Cache-Oblivious Algorithms

Paper Reading Group

Matteo Frigo
Charles E. Leiserson
Harald Prokop
Sridhar Ramachandran
Presents: Maksym Planeta

03.09.2015

Table of Contents

Introduction

Cache-oblivious algorithms
Matrix multiplication
Matrix transposition
Fast Fourier Transform
Sorting
Relieved system model

Experimental evaluation

Conclusion

Table of Contents

Introduction

Cache-oblivious algorithms
Matrix multiplication
Matrix transposition
Fast Fourier Transform
Sorting
Relieved system model

Experimental evaluation

Conclusion

Matrix multiplication

```
ORD-MULT \((A, B, C)\)
1 for \(i \leftarrow 1\) to \(m\)
\(2 \quad\) for \(j \leftarrow 1\) to \(p\)
    for \(k \leftarrow 1\) to \(n\)
    \(C_{i j} \leftarrow C_{i j}+A_{i k} \times B_{k j}\)
```


Matrix layout

Like in C...

$$
\left.\begin{array}{ccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6
\end{array}\right]
$$

Figure: Row major order

Matrix layout

Like in C...

Figure: Row major order

Figure: Column major order

Or like in Fortran

Cache friendly algorithm

```
BLOCK-MULT( \(A, B, C, n)\)
1 for \(i \leftarrow 1\) to \(n / s\)
2 for \(j \leftarrow 1\) to \(n / s\)
3
        for \(k \leftarrow 1\) to \(n / s\)
    \(\operatorname{ORD}-\operatorname{MULT}\left(A_{i k}, B_{k j}, C_{i j}, s\right)\)
```


BLOCK-MULT issues

Being cache aware is hard:

- Cumbersome structure
- Complicated choice of s
- Expensive mispicking of s
- Problematic if $n \bmod s \neq 0$

Motivation

- Keeping algorithm simple is nice.
- But cache effectiveness is the must.

Table of Contents

Introduction

Cache-oblivious algorithms
Matrix multiplication
Matrix transposition
Fast Fourier Transform
Sorting
Relieved system model

Experimental evaluation

Conclusion

System model

Figure 1: The ideal-cache model

- Two level memory
- Fully associative
- Strictly optimal replacement
- Automatic replacement
- Tall cache:

$$
Z=\Omega\left(L^{2}\right)
$$

where:
Z - number of
words in the
cache
L - number of
words in a
cache line

Matrix multiplication

Given: $A[m \times n] \times B[n \times p] \rightarrow C[m \times p]$

$$
\begin{array}{ll}
\binom{A_{1}}{A_{2}} B=\binom{A_{1} B}{A_{2} B}, & m \geq \max (n, p) \\
\left(\begin{array}{ll}
A_{1} & A_{2}
\end{array}\right)\binom{B_{1}}{B_{2}}=A_{1} B_{1}+A_{2} B_{2}, & n \geq \max (m, p) \\
A\left(\begin{array}{ll}
B_{1} & B_{2}
\end{array}\right)=\left(\begin{array}{ll}
A B_{1} & A B_{2}
\end{array}\right), & p \geq \max (n, m) \\
C_{i j}:=C_{i j}+A_{i k} \cdot B_{k j}, & m=n=p=1
\end{array}
$$

Bounds

REC-MULT
Work: $\Theta\left(n^{3}\right)$
Cache misses: $\Theta\left(n+n^{2} / L+n^{3} / L \sqrt{Z}\right)$
vs BLOCK-MULT
Work: $\Theta\left(n^{3}\right)$
Cache misses: $\Theta\left(1+n^{2} / L+n^{3} / L \sqrt{Z}\right)$
vs Strassen's [2] (cache oblivious)
Work: $\Theta\left(n^{\log _{2} 7}\right) \quad$ Cache misses: $\Theta\left(1+n^{2} / L+n^{\log _{2} 7} / L \sqrt{Z}\right)$

Matrix transposition

Given: $A[m \times n] \rightarrow B[n \times m]$

$$
A=\left(\begin{array}{ll}
A_{1} & A_{2} \tag{5}
\end{array}\right), B=\binom{B_{1}}{B_{2}}
$$

Bounds

REC-TRANSPOSE

Work: $\Theta(n \cdot m)$
Cache misses: $\Theta(1+m n / L)$
Asymptotically optimal
Naïve
Work: $\Theta(n \cdot m)$

Cache misses: $\Theta(n \cdot m)$

Discrete Fourier Transform (DFT)

Compute:

$$
Y[i]=\sum_{j=0}^{n-1} X[j] \omega_{n}^{-i j},
$$

where $\omega_{n}=e^{2 \pi \sqrt{-1} / n}$
Assume $n=2^{k} \mid k \in \mathbb{N}$
Choose $n_{1}=2^{\left\lceil\log _{2} n / 2\right\rceil}, n_{2}=2^{\left\lfloor\log _{2} n / 2\right\rfloor}$
Factorized Y (Cooley-Turkey algorithm):

$$
Y\left[i_{1}+i_{2} n_{1}\right]=\sum_{j_{2}=0}^{n_{2}-1}\left[\left(\sum_{j_{1}=0}^{n_{1}-1} X\left[j_{1} n_{2}+j_{2}\right] \omega_{n}^{-j_{1} j_{2}}\right) \omega_{n_{2}}^{-j_{1} j_{2}}\right]
$$

Sorting

Mergesort is not optimal with respect to cache misses.

1. Funnelsort
2. Distribution sort

- Recursive
- Asymptotically cache-optimal
- Not every recursive sort is cache optimal

Funnelsort

1. Split input into $n^{\frac{1}{3}}$ of size $n^{\frac{2}{3}}$, and sort these arrays recursively
2. Merge $n^{\frac{1}{3}}$ sorted sequences using $n^{\frac{1}{3}}$-merger

k-merger

Figure 3: Illustration of a k-merger. A k-merger is built recursively out of \sqrt{k} "left" \sqrt{k}-mergers $L_{1}, L_{2}, \ldots, L_{\sqrt{k}}$, a series of buffers, and one "right" \sqrt{k}-merger R.

Bounds

Work: $O\left(n \cdot \log _{2} n\right)$
Optimal cache misses: $O\left(1+(n / L)\left(1+\log _{z} n\right)\right)$

Relieved system model

- LRU
- $\Theta(Q(n ; Z ; L))$
- Multilevel cache
- inclusive cache

Table of Contents

Introduction
Cache-oblivious algorithms
Matrix multiplication
Matrix transposition
Fast Fourier Transform
Sorting
Relieved system model

Experimental evaluation

Conclusion

Micro-benchmarks

Figure 5: Average time taken to multiply two $N \times N$ matrices, divided by N^{3}.

Figure 4: Average time to transpose an $N \times N$ matrix, divided by N^{2}.

Real benchmarks [1]

Cache Misses for Static Search Trees

Fig. 4.8. Cache misses per lookup for static search algorithms

Real benchmarks [1]

Instruction Count for Static Search Trees

Fig. 4.9. Instruction count per lookup for static search algorithms

Real benchmarks [1]

Fig. 4.10. Execution time on Windows for static search algorithms

Table of Contents

Introduction

Cache-oblivious algorithms
Matrix multiplication
Matrix transposition
Fast Fourier Transform
Sorting
Relieved system model
Experimental evaluation

Conclusion

FFMK tribute slide

... FFTW library, which uses a recursive strategy to exploit caches in Fourier transform calculations. FFTW's code generator produces straight-line "codelets", which are coarsened base cases for the FFT algorithm. Because these codelets are cache oblivious, a C compiler can perform its register allocation efficiently, and yet the codelets can be generated without knowing the number of registers on the target architecture.

Open questions

- Is there a gap in asymptotic complexity?
- Is there a limit as to how much better a cache-aware algorithm can be?

Conclusion

- Seem to be slower
- Provide cache optimality without knowing cache size
- Based on recursion

Richard E Ladner, Ray Fortna, and Bao-Hoang Nguyen.
A comparison of cache aware and cache oblivious static search trees using program instrumentation.
In Experimental Algorithmics, pages 78-92. Springer, 2002.
Volker Strassen.
Gaussian elimination is not optimal.
Numerische Mathematik, 13(4):354-356, 1969.

