
Cache-Oblivious Algorithms
Paper Reading Group

Matteo Frigo
Charles E. Leiserson

Harald Prokop
Sridhar Ramachandran

Presents: Maksym Planeta

03.09.2015



Table of Contents

Introduction

Cache-oblivious algorithms
Matrix multiplication
Matrix transposition
Fast Fourier Transform
Sorting
Relieved system model

Experimental evaluation

Conclusion



Table of Contents

Introduction

Cache-oblivious algorithms
Matrix multiplication
Matrix transposition
Fast Fourier Transform
Sorting
Relieved system model

Experimental evaluation

Conclusion



Matrix multiplication

ORD-MULT(A,B,C )

1 for i ← 1 to m
2 for j ← 1 to p
3 for k ← 1 to n
4 Cij ← Cij + Aik × Bkj



Matrix layout

Like in C . . .

split, and the two halves are multiplied. In case (4), we
have p � max � m 9 n � . Matrix B is split vertically, and
each half is multiplied by A. For square matrices, these
three cases together are equivalent to the recursive mul-
tiplication algorithm described in [9]. The base case oc-
curs when m < n < p < 1, in which case the two ele-
ments are multiplied and added into the result matrix.

Although this straightforward divide-and-conquer al-
gorithm contains no tuning parameters, it uses cache op-
timally. To analyze the REC-MULT algorithm, we as-
sume that the three matrices are stored in row-major or-
der, as shown in Figure 2(a). Intuitively, REC-MULT

uses the cache effectively, because once a subproblem
fits into the cache, its smaller subproblems can be solved
in cache with no further cache misses.

Theorem 1 The REC-MULT algorithm uses Θ 8 mnp :
work and incurs Θ 8 m � n � p � 8 mn � np � mp : � L �
mnp

�
L � Z : cache misses when multiplying an m � n ma-

trix by an n � p matrix.

Proof. It can be shown by induction that the work of
REC-MULT is Θ 8 mnp : . To analyze the cache misses, let
α ; 0 be the largest constant sufficiently small that three
submatrices of sizes m

� � n
�
, n
� � p

�
, and m

� � p
�
, where

max � m � 9 n � 9 p � � � α � Z, all fit completely in the cache.
We distinguish four cases depending on the initial size
of the matrices.
Case I: m 9 n 9 p ; α � Z. This case is the most intuitive.
The matrices do not fit in cache, since all dimensions are
“big enough.” The cache complexity can be described
by the recurrence

Q / m � n � p 0�� (5)���� ���
Θ / / mn 2 np 2 mp 0 3 L 0 if m � n � p �
	α 7 Z 3 2 � α 7 Z � �
2Q / m 3 2 � n � p 0 2 O / 1 0 ow. if m � n and m � p �
2Q / m � n 3 2 � p 0 2 O / 1 0 ow. if n  m and n � p �
2Q / m � n � p 3 2 0 2 O / 1 0 otherwise �

The base case arises as soon as all three submatrices fit
in cache. The total number of lines used by the three
submatrices is Θ 8 8 mn � np � mp : � L : . The only cache
misses that occur during the remainder of the recursion
are the Θ 8*8 mn � np � mp : � L : cache misses required to
bring the matrices into cache. In the recursive cases,
when the matrices do not fit in cache, we pay for the
cache misses of the recursive calls, which depend on the
dimensions of the matrices, plus O 8 1 : cache misses for
the overhead of manipulating submatrices. The solution
to this recurrence is Q 8 m 9 n 9 p : < Θ 8 mnp

�
L � Z : .

Case II: (m
� α � Z and n 9 p ; α � Z) or (n

� α � Z and
m 9 p ; α � Z) or (p

� α � Z and m 9 n ; α � Z). Here, we
shall present the case where m

� α � Z and n 9 p ; α � Z.
The proofs for the other cases are only small variations
of this proof. The REC-MULT algorithm always divides
n or p by 2 according to cases (3) and (4). At some point

00
11
22
33
44
55
66
77

88
99

1010
1111
1212
1313
1414
1515

1616
1717
1818
1919
2020
2121
2222
2323

2424
2525
2626
2727
2828
2929
3030
3131

3232
3333
3434
3535
3636
3737
3838
3939

4040
4141
4242
4343
4444
4545
4646
4747

4848
4949
5050
5151
5252
5353
5454
5555

5656
5757
5858
5959
6060
6161
6262
6363

00 11 22 33 44 55 66 77
88 99 1010 1111 1212 1313 1414 1515
1616 1717 1818 1919 2020 2121 2222 2323
2424 2525 2626 2727 2828 2929 3030 3131
3232 3333 3434 3535 3636 3737 3838 3939
4040 4141 4242 4343 4444 4545 4646 4747
4848 4949 5050 5151 5252 5353 5454 5555
5656 5757 5858 5959 6060 6161 6262 6363

(c)

(a)

(d)

(b)

00 11 22 33
44 55 66 77
88 99 1010 1111
1212 1313 1414 1515

1616 1717 1818 1919
2020 2121 2222 2323
2424 2525 2626 2727
2828 2929 3030 3131

3232 3333 3434 3535
3636 3737 3838 3939
4040 4141 4242 4343
4444 4545 4646 4747

4848 4949 5050 5151
5252 5353 5454 5555
5656 5757 5858 5959
6060 6161 6262 6363

00 11
22 33

44 55
66 77

88 99
1010 1111

1212 1313
1414 1515

1616 1717
1818 1919

2020 2121
2222 2323

2424 2525
2626 2727

2828 2929
3030 3131

3232 3333
3434 3535

3636 3737
3838 3939

4040 4141
4242 4343

4444 4545
4646 4747

4848 4949
5050 5151

5252 5353
5454 5555

5656 5757
5858 5959

6060 6161
6262 6363

Figure 2: Layout of a 16 � 16 matrix in (a) row ma-
jor, (b) column major, (c) 4 � 4-blocked, and (d) bit-
interleaved layouts.

in the recursion, both are small enough that the whole
problem fits into cache. The number of cache misses
can be described by the recurrence

Q / m � n � p 0�� (6)�� � Θ / 1 2 n 2 np 3 L 2 m 0 if n � p ��	α 7 Z 3 2 � α 7 Z � �
2Q / m � n 3 2 � p 0 2 O / 1 0 otherwise if n � p �
2Q / m � n � p 3 2 0 2 O / 1 0 otherwise ;

whose solution is Q 8 m 9 n 9 p : < Θ 8 np
�
L � mnp

�
L � Z : .

Case III: (n 9 p � α � Z and m ; α � Z) or (m 9 p � α � Z
and n ; α � Z) or (m 9 n � α � Z and p ; α � Z). In each
of these cases, one of the matrices fits into cache, and
the others do not. Here, we shall present the case where
n 9 p � α � Z and m ; α � Z. The other cases can be
proven similarly. The REC-MULT algorithm always di-
vides m by 2 according to case (2). At some point in the
recursion, m falls into the range α � Z

�
2
�

m
� α � Z,

and the whole problem fits in cache. The number cache
misses can be described by the recurrence

Q / m � n 0�� (7)�
Θ / 1 2 m 0 if m ��	α 7 Z 3 2 � α 7 Z � �
2Q / m 3 2 � n � p 0 2 O / 1 0 otherwise ;

whose solution is Q 8 m 9 n 9 p : < Θ 8 m � mnp
�
L � Z : .

Case IV: m 9 n 9 p � α � Z. From the choice of α, all
three matrices fit into cache. The matrices are stored
on Θ 8 1 � mn

�
L � np

�
L � mp

�
L : cache lines. Therefore,

we have Q 8 m 9 n 9 p : < Θ 8 1 � 8 mn � np � mp : � L : .
We require the tall-cache assumption (1) in these

analyses, because the matrices are stored in row-major
order. Tall caches are also needed if matrices are stored

Figure: Row major order

split, and the two halves are multiplied. In case (4), we
have p � max � m 9 n � . Matrix B is split vertically, and
each half is multiplied by A. For square matrices, these
three cases together are equivalent to the recursive mul-
tiplication algorithm described in [9]. The base case oc-
curs when m < n < p < 1, in which case the two ele-
ments are multiplied and added into the result matrix.

Although this straightforward divide-and-conquer al-
gorithm contains no tuning parameters, it uses cache op-
timally. To analyze the REC-MULT algorithm, we as-
sume that the three matrices are stored in row-major or-
der, as shown in Figure 2(a). Intuitively, REC-MULT

uses the cache effectively, because once a subproblem
fits into the cache, its smaller subproblems can be solved
in cache with no further cache misses.

Theorem 1 The REC-MULT algorithm uses Θ 8 mnp :
work and incurs Θ 8 m � n � p � 8 mn � np � mp : � L �
mnp

�
L � Z : cache misses when multiplying an m � n ma-

trix by an n � p matrix.

Proof. It can be shown by induction that the work of
REC-MULT is Θ 8 mnp : . To analyze the cache misses, let
α ; 0 be the largest constant sufficiently small that three
submatrices of sizes m

� � n
�
, n
� � p

�
, and m

� � p
�
, where

max � m � 9 n � 9 p � � � α � Z, all fit completely in the cache.
We distinguish four cases depending on the initial size
of the matrices.
Case I: m 9 n 9 p ; α � Z. This case is the most intuitive.
The matrices do not fit in cache, since all dimensions are
“big enough.” The cache complexity can be described
by the recurrence

Q / m � n � p 0�� (5)���� ���
Θ / / mn 2 np 2 mp 0 3 L 0 if m � n � p �
	α 7 Z 3 2 � α 7 Z � �
2Q / m 3 2 � n � p 0 2 O / 1 0 ow. if m � n and m � p �
2Q / m � n 3 2 � p 0 2 O / 1 0 ow. if n  m and n � p �
2Q / m � n � p 3 2 0 2 O / 1 0 otherwise �

The base case arises as soon as all three submatrices fit
in cache. The total number of lines used by the three
submatrices is Θ 8 8 mn � np � mp : � L : . The only cache
misses that occur during the remainder of the recursion
are the Θ 8*8 mn � np � mp : � L : cache misses required to
bring the matrices into cache. In the recursive cases,
when the matrices do not fit in cache, we pay for the
cache misses of the recursive calls, which depend on the
dimensions of the matrices, plus O 8 1 : cache misses for
the overhead of manipulating submatrices. The solution
to this recurrence is Q 8 m 9 n 9 p : < Θ 8 mnp

�
L � Z : .

Case II: (m
� α � Z and n 9 p ; α � Z) or (n

� α � Z and
m 9 p ; α � Z) or (p

� α � Z and m 9 n ; α � Z). Here, we
shall present the case where m

� α � Z and n 9 p ; α � Z.
The proofs for the other cases are only small variations
of this proof. The REC-MULT algorithm always divides
n or p by 2 according to cases (3) and (4). At some point

00
11
22
33
44
55
66
77

88
99

1010
1111
1212
1313
1414
1515

1616
1717
1818
1919
2020
2121
2222
2323

2424
2525
2626
2727
2828
2929
3030
3131

3232
3333
3434
3535
3636
3737
3838
3939

4040
4141
4242
4343
4444
4545
4646
4747

4848
4949
5050
5151
5252
5353
5454
5555

5656
5757
5858
5959
6060
6161
6262
6363

00 11 22 33 44 55 66 77
88 99 1010 1111 1212 1313 1414 1515
1616 1717 1818 1919 2020 2121 2222 2323
2424 2525 2626 2727 2828 2929 3030 3131
3232 3333 3434 3535 3636 3737 3838 3939
4040 4141 4242 4343 4444 4545 4646 4747
4848 4949 5050 5151 5252 5353 5454 5555
5656 5757 5858 5959 6060 6161 6262 6363

(c)

(a)

(d)

(b)

00 11 22 33
44 55 66 77
88 99 1010 1111
1212 1313 1414 1515

1616 1717 1818 1919
2020 2121 2222 2323
2424 2525 2626 2727
2828 2929 3030 3131

3232 3333 3434 3535
3636 3737 3838 3939
4040 4141 4242 4343
4444 4545 4646 4747

4848 4949 5050 5151
5252 5353 5454 5555
5656 5757 5858 5959
6060 6161 6262 6363

00 11
22 33

44 55
66 77

88 99
1010 1111

1212 1313
1414 1515

1616 1717
1818 1919

2020 2121
2222 2323

2424 2525
2626 2727

2828 2929
3030 3131

3232 3333
3434 3535

3636 3737
3838 3939

4040 4141
4242 4343

4444 4545
4646 4747

4848 4949
5050 5151

5252 5353
5454 5555

5656 5757
5858 5959

6060 6161
6262 6363

Figure 2: Layout of a 16 � 16 matrix in (a) row ma-
jor, (b) column major, (c) 4 � 4-blocked, and (d) bit-
interleaved layouts.

in the recursion, both are small enough that the whole
problem fits into cache. The number of cache misses
can be described by the recurrence

Q / m � n � p 0�� (6)�� � Θ / 1 2 n 2 np 3 L 2 m 0 if n � p ��	α 7 Z 3 2 � α 7 Z � �
2Q / m � n 3 2 � p 0 2 O / 1 0 otherwise if n � p �
2Q / m � n � p 3 2 0 2 O / 1 0 otherwise ;

whose solution is Q 8 m 9 n 9 p : < Θ 8 np
�
L � mnp

�
L � Z : .

Case III: (n 9 p � α � Z and m ; α � Z) or (m 9 p � α � Z
and n ; α � Z) or (m 9 n � α � Z and p ; α � Z). In each
of these cases, one of the matrices fits into cache, and
the others do not. Here, we shall present the case where
n 9 p � α � Z and m ; α � Z. The other cases can be
proven similarly. The REC-MULT algorithm always di-
vides m by 2 according to case (2). At some point in the
recursion, m falls into the range α � Z

�
2
�

m
� α � Z,

and the whole problem fits in cache. The number cache
misses can be described by the recurrence

Q / m � n 0�� (7)�
Θ / 1 2 m 0 if m ��	α 7 Z 3 2 � α 7 Z � �
2Q / m 3 2 � n � p 0 2 O / 1 0 otherwise ;

whose solution is Q 8 m 9 n 9 p : < Θ 8 m � mnp
�
L � Z : .

Case IV: m 9 n 9 p � α � Z. From the choice of α, all
three matrices fit into cache. The matrices are stored
on Θ 8 1 � mn

�
L � np

�
L � mp

�
L : cache lines. Therefore,

we have Q 8 m 9 n 9 p : < Θ 8 1 � 8 mn � np � mp : � L : .
We require the tall-cache assumption (1) in these

analyses, because the matrices are stored in row-major
order. Tall caches are also needed if matrices are stored

Figure: Column major order

Or like in Fortran



Matrix layout

Like in C . . .

split, and the two halves are multiplied. In case (4), we
have p � max � m 9 n � . Matrix B is split vertically, and
each half is multiplied by A. For square matrices, these
three cases together are equivalent to the recursive mul-
tiplication algorithm described in [9]. The base case oc-
curs when m < n < p < 1, in which case the two ele-
ments are multiplied and added into the result matrix.

Although this straightforward divide-and-conquer al-
gorithm contains no tuning parameters, it uses cache op-
timally. To analyze the REC-MULT algorithm, we as-
sume that the three matrices are stored in row-major or-
der, as shown in Figure 2(a). Intuitively, REC-MULT

uses the cache effectively, because once a subproblem
fits into the cache, its smaller subproblems can be solved
in cache with no further cache misses.

Theorem 1 The REC-MULT algorithm uses Θ 8 mnp :
work and incurs Θ 8 m � n � p � 8 mn � np � mp : � L �
mnp

�
L � Z : cache misses when multiplying an m � n ma-

trix by an n � p matrix.

Proof. It can be shown by induction that the work of
REC-MULT is Θ 8 mnp : . To analyze the cache misses, let
α ; 0 be the largest constant sufficiently small that three
submatrices of sizes m

� � n
�
, n
� � p

�
, and m

� � p
�
, where

max � m � 9 n � 9 p � � � α � Z, all fit completely in the cache.
We distinguish four cases depending on the initial size
of the matrices.
Case I: m 9 n 9 p ; α � Z. This case is the most intuitive.
The matrices do not fit in cache, since all dimensions are
“big enough.” The cache complexity can be described
by the recurrence

Q / m � n � p 0�� (5)���� ���
Θ / / mn 2 np 2 mp 0 3 L 0 if m � n � p �
	α 7 Z 3 2 � α 7 Z � �
2Q / m 3 2 � n � p 0 2 O / 1 0 ow. if m � n and m � p �
2Q / m � n 3 2 � p 0 2 O / 1 0 ow. if n  m and n � p �
2Q / m � n � p 3 2 0 2 O / 1 0 otherwise �

The base case arises as soon as all three submatrices fit
in cache. The total number of lines used by the three
submatrices is Θ 8 8 mn � np � mp : � L : . The only cache
misses that occur during the remainder of the recursion
are the Θ 8*8 mn � np � mp : � L : cache misses required to
bring the matrices into cache. In the recursive cases,
when the matrices do not fit in cache, we pay for the
cache misses of the recursive calls, which depend on the
dimensions of the matrices, plus O 8 1 : cache misses for
the overhead of manipulating submatrices. The solution
to this recurrence is Q 8 m 9 n 9 p : < Θ 8 mnp

�
L � Z : .

Case II: (m
� α � Z and n 9 p ; α � Z) or (n

� α � Z and
m 9 p ; α � Z) or (p

� α � Z and m 9 n ; α � Z). Here, we
shall present the case where m

� α � Z and n 9 p ; α � Z.
The proofs for the other cases are only small variations
of this proof. The REC-MULT algorithm always divides
n or p by 2 according to cases (3) and (4). At some point

00
11
22
33
44
55
66
77

88
99

1010
1111
1212
1313
1414
1515

1616
1717
1818
1919
2020
2121
2222
2323

2424
2525
2626
2727
2828
2929
3030
3131

3232
3333
3434
3535
3636
3737
3838
3939

4040
4141
4242
4343
4444
4545
4646
4747

4848
4949
5050
5151
5252
5353
5454
5555

5656
5757
5858
5959
6060
6161
6262
6363

00 11 22 33 44 55 66 77
88 99 1010 1111 1212 1313 1414 1515
1616 1717 1818 1919 2020 2121 2222 2323
2424 2525 2626 2727 2828 2929 3030 3131
3232 3333 3434 3535 3636 3737 3838 3939
4040 4141 4242 4343 4444 4545 4646 4747
4848 4949 5050 5151 5252 5353 5454 5555
5656 5757 5858 5959 6060 6161 6262 6363

(c)

(a)

(d)

(b)

00 11 22 33
44 55 66 77
88 99 1010 1111
1212 1313 1414 1515

1616 1717 1818 1919
2020 2121 2222 2323
2424 2525 2626 2727
2828 2929 3030 3131

3232 3333 3434 3535
3636 3737 3838 3939
4040 4141 4242 4343
4444 4545 4646 4747

4848 4949 5050 5151
5252 5353 5454 5555
5656 5757 5858 5959
6060 6161 6262 6363

00 11
22 33

44 55
66 77

88 99
1010 1111

1212 1313
1414 1515

1616 1717
1818 1919

2020 2121
2222 2323

2424 2525
2626 2727

2828 2929
3030 3131

3232 3333
3434 3535

3636 3737
3838 3939

4040 4141
4242 4343

4444 4545
4646 4747

4848 4949
5050 5151

5252 5353
5454 5555

5656 5757
5858 5959

6060 6161
6262 6363

Figure 2: Layout of a 16 � 16 matrix in (a) row ma-
jor, (b) column major, (c) 4 � 4-blocked, and (d) bit-
interleaved layouts.

in the recursion, both are small enough that the whole
problem fits into cache. The number of cache misses
can be described by the recurrence

Q / m � n � p 0�� (6)�� � Θ / 1 2 n 2 np 3 L 2 m 0 if n � p ��	α 7 Z 3 2 � α 7 Z � �
2Q / m � n 3 2 � p 0 2 O / 1 0 otherwise if n � p �
2Q / m � n � p 3 2 0 2 O / 1 0 otherwise ;

whose solution is Q 8 m 9 n 9 p : < Θ 8 np
�
L � mnp

�
L � Z : .

Case III: (n 9 p � α � Z and m ; α � Z) or (m 9 p � α � Z
and n ; α � Z) or (m 9 n � α � Z and p ; α � Z). In each
of these cases, one of the matrices fits into cache, and
the others do not. Here, we shall present the case where
n 9 p � α � Z and m ; α � Z. The other cases can be
proven similarly. The REC-MULT algorithm always di-
vides m by 2 according to case (2). At some point in the
recursion, m falls into the range α � Z

�
2
�

m
� α � Z,

and the whole problem fits in cache. The number cache
misses can be described by the recurrence

Q / m � n 0�� (7)�
Θ / 1 2 m 0 if m ��	α 7 Z 3 2 � α 7 Z � �
2Q / m 3 2 � n � p 0 2 O / 1 0 otherwise ;

whose solution is Q 8 m 9 n 9 p : < Θ 8 m � mnp
�
L � Z : .

Case IV: m 9 n 9 p � α � Z. From the choice of α, all
three matrices fit into cache. The matrices are stored
on Θ 8 1 � mn

�
L � np

�
L � mp

�
L : cache lines. Therefore,

we have Q 8 m 9 n 9 p : < Θ 8 1 � 8 mn � np � mp : � L : .
We require the tall-cache assumption (1) in these

analyses, because the matrices are stored in row-major
order. Tall caches are also needed if matrices are stored

Figure: Row major order

split, and the two halves are multiplied. In case (4), we
have p � max � m 9 n � . Matrix B is split vertically, and
each half is multiplied by A. For square matrices, these
three cases together are equivalent to the recursive mul-
tiplication algorithm described in [9]. The base case oc-
curs when m < n < p < 1, in which case the two ele-
ments are multiplied and added into the result matrix.

Although this straightforward divide-and-conquer al-
gorithm contains no tuning parameters, it uses cache op-
timally. To analyze the REC-MULT algorithm, we as-
sume that the three matrices are stored in row-major or-
der, as shown in Figure 2(a). Intuitively, REC-MULT

uses the cache effectively, because once a subproblem
fits into the cache, its smaller subproblems can be solved
in cache with no further cache misses.

Theorem 1 The REC-MULT algorithm uses Θ 8 mnp :
work and incurs Θ 8 m � n � p � 8 mn � np � mp : � L �
mnp

�
L � Z : cache misses when multiplying an m � n ma-

trix by an n � p matrix.

Proof. It can be shown by induction that the work of
REC-MULT is Θ 8 mnp : . To analyze the cache misses, let
α ; 0 be the largest constant sufficiently small that three
submatrices of sizes m

� � n
�
, n
� � p

�
, and m

� � p
�
, where

max � m � 9 n � 9 p � � � α � Z, all fit completely in the cache.
We distinguish four cases depending on the initial size
of the matrices.
Case I: m 9 n 9 p ; α � Z. This case is the most intuitive.
The matrices do not fit in cache, since all dimensions are
“big enough.” The cache complexity can be described
by the recurrence

Q / m � n � p 0�� (5)���� ���
Θ / / mn 2 np 2 mp 0 3 L 0 if m � n � p �
	α 7 Z 3 2 � α 7 Z � �
2Q / m 3 2 � n � p 0 2 O / 1 0 ow. if m � n and m � p �
2Q / m � n 3 2 � p 0 2 O / 1 0 ow. if n  m and n � p �
2Q / m � n � p 3 2 0 2 O / 1 0 otherwise �

The base case arises as soon as all three submatrices fit
in cache. The total number of lines used by the three
submatrices is Θ 8 8 mn � np � mp : � L : . The only cache
misses that occur during the remainder of the recursion
are the Θ 8*8 mn � np � mp : � L : cache misses required to
bring the matrices into cache. In the recursive cases,
when the matrices do not fit in cache, we pay for the
cache misses of the recursive calls, which depend on the
dimensions of the matrices, plus O 8 1 : cache misses for
the overhead of manipulating submatrices. The solution
to this recurrence is Q 8 m 9 n 9 p : < Θ 8 mnp

�
L � Z : .

Case II: (m
� α � Z and n 9 p ; α � Z) or (n

� α � Z and
m 9 p ; α � Z) or (p

� α � Z and m 9 n ; α � Z). Here, we
shall present the case where m

� α � Z and n 9 p ; α � Z.
The proofs for the other cases are only small variations
of this proof. The REC-MULT algorithm always divides
n or p by 2 according to cases (3) and (4). At some point

00
11
22
33
44
55
66
77

88
99

1010
1111
1212
1313
1414
1515

1616
1717
1818
1919
2020
2121
2222
2323

2424
2525
2626
2727
2828
2929
3030
3131

3232
3333
3434
3535
3636
3737
3838
3939

4040
4141
4242
4343
4444
4545
4646
4747

4848
4949
5050
5151
5252
5353
5454
5555

5656
5757
5858
5959
6060
6161
6262
6363

00 11 22 33 44 55 66 77
88 99 1010 1111 1212 1313 1414 1515
1616 1717 1818 1919 2020 2121 2222 2323
2424 2525 2626 2727 2828 2929 3030 3131
3232 3333 3434 3535 3636 3737 3838 3939
4040 4141 4242 4343 4444 4545 4646 4747
4848 4949 5050 5151 5252 5353 5454 5555
5656 5757 5858 5959 6060 6161 6262 6363

(c)

(a)

(d)

(b)

00 11 22 33
44 55 66 77
88 99 1010 1111
1212 1313 1414 1515

1616 1717 1818 1919
2020 2121 2222 2323
2424 2525 2626 2727
2828 2929 3030 3131

3232 3333 3434 3535
3636 3737 3838 3939
4040 4141 4242 4343
4444 4545 4646 4747

4848 4949 5050 5151
5252 5353 5454 5555
5656 5757 5858 5959
6060 6161 6262 6363

00 11
22 33

44 55
66 77

88 99
1010 1111

1212 1313
1414 1515

1616 1717
1818 1919

2020 2121
2222 2323

2424 2525
2626 2727

2828 2929
3030 3131

3232 3333
3434 3535

3636 3737
3838 3939

4040 4141
4242 4343

4444 4545
4646 4747

4848 4949
5050 5151

5252 5353
5454 5555

5656 5757
5858 5959

6060 6161
6262 6363

Figure 2: Layout of a 16 � 16 matrix in (a) row ma-
jor, (b) column major, (c) 4 � 4-blocked, and (d) bit-
interleaved layouts.

in the recursion, both are small enough that the whole
problem fits into cache. The number of cache misses
can be described by the recurrence

Q / m � n � p 0�� (6)�� � Θ / 1 2 n 2 np 3 L 2 m 0 if n � p ��	α 7 Z 3 2 � α 7 Z � �
2Q / m � n 3 2 � p 0 2 O / 1 0 otherwise if n � p �
2Q / m � n � p 3 2 0 2 O / 1 0 otherwise ;

whose solution is Q 8 m 9 n 9 p : < Θ 8 np
�
L � mnp

�
L � Z : .

Case III: (n 9 p � α � Z and m ; α � Z) or (m 9 p � α � Z
and n ; α � Z) or (m 9 n � α � Z and p ; α � Z). In each
of these cases, one of the matrices fits into cache, and
the others do not. Here, we shall present the case where
n 9 p � α � Z and m ; α � Z. The other cases can be
proven similarly. The REC-MULT algorithm always di-
vides m by 2 according to case (2). At some point in the
recursion, m falls into the range α � Z

�
2
�

m
� α � Z,

and the whole problem fits in cache. The number cache
misses can be described by the recurrence

Q / m � n 0�� (7)�
Θ / 1 2 m 0 if m ��	α 7 Z 3 2 � α 7 Z � �
2Q / m 3 2 � n � p 0 2 O / 1 0 otherwise ;

whose solution is Q 8 m 9 n 9 p : < Θ 8 m � mnp
�
L � Z : .

Case IV: m 9 n 9 p � α � Z. From the choice of α, all
three matrices fit into cache. The matrices are stored
on Θ 8 1 � mn

�
L � np

�
L � mp

�
L : cache lines. Therefore,

we have Q 8 m 9 n 9 p : < Θ 8 1 � 8 mn � np � mp : � L : .
We require the tall-cache assumption (1) in these

analyses, because the matrices are stored in row-major
order. Tall caches are also needed if matrices are stored

Figure: Column major order

Or like in Fortran



Cache friendly algorithm

BLOCK-MULT(A,B,C , n)

1 for i ← 1 to n/s
2 for j ← 1 to n/s
3 for k ← 1 to n/s
4 ORD-MULT(Aik ,Bkj ,Cij , s)



BLOCK-MULT issues

Being cache aware is hard:

I Cumbersome structure

I Complicated choice of s

I Expensive mispicking of s

I Problematic if n mod s 6= 0



Motivation

I Keeping algorithm simple is nice.

I But cache effectiveness is the must.



Table of Contents

Introduction

Cache-oblivious algorithms
Matrix multiplication
Matrix transposition
Fast Fourier Transform
Sorting
Relieved system model

Experimental evaluation

Conclusion



System model

Cache-Oblivious Algorithms
EXTENDED ABSTRACT

Matteo Frigo Charles E. Leiserson Harald Prokop Sridhar Ramachandran
MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139����������	
��������������������������������������� �!
��"#�����#�$�
%�'&(��#��&*)+�%�,&-����"

Abstract This paper presents asymptotically optimal algo-
rithms for rectangular matrix transpose, FFT, and sorting on
computers with multiple levels of caching. Unlike previous
optimal algorithms, these algorithms are cache oblivious: no
variables dependent on hardware parameters, such as cache
size and cache-line length, need to be tuned to achieve opti-
mality. Nevertheless, these algorithms use an optimal amount
of work and move data optimally among multiple levels of
cache. For a cache with size Z and cache-line length L where
Z . Ω / L2 0 the number of cache misses for an m 1 n ma-
trix transpose is Θ / 1 2 mn 3 L 0 . The number of cache misses
for either an n-point FFT or the sorting of n numbers is
Θ / 1 24/ n 3 L 0 / 1 2 logZ n 050 . We also give an Θ / mnp 0 -work al-
gorithm to multiply an m 1 n matrix by an n 1 p matrix that
incurs Θ / 1 26/ mn 2 np 2 mp 0 3 L 2 mnp 3 L 7 Z 0 cache faults.

We introduce an “ideal-cache” model to analyze our algo-
rithms. We prove that an optimal cache-oblivious algorithm
designed for two levels of memory is also optimal for multi-
ple levels and that the assumption of optimal replacement in
the ideal-cache model can be simulated efficiently by LRU re-
placement. We also provide preliminary empirical results on
the effectiveness of cache-oblivious algorithms in practice.

1. Introduction
Resource-oblivious algorithms that nevertheless use re-
sources efficiently offer advantages of simplicity and
portability over resource-aware algorithms whose re-
source usage must be programmed explicitly. In this
paper, we study cache resources, specifically, the hier-
archy of memories in modern computers. We exhibit
several “cache-oblivious” algorithms that use cache as
effectively as “cache-aware” algorithms.

Before discussing the notion of cache obliviousness,
we first introduce the 8 Z 9 L : ideal-cache model to study
the cache complexity of algorithms. This model, which
is illustrated in Figure 1, consists of a computer with a
two-level memory hierarchy consisting of an ideal (data)
cache of Z words and an arbitrarily large main mem-
ory. Because the actual size of words in a computer is
typically a small, fixed size (4 bytes, 8 bytes, etc.), we

This research was supported in part by the Defense Advanced
Research Projects Agency (DARPA) under Grant F30602-97-1-0270.
Matteo Frigo was supported in part by a Digital Equipment Corpora-
tion fellowship.

Q
cache
misses

organized by
optimal replacement

strategy

Main
Memory

Cache

Z 3 L Cache lines

Lines
of length L

CPU

W
work

Figure 1: The ideal-cache model

shall assume that word size is constant; the particular
constant does not affect our asymptotic analyses. The
cache is partitioned into cache lines, each consisting of
L consecutive words which are always moved together
between cache and main memory. Cache designers typ-
ically use L ; 1, banking on spatial locality to amortize
the overhead of moving the cache line. We shall gener-
ally assume in this paper that the cache is tall:

Z < Ω 8 L2 :�9 (1)

which is usually true in practice.
The processor can only reference words that reside

in the cache. If the referenced word belongs to a line
already in cache, a cache hit occurs, and the word is
delivered to the processor. Otherwise, a cache miss oc-
curs, and the line is fetched into the cache. The ideal
cache is fully associative [20, Ch. 5]: cache lines can be
stored anywhere in the cache. If the cache is full, a cache
line must be evicted. The ideal cache uses the optimal
off-line strategy of replacing the cache line whose next
access is furthest in the future [7], and thus it exploits
temporal locality perfectly.

Unlike various other hierarchical-memory models
[1, 2, 5, 8] in which algorithms are analyzed in terms of
a single measure, the ideal-cache model uses two mea-
sures. An algorithm with an input of size n is measured
by its work complexity W 8 n : —its conventional running
time in a RAM model [4]—and its cache complexity
Q 8 n;Z 9 L : —the number of cache misses it incurs as a

I Two level memory

I Fully associative

I Strictly optimal replacement

I Automatic replacement

I Tall cache:

Z = Ω(L2),

where:

Z – number of
words in the
cache

L – number of
words in a
cache line



Matrix multiplication

Given: A[m × n]× B[n × p]→ C [m × p]

(
A1

A2

)
B =

(
A1B
A2B

)
, m ≥ max(n, p) (1)

(
A1 A2

)( B1

B2

)
= A1B1 + A2B2, n ≥ max(m, p) (2)

A
(
B1 B2

)
=
(
AB1 AB2

)
, p ≥ max(n,m) (3)

Cij := Cij + Aik · Bkj , m = n = p = 1 (4)



Bounds

REC-MULT
Work: Θ(n3) Cache misses: Θ(n + n2/L + n3/L

√
Z )

vs BLOCK-MULT
Work: Θ(n3) Cache misses: Θ(1 + n2/L + n3/L

√
Z )

vs Strassen’s [2] (cache oblivious)

Work: Θ(nlog2 7) Cache misses: Θ(1 + n2/L + nlog2 7/L
√
Z )



Matrix transposition

Given: A[m × n]→ B[n ×m]

A =
(
A1 A2

)
,B =

(
B1

B2

)
(5)



Bounds

REC-TRANSPOSE
Work: Θ(n ·m) Cache misses: Θ(1 + mn/L)

Asymptotically optimal

Näıve
Work: Θ(n ·m) Cache misses: Θ(n ·m)



Discrete Fourier Transform (DFT)

Compute:

Y [i ] =
n−1∑
j=0

X [j ]ω−ijn ,

where ωn = e2π
√
−1/n

Assume n = 2k | k ∈ N
Choose n1 = 2dlog2n/2e, n2 = 2blog2n/2c

Factorized Y (Cooley-Turkey algorithm):

Y [i1 + i2n1] =

n2−1∑
j2=0

n1−1∑
j1=0

X [j1n2 + j2]ω−j1j2n

ω−j1j2n2





Sorting

Mergesort is not optimal with respect to cache misses.

1. Funnelsort

2. Distribution sort

I Recursive

I Asymptotically cache-optimal

I Not every recursive sort is cache optimal



Funnelsort

1. Split input into n
1
3 of size n

2
3 , and sort these arrays recursively

2. Merge n
1
3 sorted sequences using n

1
3 -merger



k-merger

L1

k-merger

R

buffers

L �
k

Figure 3: Illustration of a k-merger. A k-merger is built
recursively out of � k “left” � k-mergers L1, L2, � � � , L � k,
a series of buffers, and one “right” � k-merger R.

O 8 n lgn : work complexity, and optimal O 8 1 � 8 n � L : 8 1 �
logZ n : : cache complexity.

Funnelsort is similar to mergesort. In order to sort
a (contiguous) array of n elements, funnelsort performs
the following two steps:

1. Split the input into n1 � 3 contiguous arrays of size
n2 � 3, and sort these arrays recursively.

2. Merge the n1 � 3 sorted sequences using a n1 � 3-
merger, which is described below.

Funnelsort differs from mergesort in the way the
merge operation works. Merging is performed by a de-
vice called a k-merger, which inputs k sorted sequences
and merges them. A k-merger operates by recursively
merging sorted sequences which become progressively
longer as the algorithm proceeds. Unlike mergesort,
however, a k-merger suspends work on a merging sub-
problem when the merged output sequence becomes
“long enough” and resumes work on another merging
subproblem.

This complicated flow of control makes a k-merger
a bit tricky to describe. Figure 3 shows a representa-
tion of a k-merger, which has k sorted sequences as in-
puts. Throughout its execution, the k-merger maintains
the following invariant.

Invariant Each invocation of a k-merger outputs the
next k3 elements of the sorted sequence obtained by
merging the k input sequences.

A k-merger is built recursively out of � k-mergers in
the following way. The k inputs are partitioned into � k
sets of � k elements, which form the input to the � k� k-mergers L1 9 L2 9 � � � 9 L � k in the left part of the figure.
The outputs of these mergers are connected to the inputs

of � k buffers. Each buffer is a FIFO queue that can
hold 2k3 � 2 elements. Finally, the outputs of the buffers
are connected to the � k inputs of the � k-merger R in
the right part of the figure. The output of this final � k-
merger becomes the output of the whole k-merger. The
intermediate buffers are overdimensioned, since each
can hold 2k3 � 2 elements, which is twice the number k3 � 2
of elements output by a � k-merger. This additional
buffer space is necessary for the correct behavior of the
algorithm, as will be explained below. The base case of
the recursion is a k-merger with k < 2, which produces
k3 < 8 elements whenever invoked.

A k-merger operates recursively in the following way.
In order to output k3 elements, the k-merger invokes
R k3 � 2 times. Before each invocation, however, the k-
merger fills all buffers that are less than half full, i.e.,
all buffers that contain less than k3 � 2 elements. In order
to fill buffer i, the algorithm invokes the corresponding
left merger Li once. Since Li outputs k3 � 2 elements, the
buffer contains at least k3 � 2 elements after Li finishes.

It can be proven by induction that the work com-
plexity of funnelsort is O 8 n lgn : . We will now analyze
the cache complexity. The goal of the analysis is to
show that funnelsort on n elements requires at most Q 8 n :
cache misses, where

Q 8 n :#< O 8 1 � 8 n � L : 8 1 � logZ n :*: �
In order to prove this result, we need three auxiliary lem-
mas. The first lemma bounds the space required by a
k-merger.

Lemma 4 A k-merger can be laid out in O 8 k2 : contigu-
ous memory locations.

Proof. A k-merger requires O 8 k2 : memory locations
for the buffers, plus the space required by the � k-
mergers. The space S 8 k : thus satisfies the recurrence

S 8 k : � 8 � k � 1 : S 8 � k : � O 8 k2 :�9
whose solution is S 8 k :�< O 8 k2 : .

In order to achieve the bound on Q 8 n : , the buffers
in a k-merger must be maintained as circular queues of
size k. This requirement guarantees that we can man-
age the queue cache-efficiently, in the sense stated by
the next lemma.

Lemma 5 Performing r insert and remove operations
on a circular queue causes in O 8 1 � r

�
L : cache misses

as long as two cache lines are available for the buffer.

Proof. Associate the two cache lines with the head and
tail of the circular queue. If a new cache line is read
during a insert (delete) operation, the next L � 1 insert
(delete) operations do not cause a cache miss.

The next lemma bounds the cache complexity of a
k-merger.



Bounds

Work: O(n · log2n)
Optimal cache misses: O(1 + (n/L)(1 + logZn))



Relieved system model

I LRU
I Θ(Q(n;Z ; L))

I Multilevel cache
I inclusive cache



Table of Contents

Introduction

Cache-oblivious algorithms
Matrix multiplication
Matrix transposition
Fast Fourier Transform
Sorting
Relieved system model

Experimental evaluation

Conclusion



Micro-benchmarks

0

0.02

0.04

0.06

0.08

0.1

0.12

0 100 200 300 400 500 600

T
im

e 
(m

ic
ro

se
co

nd
s)

N

iterative
recursive

Figure 5: Average time taken to multiply two N � N
matrices, divided by N3.

cept that the divide-and-conquer structure was modified
to produce exact powers of 2 as submatrix sizes wher-
ever possible. In addition, the base cases were “coars-
ened” by inlining the recursion near the leaves to in-
crease their size and overcome the overhead of proce-
dure calls. (A good research problem is to determine
an effective compiler strategy for coarsening base cases
automatically.)

Although these results must be considered prelimi-
nary, Figure 4 strongly indicates that the recursive al-
gorithm outperforms the iterative algorithm throughout
the range of matrix sizes. Moreover, the iterative al-
gorithm behaves erratically, apparently due to so-called
“conflict” misses [20, p. 390], where limited cache asso-
ciativity interacts with the regular addressing of the ma-
trix to cause systematic interference. Blocking the itera-
tive algorithm should help with conflict misses [22], but
it would make the algorithm cache aware. For large ma-
trices, the recursive algorithm executes in less than 70%
of the time used by the iterative algorithm, even though
the transpose problem exhibits no temporal locality.

Figure 5 makes a similar comparison between the
naive iterative matrix-multiplication algorithm, which
uses three nested loops, with the O 8 n3 : -work recur-
sive REC-MULT algorithm described in Section 2. This
problem exhibits a high degree of temporal locality,
which REC-MULT exploits effectively. As the figure
shows, the average time used per integer multiplication
in the recursive algorithm is almost constant, which for
large matrices, is less than 50% of the time used by the
iterative variant. A similar study for Jacobi multipass
filters can be found in [26].

Several researchers [12, 16] have also observed that
recursive algorithms exhibit performance advantages
over iterative algorithms for computers with caches. A
comprehensive empirical study has yet to be done, how-
ever. Do cache-oblivious algorithms perform nearly as
well as cache-aware algorithms in practice, where con-
stant factors matter? Does the ideal-cache model cap-
ture the substantial caching concerns for an algorithms
designer?

An anecdotal affirmative answer to these questions is
exhibited by the popular FFTW library [17, 18], which

uses a recursive strategy to exploit caches in Fourier
transform calculations. FFTW’s code generator pro-
duces straight-line “codelets,” which are coarsened base
cases for the FFT algorithm. Because these codelets are
cache oblivious, a C compiler can perform its register
allocation efficiently, and yet the codelets can be gen-
erated without knowing the number of registers on the
target architecture.

To close, we mention two theoretical avenues
that should be explored to determine the complexity-
theoretic relationship between cache-oblivious algo-
rithms and cache-aware algorithms.

Separation: Is there a gap in asymptotic complexity
between cache-aware and cache-oblivious algorithms?
It appears that cache-aware algorithms should be able to
use caches better than cache-oblivious algorithms, since
they have more knowledge about the system on which
they are running. Do there exist problems for which this
advantage is asymptotically significant, for example an
Ω 8 lgZ : advantage? Bilardi and Peserico [8] have re-
cently taken some steps in proving a separation.

Simulation: Is there a limit as to how much better a
cache-aware algorithm can be than a cache-oblivious
algorithm for the same problem? That is, given a class
of optimal cache-aware algorithms to solve a single
problem, can we construct a good cache-oblivious al-
gorithm that solves the same problem with only, for
example, O 8 lgZ : loss of efficiency? Perhaps simula-
tion techniques can be used to convert a class of effi-
cient cache-aware algorithms into a comparably efficient
cache-oblivious algorithm.

Acknowledgments

Thanks to Bobby Blumofe, now of the University of
Texas at Austin, who sparked early discussions at MIT
about what we now call cache obliviousness. Thanks to
Gianfranco Bilardi of University of Padova, Sid Chat-
terjee of University of North Carolina, Chris Joerg of
Compaq CRL, Martin Rinard of MIT, Bin Song of MIT,
Sivan Toledo of Tel Aviv University, and David Wise of
Indiana University for helpful discussions. Thanks also
to our anonymous reviewers.

References
[1] A. Aggarwal, B. Alpern, A. K. Chandra, and M. Snir.

A model for hierarchical memory. In Proceedings of the
19th Annual ACM Symposium on Theory of Computing
(STOC), pages 305–314, May 1987.

[2] A. Aggarwal, A. K. Chandra, and M. Snir. Hierarchi-
cal memory with block transfer. In 28th Annual Sym-
posium on Foundations of Computer Science (FOCS),
pages 204–216, Los Angeles, California, 12–14 Oct.
1987. IEEE.

Theorem 17 An optimal cache-oblivious algorithm
whose cache-complexity bound satisfies the regularity
condition (14) can be implemented optimally in expec-
tation in multilevel models with explicit memory man-
agement.

Proof. Combine Lemma 15 and Lemma 16.

Corollary 18 The recursive cache-oblivious algorithms
for matrix multiplication, matrix transpose, FFT, and
sorting are optimal in multilevel models with explicit
memory management.

Proof. Their complexity bounds satisfy the regularity
condition (14).

It can also be shown [26] that cache-oblivous algo-
rithms satisfying (14) are also optimal (in expectation)
in the previously studied SUMH [5, 34] and HMM [1]
models. Thus, all the algorithmic results in this paper
apply to these models, matching the best bounds previ-
ously achieved.

Other simulation results can be shown. For example,
by using the copying technique of [22], cache-oblivious
algorithms for matrix multiplication and other problems
can be designed that are provably optimal on direct-
mapped caches.

7. Related work
In this section, we discuss the origin of the notion of
cache-obliviousness. We also give an overview of other
hierarchical memory models.

Our research group at MIT noticed as far back as
1994 that divide-and-conquer matrix multiplication was
a cache-optimal algorithm that required no tuning, but
we did not adopt the term “cache-oblivious” until 1997.
This matrix-multiplication algorithm, as well as a cache-
oblivious algorithm for LU-decomposition without piv-
oting, eventually appeared in [9]. Shortly after leaving
our research group, Toledo [32] independently proposed
a cache-oblivious algorithm for LU-decomposition with
pivoting. For n � n matrices, Toledo’s algorithm uses
Θ 8 n3 : work and incurs Θ 8 1 � n2 � L � n3 � L � Z : cache
misses. More recently, our group has produced an FFT
library called FFTW [18], which in its most recent incar-
nation [17], employs a register-allocation and schedul-
ing algorithm inspired by our cache-oblivious FFT al-
gorithm. The general idea that divide-and-conquer en-
hances memory locality has been known for a long
time [29].

Previous theoretical work on understanding hierar-
chical memories and the I/O-complexity of algorithms
has been studied in cache-aware models lacking an auto-
matic replacement strategy, although [10, 28] are recent

0

0.05

0.1

0.15

0.2

0.25

0 200 400 600 800 1000 1200

T
im

e 
(m

ic
ro

se
co

nd
s)

N

iterative
recursive

Figure 4: Average time to transpose an N � N matrix,
divided by N2.

exceptions. Hong and Kung [21] use the red-blue peb-
ble game to prove lower bounds on the I/O-complexity
of matrix multiplication, FFT, and other problems. The
red-blue pebble game models temporal locality using
two levels of memory. The model was extended by
Savage [27] for deeper memory hierarchies. Aggarwal
and Vitter [3] introduced spatial locality and investigated
a two-level memory in which a block of P contiguous
items can be transferred in one step. They obtained tight
bounds for matrix multiplication, FFT, sorting, and other
problems. The hierarchical memory model (HMM) by
Aggarwal et al. [1] treats memory as a linear array,
where the cost of an access to element at location x is
given by a cost function f 8 x : . The BT model [2] extends
HMM to support block transfers. The UMH model by
Alpern et al. [5] is a multilevel model that allows I/O at
different levels to proceed in parallel. Vitter and Shriver
introduce parallelism, and they give algorithms for ma-
trix multiplication, FFT, sorting, and other problems in
both a two-level model [35] and several parallel hierar-
chical memory models [36]. Vitter [33] provides a com-
prehensive survey of external-memory algorithms.

8. Conclusion
The theoretical work presented in this paper opens two
important avenues for future research. The first is to
determine the range of practicality of cache-oblivious
algorithms, or indeed, of any algorithms developed in
the ideal-cache model. The second is to resolve, from a
complexity-theoretic point of view, the relative strengths
of cache-oblivious and cache-aware algorithms. To con-
clude, we discuss each of these avenues in turn.

Figure 4 compares per-element time to transpose a
matrix using the naive iterative algorithm employing a
doubly nested loop with the recursive cache-oblivious
REC-TRANSPOSE algorithm from Section 3. The two
algorithms were evaluated on a 450 megahertz AMD
K6III processor with a 32-kilobyte 2-way set-associative
L1 cache, a 64-kilobyte 4-way set-associative L2 cache,
and a 1-megabyte L3 cache of unknown associativ-
ity, all with 32-byte cache lines. The code for REC-
TRANSPOSE was the same as presented in Section 3, ex-



Real benchmarks [1]
4. Comparison of Cache Aware and Cache Oblivious Static Search Trees 89

0

5

10

15

20

100 1000 10000 100000 1e+06

A
ve

ra
ge

 n
um

be
r 

of
 c

ac
he

 m
is

se
s 

pe
r 

lo
ok

up

Number of items

Cache Misses for Static Search Trees

Classic Binary Search Explicit
Classic Binary Search Implicit

Cache Oblivious Explicit
Cache Oblivious Implicit

Cache Aware Explicit
Cache Aware Implicit

Fig. 4.8. Cache misses per lookup for static search algorithms

0

200

400

600

800

1000

1200

100 1000 10000 100000 1e+06

A
ve

ra
ge

 n
um

be
r 

of
 in

st
ru

ct
io

ns
 p

er
 lo

ok
up

Number of items

Instruction Count for Static Search Trees

Classic Binary Search Explicit
Classic Binary Search Implicit

Cache Oblivious Explicit
Cache Oblivious Implicit

Cache Aware Explicit
Cache Aware Implicit

Fig. 4.9. Instruction count per lookup for static search algorithms

Figure 4.10 gives the results of an execution time study using Windows.
Cache aware search with implicit pointers is the fastest, but cache oblivious
search with explicit pointers is not far behind. Cache oblivious search with
implicit pointers is the slowest of all because of the high cost of computing
pointers.
Figure 4.11 gives the results of an execution time study using Linux.

Again, cache aware search with implicit pointers is the fastest, but cache
oblivious search with explicit pointers is not far behind. Again, cache oblivi-
ous search with implicit pointers is the slowest of all because of the high cost



Real benchmarks [1]

4. Comparison of Cache Aware and Cache Oblivious Static Search Trees 89

0

5

10

15

20

100 1000 10000 100000 1e+06

A
ve

ra
ge

 n
um

be
r 

of
 c

ac
he

 m
is

se
s 

pe
r 

lo
ok

up

Number of items

Cache Misses for Static Search Trees

Classic Binary Search Explicit
Classic Binary Search Implicit

Cache Oblivious Explicit
Cache Oblivious Implicit

Cache Aware Explicit
Cache Aware Implicit

Fig. 4.8. Cache misses per lookup for static search algorithms

0

200

400

600

800

1000

1200

100 1000 10000 100000 1e+06

A
ve

ra
ge

 n
um

be
r 

of
 in

st
ru

ct
io

ns
 p

er
 lo

ok
up

Number of items

Instruction Count for Static Search Trees

Classic Binary Search Explicit
Classic Binary Search Implicit

Cache Oblivious Explicit
Cache Oblivious Implicit

Cache Aware Explicit
Cache Aware Implicit

Fig. 4.9. Instruction count per lookup for static search algorithms

Figure 4.10 gives the results of an execution time study using Windows.
Cache aware search with implicit pointers is the fastest, but cache oblivious
search with explicit pointers is not far behind. Cache oblivious search with
implicit pointers is the slowest of all because of the high cost of computing
pointers.
Figure 4.11 gives the results of an execution time study using Linux.

Again, cache aware search with implicit pointers is the fastest, but cache
oblivious search with explicit pointers is not far behind. Again, cache oblivi-
ous search with implicit pointers is the slowest of all because of the high cost



Real benchmarks [1]
90 Richard E. Ladner et al.

0

2

4

6

8

10

10000 100000 1e+06

T
im

e 
in

 m
ic

ro
se

co
nd

s 
pe

r 
lo

ok
up

Number of items

Execution Time on Windows for Static Search Trees

Classic Binary Search Explicit
Classic Binary Search Implicit

Cache Oblivious Explicit
Cache Oblivious Implicit

Cache Aware Explicit
Cache Aware Implicit

Fig. 4.10. Execution time on Windows for static search algorithms

of computing pointers. Inexplicably, cache aware search with explicit pointers
showed consistently poor performance under Linux. We looked at a number
of possible causes for the poor performance but were not able to pin down a
reason for it. We believe that the Linux behavior perhaps demonstrates the
perils of cache aware programming. The cache oblivious algorithms performed
consistently on both platforms.

4.7 Conclusion

Both cache aware and cache oblivious search perform better than classic
binary search on large data sets. Cache aware search algorithms have the
disadvantage that they require knowledge of the memory block size. Cache
oblivious search algorithms have only slightly worse memory performance
than cache aware search, but in our study only the explicit pointer version
of oblivious search has comparable overall performance. As mentioned earlier
Brodal et al. [4.3] have found a way to compute the implicit pointers efficiently
in the cache oblivious algorithm. The cache oblivious search algorithms do
not require knowledge of the memory block size to achieve good memory
performance. Finally, program instrumentation tools like ATOM let us obtain
a deeper understanding of the performance of these algorithms.

Acknowledgments

The research was supported by NSF Grant No. CCR-9732828 and by Mi-
crosoft. Ray Fortna and Bao-Hoang Nguyen were undergraduate students at



Table of Contents

Introduction

Cache-oblivious algorithms
Matrix multiplication
Matrix transposition
Fast Fourier Transform
Sorting
Relieved system model

Experimental evaluation

Conclusion



FFMK tribute slide

. . . FFTW library, which uses a recursive strategy to
exploit caches in Fourier transform calculations. FFTW’s
code generator produces straight-line “codelets”, which
are coarsened base cases for the FFT algorithm. Because
these codelets are cache oblivious, a C compiler can
perform its register allocation efficiently, and yet the
codelets can be generated without knowing the number
of registers on the target architecture.



Open questions

I Is there a gap in asymptotic complexity?

I Is there a limit as to how much better a cache-aware
algorithm can be?



Conclusion

I Seem to be slower

I Provide cache optimality without knowing cache size

I Based on recursion



Richard E Ladner, Ray Fortna, and Bao-Hoang Nguyen.
A comparison of cache aware and cache oblivious static search
trees using program instrumentation.
In Experimental Algorithmics, pages 78–92. Springer, 2002.

Volker Strassen.
Gaussian elimination is not optimal.
Numerische Mathematik, 13(4):354–356, 1969.


	Introduction
	Cache-oblivious algorithms
	Matrix multiplication
	Matrix transposition
	Fast Fourier Transform
	Sorting
	Relieved system model

	Experimental evaluation
	Conclusion
	Appendix

