
Thread and Memory Placement on NUMA
Systems: Asymmetry Matters

Baptiste Lepers, Alexandra Fedorova (Simon Fraser University),
Vivien Quéma (Grenoble INP)

ATC 2015

1 / 12



Introduction

Current threads and memory placement: minimizing hop-count
(e.g. in Linux).

Contributions:
I Connections are asymmetric, bandwidth is more important

than hops.
I AsymSched algorithm that dynamically places threads and

memory.

2 / 12



Inter-node bandwidths for 4 AMD Opteron 6272 processors

USENIX Association 	 2015 USENIX Annual Technical Conference  279

Node 0 Node 4 Node 5 Node 1

Node 6 Node 2 Node 3 Node 7

8b link
16b link
16b/8b link

(Machines A and B)

Figure 1: Modern NUMA systems, with eight nodes. The width of links varies, some paths are unidirectional (e.g.,
between 7 and 3) and links may be shared by multiple nodes. Machine A has 64 cores (8 cores per node - not
represented in the picture) and machine B has 48 cores (6 cores per node). Not shown in the picture: the links between
nodes 4 and 1 and between nodes 2 and 7 are bidirectional on machine B. This changes the routing of requests from
node 7 to 2 and node 1 to 4.

-15
-10

-5
 0
 5

 10
 15

bt.B.x
cg.C.x

ep.C.x
ft.C.x

is.D.x
lu.B.x

mg.C.x

sp.A.x
ua.B.x

swaptions

kmeans

matrixmultiply

wc wr wrmemP
er

f. 
im

pr
ov

em
en

t r
el

at
iv

e
to

 a
ve

ra
ge

 p
la

ce
m

en
t (

%
)

Worst Placement
Best Placement

-40
-30
-20
-10

 0
 10
 20
 30
 40

graph500

specjbb

-60
-40
-20

 0
 20
 40
 60
 80

 100

streamcluster

pca
facerec

Figure 2: Performance difference between the best, and worst thread placement with respect to the average thread
placement on Machine A. Applications run with 24 threads on three nodes. Graph500, specjbb, streamcluster, pca and
facerec are highly affected by the choice of nodes and are shown separately with a different y-axis range.

-150
-100

-50
 0

 50
 100
 150

bt.B.x
cg.C.x

ep.C.x
ft.C.x

is.D.x
lu.B.x

mg.C.x

sp.A.x
ua.B.x

swaptions

kmeans

matrixmultiply

wc wr wrmem

La
te

nc
y 

of
 m

em
or

y
ac

ce
ss

es
 c

om
pa

re
d 

to
av

er
ag

e 
pl

ac
em

en
t (

cy
cl

es
)

Worst Placement
Best Placement

-200
-150
-100

-50
 0

 50
 100
 150
 200

graph500

specjbb

-1000
-800
-600
-400
-200

 0
 200
 400
 600
 800

streamcluster

pca
facerec

Figure 3: Difference in latency of memory accesses between the best, and worst thread placement with respect to the
average node configuration on Machine A. Positive numbers mean that memory accesses are faster than the average.

3

3 / 12



Measurements
Applications running on 3 nodes, with different node placements.

USENIX Association 	 2015 USENIX Annual Technical Conference  279

Node 0 Node 4 Node 5 Node 1

Node 6 Node 2 Node 3 Node 7

8b link
16b link
16b/8b link

(Machines A and B)

Figure 1: Modern NUMA systems, with eight nodes. The width of links varies, some paths are unidirectional (e.g.,
between 7 and 3) and links may be shared by multiple nodes. Machine A has 64 cores (8 cores per node - not
represented in the picture) and machine B has 48 cores (6 cores per node). Not shown in the picture: the links between
nodes 4 and 1 and between nodes 2 and 7 are bidirectional on machine B. This changes the routing of requests from
node 7 to 2 and node 1 to 4.

-15
-10
-5
 0
 5

 10
 15

bt.B.x
cg.C.x

ep.C.x
ft.C.x

is.D.x
lu.B.x

mg.C.x

sp.A.x
ua.B.x

swaptions

kmeans

matrixmultiply

wc wr wrmemP
er

f. 
im

pr
ov

em
en

t r
el

at
iv

e
to

 a
ve

ra
ge

 p
la

ce
m

en
t (

%
)

Worst Placement
Best Placement

-40
-30
-20
-10

 0
 10
 20
 30
 40

graph500

specjbb

-60
-40
-20

 0
 20
 40
 60
 80

 100

streamcluster

pca
facerec

Figure 2: Performance difference between the best, and worst thread placement with respect to the average thread
placement on Machine A. Applications run with 24 threads on three nodes. Graph500, specjbb, streamcluster, pca and
facerec are highly affected by the choice of nodes and are shown separately with a different y-axis range.

-150
-100
-50

 0
 50

 100
 150

bt.B.x
cg.C.x

ep.C.x
ft.C.x

is.D.x
lu.B.x

mg.C.x

sp.A.x
ua.B.x

swaptions

kmeans

matrixmultiply

wc wr wrmem

La
te

nc
y 

of
 m

em
or

y
ac

ce
ss

es
 c

om
pa

re
d 

to
av

er
ag

e 
pl

ac
em

en
t (

cy
cl

es
)

Worst Placement
Best Placement

-200
-150
-100
-50

 0
 50

 100
 150
 200

graph500

specjbb

-1000
-800
-600
-400
-200

 0
 200
 400
 600
 800

streamcluster

pca
facerec

Figure 3: Difference in latency of memory accesses between the best, and worst thread placement with respect to the
average node configuration on Machine A. Positive numbers mean that memory accesses are faster than the average.

3

USENIX Association 	 2015 USENIX Annual Technical Conference  279

Node 0 Node 4 Node 5 Node 1

Node 6 Node 2 Node 3 Node 7

8b link
16b link
16b/8b link

(Machines A and B)

Figure 1: Modern NUMA systems, with eight nodes. The width of links varies, some paths are unidirectional (e.g.,
between 7 and 3) and links may be shared by multiple nodes. Machine A has 64 cores (8 cores per node - not
represented in the picture) and machine B has 48 cores (6 cores per node). Not shown in the picture: the links between
nodes 4 and 1 and between nodes 2 and 7 are bidirectional on machine B. This changes the routing of requests from
node 7 to 2 and node 1 to 4.

-15
-10
-5
 0
 5

 10
 15

bt.B.x
cg.C.x

ep.C.x
ft.C.x

is.D.x
lu.B.x

mg.C.x

sp.A.x
ua.B.x

swaptions

kmeans

matrixmultiply

wc wr wrmemP
er

f. 
im

pr
ov

em
en

t r
el

at
iv

e
to

 a
ve

ra
ge

 p
la

ce
m

en
t (

%
)

Worst Placement
Best Placement

-40
-30
-20
-10

 0
 10
 20
 30
 40

graph500

specjbb

-60
-40
-20

 0
 20
 40
 60
 80

 100

streamcluster

pca
facerec

Figure 2: Performance difference between the best, and worst thread placement with respect to the average thread
placement on Machine A. Applications run with 24 threads on three nodes. Graph500, specjbb, streamcluster, pca and
facerec are highly affected by the choice of nodes and are shown separately with a different y-axis range.

-150
-100
-50

 0
 50

 100
 150

bt.B.x
cg.C.x

ep.C.x
ft.C.x

is.D.x
lu.B.x

mg.C.x

sp.A.x
ua.B.x

swaptions

kmeans

matrixmultiply

wc wr wrmem

La
te

nc
y 

of
 m

em
or

y
ac

ce
ss

es
 c

om
pa

re
d 

to
av

er
ag

e 
pl

ac
em

en
t (

cy
cl

es
)

Worst Placement
Best Placement

-200
-150
-100
-50

 0
 50

 100
 150
 200

graph500

specjbb

-1000
-800
-600
-400
-200

 0
 200
 400
 600
 800

streamcluster

pca
facerec

Figure 3: Difference in latency of memory accesses between the best, and worst thread placement with respect to the
average node configuration on Machine A. Positive numbers mean that memory accesses are faster than the average.

3

4 / 12



More Measurements

streamcluster running on 2 nodes, with different node placements.

280  2015 USENIX Annual Technical Conference	 USENIX Association

Master thread Execution Time Diff with Latency of memory % accesses Bandwidth to
node (s) 0-1 (%) accesses (cycles) via 2-hop the “master”

(compared to 0-1(%)) links node (MB/s)

0 1 - 148 0% 750 0 5598

0 4 - 228 56% 1169 (56%) 0 2999

0 2
0 228 56% 1179 (57%) 0 2973
2 168 15% 855 (14%) 0 4329

0 3
2

1

0 340 133% 1527 (104%) 98 1915
3 185 27% 1040 (39%) 98 3741

0 54
0 340 133% 1601 (113%) 98 1903
5 228 56% 1206 (61%) 98 2884

3 7
2 3 185 27% 1020 (36%) 0 3748

7 338 132% 1614 (115%) 98 1928

5 1
4 1 338 132% 1612 (115%) 98 1891

5 230 58% 1200 (60%) 0 2880

2 7
3

2 167 15% 867 (16%) 98 3748
7 225 54% 1220 (63%) 0 3014

4 1
5

4 230 58% 1205 (60%) 0 2959
1 226 55% 1203 (60%) 98 2880

Table 1: Performance of streamcluster executing with 16 threads on 2 nodes on machine A. The performance depends
on the connectivity between the nodes on which streamcluster is executing and on the node on which the master thread
is executing. Numbers in bold indicate 2-hops configurations that are as fast or faster than some 1-hop configurations.

which nodes to pick. When there is more than one ap-
plication running, we need to decide how to allocate the
nodes among multiple applications.

Nodes % perf. relative to best subset
streamcluster SPECjbb

0, 1, 3, 4, and 7 -64% 0% (best)
2, 3, 4, 5, and 6 0% (best) -9.4%

Table 2: Performance of streamcluster and SPECjbb on
two different set of nodes on machine A, relative to the
best set of nodes for the respective application.

In this paper, we present a new thread and memory
placement algorithm. Designing such an algorithm for
asymmetrically connected NUMA systems is challeng-
ing for the following reasons:

Efficient online measurement of communication
patterns is challenging: The algorithm must measure
the volume of CPU-to-CPU and CPU-to-memory com-
munication for different threads in order to determine the
best placement when we cannot run the entire application
on the best connected nodes. This measurement process
must be very efficient, because it must be done continu-
ously in order to adapt to phase changes.

Changing the placement of threads and mem-
ory may incur high overhead: Frequent migration of
threads may be costly, because of the associated CPU
overhead, but most importantly because cache affinity
is not preserved. Moreover, when threads are migrated
to “better” nodes, it might be necessary to migrate their
memory in order to avoid the overhead of remote ac-
cesses and overloaded memory controllers. Migrating
large amounts of memory can be extremely costly. Thus,

thread migration must be done in a way that minimizes
memory migration.

Accomodating multiple applications simultane-
ously is challenging: Applications have different com-
munication patterns and are thus differently impacted by
the connectivity between the nodes they run on. As an
illustration, Table 2 presents the performance of stream-
cluster and SPECjbb executing on two different sets of
five nodes (the best set of nodes for the two applications,
respectively). The two applications behave differently on
these two sets of nodes: streamcluster is 64% slower on
the best set of nodes for SPECjbb than on its own best
set. The algorithm must, therefore, determine the best
set of nodes for every application. Furthermore, it can-
not always place each application on its best set of nodes,
because applications may have conflicting preferences.

Selecting the best placement is combinatorially dif-
ficult: The number of possible application placements
on an eight-node machine is very large (e.g., 5040 possi-
ble configurations for four applications executing on two
nodes). So, (i) it is not possible to try all configurations
online by migrating threads and then choosing the best
configurations, and (ii) doing even the simplest compu-
tation involving “all possible placements” can still add a
significant overhead to a placement algorithm.

Before describing how we addressed these challenges,
we briefly discuss architectural trends and the increasing
impact of interconnect asymmetry.

3 Architectural trends

Asymmetric interconnect is not a new phenomenon.
Nevertheless, we show in this section that its effects on

4

5 / 12



AsymSched

I User-level thread+memory placement manager
I Continuously measures communication
I Decides every second whether threads/memory should be

migrated

6 / 12



AsymSched – Measurement

I Reads some hardware counter (data accesses from CPU to
node)

I No counter for CPU to CPU available
I Assumes for decision making:

I Threads on same node share data
I Between nodes with ’high’ communication threads of same

application share data.

7 / 12



AsymSched – Decision

I Puts threads of same application that share data into clusters.
I Each cluster gets weight

Cw = log (#remote memory accesses).
I For each placement (mapping of clusters to nodes), compute

Pw =
∑

C∈Clusters Cw · (max bandwidth for C ).
I Select placements whose Pw ≥ 90% of maximal Pw . Of those

choose that with least page migrations.
I If cost for memory migration (assuming 0.3s per GB) is too

high, do not apply placement.
I Because of symmetry, not all placements need to be tested.

Also “obviously bad” placement are ignored.

8 / 12



AsymSched – Migration

I Uses dynamic (lazy) migration.
I If after 2 seconds > 90% of accesses go to old node, do full

migration.
I Full migration uses special system call, that is faster than

migrate_pages, because it stops the application and needs
less locks.

286  2015 USENIX Annual Technical Conference	 USENIX Association

-50
 0

 50
 100
 150
 200
 250

specjbb-3

graph500-3

matrixmultiply-2

streamcluster-3

graph500-3

specjbb-2

streamcluster-3

streamcluster-3

streamcluster-2

specjbb-5

matrixmultiply-3

specjbb-5

streamcluster-3
P

er
f. 

im
pr

ov
em

en
t r

el
at

iv
e

to
 a

ve
ra

ge
 p

la
ce

m
en

t (
%

)

Worst Thread Placement
Best Thread Placement

Dynamic Memory Placement
AsymSched

Figure 6: Performance difference between the best thread placement, the worst thread placement, dynamic memory
placement, AsymSched and the average thread placement of applications on machine A. The numbers appended to the
name of applications specify the number of nodes on which the application runs.

-1500
-1000
-500

 0
 500

 1000
 1500
 2000

specjbb-3

graph500-3

matrixmultiply-2

streamcluster-3

graph500-3

specjbb-2

streamcluster-3

streamcluster-3

streamcluster-2

specjbb-5

matrixmultiply-3

specjbb-5

streamcluster-3

La
te

nc
y 

of
 m

em
or

y
ac

ce
ss

es
 c

om
pa

re
d 

to
av

er
ag

e 
pl

ac
em

en
t (

cy
cl

es
)

Worst Thread Placement
Best Thread Placement

Dynamic Memory Placement
AsymSched

Figure 7: Performance difference between the best thread placement, the worst thread placement, dynamic memory
placement, AsymSched and the average thread placement of applications on machine A.

cg.B ft.C is.D sp.A streamcluster graph500 specJBB
Migrated memory (GB) 0.17 2.5 20 0.1 0.15 0.3 10

Average time - Linux syscall (ms) 860 12700 101000 490 750 1500 50500
Average time - fast migration (ms) 51 380 3050 30 45 90 1500

Table 5: Average amount of migrated memory for various applications running on 3 nodes and required time to
perform the migration using the standard Linux system call and using fast memory migration.

5.4 Overhead

The main overhead of AsymSched is due to memory mi-
gration. This explains why we implemented a custom
system call (see Section 4.3). Table 5 compares the mi-
gration time when running the standard Linux system
call and when running our custom system call. For in-
stance, for is.D, migration takes 101 seconds using the
Linux system call (50% overhead), but only 3 seconds
using our custom system call (1.5% overhead). To keep
the overhead low, AsymSched performs migrations only
if the predicted overhead is below 5%. In practice, the
maximum migration overhead we observed was 3%.

The cost of collecting metrics and computing clus-
ter placement is below 0.5% on all studied applications.
Moreover, AsymSched requires less than 2MB of RAM.

The overhead of thread migration is negligible and we
did not observe any noticeable effect of thread migrations
on cache misses.

Finally, when dynamic memory placement is used,
IBS sampling incurs a light overhead (within 2% in
our experiments) and statistics on memory accesses are
stored in about 20MB of RAM.

5.5 Discussion - Applicability on future
NUMA machines

We believe that the findings and the solution presented
in this paper are likely to be applicable on future NUMA
systems. First, we believe that the clustering and place-
ment techniques used in AsymSched can scale on ma-
chines with a much larger number of nodes. With very
simple heuristics we were able to avoid computing up
to 99% of the possible thread placements. Such op-
timizations will still likely be possible on future ma-
chines, as machines are usually made of multiple iden-
tical cores/sockets (e.g., our 64-core machine has 4 iden-
tical sockets). On machines that offer a wider diversity

10

9 / 12



Evaluation – 1 application on 3 nodes

USENIX Association 	 2015 USENIX Annual Technical Conference  285

-15
-10
-5
 0
 5

 10
 15

bt.B.x
cg.C.x

ep.C.x
ft.C.x

is.D.x
lu.B.x

mg.C.x

sp.A.x
ua.B.x

swaptions

kmeans

matrixmultiply

wc wr wrmemP
er

f. 
im

pr
ov

em
en

t r
el

at
iv

e
to

 a
ve

ra
ge

 p
la

ce
m

en
t (

%
) Worst placement

Best placement
Dynamic Memory Placement Only

AsymSched

-40
-30
-20
-10

 0
 10
 20
 30
 40

graph500

specjbb

-50
 0

 50
 100
 150
 200
 250

streamcluster

pca
facerec

Figure 4: Performance difference between the best and worst static thread placement, dynamic memory placement,
AsymSched and the average thread placement on machine A. Applications run with 24 threads on 3 nodes.

-100
-50

 0
 50

 100
 150
 200
 250

bt.B.x
cg.C.x

ep.C.x
ft.C.x

is.D.x
lu.B.x

mg.C.x

sp.A.x
ua.B.x

swaptions

kmeans

matrixmultiply

wc wr wrmem

La
te

nc
y 

of
 m

em
or

y
ac

ce
ss

es
 c

om
pa

re
d 

to
av

er
ag

e 
pl

ac
em

en
t (

cy
cl

es
)

Worst Placement
Best Placement

Dynamic Memory Placement Only
AsymSched

-200
-150
-100
-50

 0
 50

 100
 150
 200

graph500

specjbb

-1000
-500

 0
 500

 1000
 1500

streamcluster

pca
facerec

Figure 5: Memory latency under the best and worst static thread placement, dynamic memory placement, AsymSched
and the average thread placement on machine A. Applications run with 24 threads on 3 nodes.

and SPECjbb. This is because in both cases, AsymSched
migrates a large amount of memory. Both applications
become memory intensive after an initialization phase,
and AsymSched starts migrating memory only after the
entire working set has been allocated. For instance, in
the case of is.D, AsymSched migrates between 0GB and
20GB, depending on the initial placement of threads.

Figure 5 shows the latency of memory accesses com-
pared to the average. For most applications, the dynam-
ics of latency closely matches that of the performance.
A few exceptions are is.D, lu.B and kmeans. For is.D,
the latency is drastically improved by AsymSched but
the impact on performance is not visible because of the
time lost performing memory migrations. Lu.B is ex-
tremely memory intensive during its first seconds of ex-
ecution, but performs very few memory accesses there-
after; AsymSched improves this initial phase but has no
impact on the rest of the running time. Kmeans is very
bursty; placing its threads has a huge impact on the la-
tency of memory accesses performed during bursts of
memory accesses but not on the rest of the execution.

5.3 Multi application workloads
We evaluate several multi-application workloads us-
ing the applications studied in section 5.2. We chose
four applications that benefit to various degrees from

AsymSched: streamcluster (benefits to a high degree),
SPECjbb (benefits to a moderate degree), graph500 (ben-
efits to a small degree), and matrixmultiply (does not
benefit). Some of these applications have different
phases during their execution; for instance, streamclus-
ter processes its input set in five distinct rounds, and
SPECjbb spends significant amount of time initializing
data before emulating a three-tier client/server system.

Figure 6 presents the performance on multi application
workloads. We chose two different clustering configura-
tions: (i) Three applications executing on three, three and
two nodes, respectively; (ii) Two applications executing
on five and three nodes respectively.

In all workloads, AsymSched achieves performance
that is close or better than the best static thread place-
ment on Linux. Furthermore, it produces a very low
standard deviation. In constrast, dynamic memory mi-
gration alone exhibits high standard deviation and, like
with single application workloads, is unable to improve
performance for Graph500 and SPECjbb.

AsymSched significantly improves the latency of ap-
plications that benefit from thread and memory migra-
tion (Figure 7), in particular for streamcluster. This is
because AsymSched chooses configurations in which the
links used by streamcluster are not shared with any other
application.

9USENIX Association 	 2015 USENIX Annual Technical Conference  285

-15
-10
-5
 0
 5

 10
 15

bt.B.x
cg.C.x

ep.C.x
ft.C.x

is.D.x
lu.B.x

mg.C.x

sp.A.x
ua.B.x

swaptions

kmeans

matrixmultiply

wc wr wrmemP
er

f. 
im

pr
ov

em
en

t r
el

at
iv

e
to

 a
ve

ra
ge

 p
la

ce
m

en
t (

%
) Worst placement

Best placement
Dynamic Memory Placement Only

AsymSched

-40
-30
-20
-10

 0
 10
 20
 30
 40

graph500

specjbb

-50
 0

 50
 100
 150
 200
 250

streamcluster

pca
facerec

Figure 4: Performance difference between the best and worst static thread placement, dynamic memory placement,
AsymSched and the average thread placement on machine A. Applications run with 24 threads on 3 nodes.

-100
-50

 0
 50

 100
 150
 200
 250

bt.B.x
cg.C.x

ep.C.x
ft.C.x

is.D.x
lu.B.x

mg.C.x

sp.A.x
ua.B.x

swaptions

kmeans

matrixmultiply

wc wr wrmem

La
te

nc
y 

of
 m

em
or

y
ac

ce
ss

es
 c

om
pa

re
d 

to
av

er
ag

e 
pl

ac
em

en
t (

cy
cl

es
)

Worst Placement
Best Placement

Dynamic Memory Placement Only
AsymSched

-200
-150
-100
-50

 0
 50

 100
 150
 200

graph500

specjbb

-1000
-500

 0
 500

 1000
 1500

streamcluster

pca
facerec

Figure 5: Memory latency under the best and worst static thread placement, dynamic memory placement, AsymSched
and the average thread placement on machine A. Applications run with 24 threads on 3 nodes.

and SPECjbb. This is because in both cases, AsymSched
migrates a large amount of memory. Both applications
become memory intensive after an initialization phase,
and AsymSched starts migrating memory only after the
entire working set has been allocated. For instance, in
the case of is.D, AsymSched migrates between 0GB and
20GB, depending on the initial placement of threads.

Figure 5 shows the latency of memory accesses com-
pared to the average. For most applications, the dynam-
ics of latency closely matches that of the performance.
A few exceptions are is.D, lu.B and kmeans. For is.D,
the latency is drastically improved by AsymSched but
the impact on performance is not visible because of the
time lost performing memory migrations. Lu.B is ex-
tremely memory intensive during its first seconds of ex-
ecution, but performs very few memory accesses there-
after; AsymSched improves this initial phase but has no
impact on the rest of the running time. Kmeans is very
bursty; placing its threads has a huge impact on the la-
tency of memory accesses performed during bursts of
memory accesses but not on the rest of the execution.

5.3 Multi application workloads
We evaluate several multi-application workloads us-
ing the applications studied in section 5.2. We chose
four applications that benefit to various degrees from

AsymSched: streamcluster (benefits to a high degree),
SPECjbb (benefits to a moderate degree), graph500 (ben-
efits to a small degree), and matrixmultiply (does not
benefit). Some of these applications have different
phases during their execution; for instance, streamclus-
ter processes its input set in five distinct rounds, and
SPECjbb spends significant amount of time initializing
data before emulating a three-tier client/server system.

Figure 6 presents the performance on multi application
workloads. We chose two different clustering configura-
tions: (i) Three applications executing on three, three and
two nodes, respectively; (ii) Two applications executing
on five and three nodes respectively.

In all workloads, AsymSched achieves performance
that is close or better than the best static thread place-
ment on Linux. Furthermore, it produces a very low
standard deviation. In constrast, dynamic memory mi-
gration alone exhibits high standard deviation and, like
with single application workloads, is unable to improve
performance for Graph500 and SPECjbb.

AsymSched significantly improves the latency of ap-
plications that benefit from thread and memory migra-
tion (Figure 7), in particular for streamcluster. This is
because AsymSched chooses configurations in which the
links used by streamcluster are not shared with any other
application.

9

10 / 12



Evaluation – 3 applications

286  2015 USENIX Annual Technical Conference	 USENIX Association

-50
 0

 50
 100
 150
 200
 250

specjbb-3

graph500-3

matrixmultiply-2

streamcluster-3

graph500-3

specjbb-2

streamcluster-3

streamcluster-3

streamcluster-2

specjbb-5

matrixmultiply-3

specjbb-5

streamcluster-3

P
er

f. 
im

pr
ov

em
en

t r
el

at
iv

e
to

 a
ve

ra
ge

 p
la

ce
m

en
t (

%
)

Worst Thread Placement
Best Thread Placement

Dynamic Memory Placement
AsymSched

Figure 6: Performance difference between the best thread placement, the worst thread placement, dynamic memory
placement, AsymSched and the average thread placement of applications on machine A. The numbers appended to the
name of applications specify the number of nodes on which the application runs.

-1500
-1000
-500

 0
 500

 1000
 1500
 2000

specjbb-3

graph500-3

matrixmultiply-2

streamcluster-3

graph500-3

specjbb-2

streamcluster-3

streamcluster-3

streamcluster-2

specjbb-5

matrixmultiply-3

specjbb-5

streamcluster-3

La
te

nc
y 

of
 m

em
or

y
ac

ce
ss

es
 c

om
pa

re
d 

to
av

er
ag

e 
pl

ac
em

en
t (

cy
cl

es
)

Worst Thread Placement
Best Thread Placement

Dynamic Memory Placement
AsymSched

Figure 7: Performance difference between the best thread placement, the worst thread placement, dynamic memory
placement, AsymSched and the average thread placement of applications on machine A.

cg.B ft.C is.D sp.A streamcluster graph500 specJBB
Migrated memory (GB) 0.17 2.5 20 0.1 0.15 0.3 10

Average time - Linux syscall (ms) 860 12700 101000 490 750 1500 50500
Average time - fast migration (ms) 51 380 3050 30 45 90 1500

Table 5: Average amount of migrated memory for various applications running on 3 nodes and required time to
perform the migration using the standard Linux system call and using fast memory migration.

5.4 Overhead

The main overhead of AsymSched is due to memory mi-
gration. This explains why we implemented a custom
system call (see Section 4.3). Table 5 compares the mi-
gration time when running the standard Linux system
call and when running our custom system call. For in-
stance, for is.D, migration takes 101 seconds using the
Linux system call (50% overhead), but only 3 seconds
using our custom system call (1.5% overhead). To keep
the overhead low, AsymSched performs migrations only
if the predicted overhead is below 5%. In practice, the
maximum migration overhead we observed was 3%.

The cost of collecting metrics and computing clus-
ter placement is below 0.5% on all studied applications.
Moreover, AsymSched requires less than 2MB of RAM.

The overhead of thread migration is negligible and we
did not observe any noticeable effect of thread migrations
on cache misses.

Finally, when dynamic memory placement is used,
IBS sampling incurs a light overhead (within 2% in
our experiments) and statistics on memory accesses are
stored in about 20MB of RAM.

5.5 Discussion - Applicability on future
NUMA machines

We believe that the findings and the solution presented
in this paper are likely to be applicable on future NUMA
systems. First, we believe that the clustering and place-
ment techniques used in AsymSched can scale on ma-
chines with a much larger number of nodes. With very
simple heuristics we were able to avoid computing up
to 99% of the possible thread placements. Such op-
timizations will still likely be possible on future ma-
chines, as machines are usually made of multiple iden-
tical cores/sockets (e.g., our 64-core machine has 4 iden-
tical sockets). On machines that offer a wider diversity

10
286  2015 USENIX Annual Technical Conference	 USENIX Association

-50
 0

 50
 100
 150
 200
 250

specjbb-3

graph500-3

matrixmultiply-2

streamcluster-3

graph500-3

specjbb-2

streamcluster-3

streamcluster-3

streamcluster-2

specjbb-5

matrixmultiply-3

specjbb-5

streamcluster-3

P
er

f. 
im

pr
ov

em
en

t r
el

at
iv

e
to

 a
ve

ra
ge

 p
la

ce
m

en
t (

%
)

Worst Thread Placement
Best Thread Placement

Dynamic Memory Placement
AsymSched

Figure 6: Performance difference between the best thread placement, the worst thread placement, dynamic memory
placement, AsymSched and the average thread placement of applications on machine A. The numbers appended to the
name of applications specify the number of nodes on which the application runs.

-1500
-1000
-500

 0
 500

 1000
 1500
 2000

specjbb-3

graph500-3

matrixmultiply-2

streamcluster-3

graph500-3

specjbb-2

streamcluster-3

streamcluster-3

streamcluster-2

specjbb-5

matrixmultiply-3

specjbb-5

streamcluster-3

La
te

nc
y 

of
 m

em
or

y
ac

ce
ss

es
 c

om
pa

re
d 

to
av

er
ag

e 
pl

ac
em

en
t (

cy
cl

es
)

Worst Thread Placement
Best Thread Placement

Dynamic Memory Placement
AsymSched

Figure 7: Performance difference between the best thread placement, the worst thread placement, dynamic memory
placement, AsymSched and the average thread placement of applications on machine A.

cg.B ft.C is.D sp.A streamcluster graph500 specJBB
Migrated memory (GB) 0.17 2.5 20 0.1 0.15 0.3 10

Average time - Linux syscall (ms) 860 12700 101000 490 750 1500 50500
Average time - fast migration (ms) 51 380 3050 30 45 90 1500

Table 5: Average amount of migrated memory for various applications running on 3 nodes and required time to
perform the migration using the standard Linux system call and using fast memory migration.

5.4 Overhead

The main overhead of AsymSched is due to memory mi-
gration. This explains why we implemented a custom
system call (see Section 4.3). Table 5 compares the mi-
gration time when running the standard Linux system
call and when running our custom system call. For in-
stance, for is.D, migration takes 101 seconds using the
Linux system call (50% overhead), but only 3 seconds
using our custom system call (1.5% overhead). To keep
the overhead low, AsymSched performs migrations only
if the predicted overhead is below 5%. In practice, the
maximum migration overhead we observed was 3%.

The cost of collecting metrics and computing clus-
ter placement is below 0.5% on all studied applications.
Moreover, AsymSched requires less than 2MB of RAM.

The overhead of thread migration is negligible and we
did not observe any noticeable effect of thread migrations
on cache misses.

Finally, when dynamic memory placement is used,
IBS sampling incurs a light overhead (within 2% in
our experiments) and statistics on memory accesses are
stored in about 20MB of RAM.

5.5 Discussion - Applicability on future
NUMA machines

We believe that the findings and the solution presented
in this paper are likely to be applicable on future NUMA
systems. First, we believe that the clustering and place-
ment techniques used in AsymSched can scale on ma-
chines with a much larger number of nodes. With very
simple heuristics we were able to avoid computing up
to 99% of the possible thread placements. Such op-
timizations will still likely be possible on future ma-
chines, as machines are usually made of multiple iden-
tical cores/sockets (e.g., our 64-core machine has 4 iden-
tical sockets). On machines that offer a wider diversity

10

11 / 12



Discussion

I What’s the matter with memory migration?
I How well would this work without the magic constants?
I What if #threads is not a multiple of #cores in

NUMA-domain?

12 / 12


