nehalem cFs
PEXVEN — @ Slight degradation

Best performance with OMP_STATIC

TR @ KMP_BLOCKTIME
os | 0 Improvement up to 10 % for
fine-grained benchmarks

MB 2B MB B 218 218 218 28 248 248 218 28 D48 218 218 218 218 218 248 248 M8 248 218 248 o0 Best Overa” performance

A B CsS A B C S A B C S A B C S A B C S A B C S
ep ft is sp mg cg

Performance relative to 1/core



Competitive Environments

Sharing (best effort) vs. Partitioning (isolated on sockets)

One thread per core

o Overall 33 %/23 % improvement with sharing for UPC/OpenMP
on Barcelona (CMP) but no difference for Nehalem (SMT)
o Better for application with differing behavior

@ Oversubscription ...

e improves benefits of sharing for CMP
e changes relative order of performance for UPC, MPI, OpenMP

@ Imbalanced sharing possible

10/11



Conclusion

“Intuitively, oversubscription increases diversity in the system
and decreases the potential for resource conflicts.”

“All of our results and analysis indicate that the best predictor
of application behavior when oversubscribing is the average
inter-barrier interval. Applications with barriers executed every
few ms are affected, while coarser grained applications are
oblivious or their performance improves.”

“We expect the benefits of oversubscription to be even more

pronounced for irregular applications that suffer from load
imbalance.”

11/11



