
Read-Log-Update
A Lightweight Synchronization Mechanism for

Concurrent Programming
Paper Reading Group

Alexander Matveev
Nir Shavit

Pascal Felber
Patrick Marlier

Presents: Maksym Planeta

24.09.2015

Table of Contents

Introduction

RLU design

Evaluation

Conclusion

Table of Contents

Introduction

RLU design

Evaluation

Conclusion

Motivation

What is bad with LRU?

I Complex to use for a writer;

I Optimized for low number of writers

I High delays in synchronize_rcu

Contributions

RCU + STM = RLU.

I Update several objects with single counter increment;

Traverse doubly linked lists in both directions!

I Stay compatible with RCU

Contributions

RCU + STM = RLU.

I Update several objects with single counter increment;
Traverse doubly linked lists in both directions!

I Stay compatible with RCU

Contributions

RCU + STM = RLU.

I Update several objects with single counter increment;
Traverse doubly linked lists in both directions!

I Stay compatible with RCU

RCU recap

a b c

nT1

nT2

c

nT1

nT2

a b

synchronize_rcu()

search(c)

remove(b)

c

nT1

nT2

a b

…grace period…

rcu_dereference(b)

c

nT1

nT2

a b

kfree(n)➑

rcu_read_unlock()➐rcu_dereference(c)

➍

➌rcu_read_lock()➊

➋ ➏

➎

Figure 2. Concurrent search and removal with the RCU-based linked list.

threads when they wish to establish a synchronization point.
All threads use the clock as a reference point, time-stamping
their operations with this clock’s value. The observation in
[1, 8, 33] is that despite concurrent clock updates and mul-
tiple threads reading the global clock while it is being up-
dated, the overall contention and bottlenecking it introduces
is typically minimal.

3. The RLU Algorithm
In this section we describe the design and implementation of
RLU.

3.1 Basic Idea
For simplicity of presentation, we first assume in this section
that write operations execute serially, and later show vari-
ous programming patterns that allow us to introduce concur-
rency among writers.

RLU provides support for multiple object updates in a
single operation by combining the quiescence mechanism of
RCU with a global clock and per thread object-level logs.
All operations read the global clock when they start, and use
this clock to dereference shared objects. In turn, a write oper-
ation logs each object it modifies in a per thread write-log: to
modify an object, it first copies the object into the write-log,
and then manipulates the object copy in this log. In this way,
write modifications are hidden from concurrent reads, and
to avoid conflicts with concurrent writes, each object is also
locked before its first modification (and duplication). Then,
to commit the new object copies, a write operation incre-
ments the global clock, which effectively splits operations
into two sets: (1) old operations that started before the clock
increment, and (2) new operations that start after the clock
increment. The first set of operations will read the old object
copies while the second set will read the new object copies
of this writer. Therefore, in the next step, the writer waits for
old operations to finish by executing the RCU-style quies-
cence loop, while new operations “steal” new object copies
of this writer by accessing the per thread write-log of this
writer. After the completion of old operations, no other op-
eration may access the old object memory locations, so the
writer can safely write back the new objects from the writer-
log into the memory, overwriting the old objects. It can then
release the locks.

Figure 3 depicts how RLU provides multiple object up-
dates in one operation. In the figure, execution flows from
top to bottom. Thread T2 updates objects O2 and O3,
whereas threads T1 and T3 only perform reads. Initially,

the global clock is 22, and T2 has an empty write-log and
a local write-clock variable that holds ∞ (maximum 64-bit
integer value). These per-thread write-clocks are used by the
stealing mechanism to ensure correctness (details follow).

In the top figure, threads T1 and T2 start by reading the
global clock and copying its value to their local clocks, and
then proceed to reading objects. In this case, none of the
objects is locked, so the reads are performed directly from
the memory.

In the middle figure, T2 locks and logs O2 and O3 before
updating these objects. As a result, O2 and O3 are copied
into the write-log of T2, and all modifications are re-routed
into the write-log. Meanwhile, T1 reads O2 and detects that
this object is locked by T2. T1 must thus determine whether
it needs to steal the new object copy. To that end, T1 com-
pares its local clock with the write clock of T2, and only
when the local clock is greater than or equal to the write-
clock of T2 does T1 steal the new copy. This is not the case
in the depicted scenario, hence T1 reads the object directly
from the memory.

In the bottom figure, T2 starts the process of committing
new objects. It first computes the next clock value, which
is 23, and then installs this new value into the write-clock
and global-clock (notice that the order here is critical). At
this point, as we explained before, operations are split into
“old” and “new” (before and after the clock increment), so
T2 waits for the old operations to finish. In this example,
T2 waits for T1. Meanwhile, T3 reads O2 and classifies this
operation as new by comparing its local clock with the write-
clock of T2; it therefore “steals” the new copy of O2 from
the write-log of T2. In this way, new operations read only
new object copies so that, after T2 wait completes, no-one
can read the old copies and it is safe to write back the new
copies of O2 and O3 to memory.

3.2 Synchronizing Write Operations
The basic idea of RLU described above provides read-write
synchronization for object accesses. It does not however
ensure write-write synchronization, which must be managed
by the programmer if needed (as with RCU). A simple way
to synchronize writers is to execute them serially, without
any concurrency. In this case, the benefit is simplicity of
code and the concurrency that does exist between read-only
and write operations. On the other hand, the drawback is a
lack of scalability.

Another approach is to use fine-grained locks. In RLU,
each object that a writer modifies is logged and locked by

171

Single point manipulation

s t a t i c i n l i n e void
l i s t a d d r c u (s t ruc t l i s t h e a d ∗new ,

s t ruc t l i s t h e a d ∗ prev ,
s t ruc t l i s t h e a d ∗ n e x t)

{
new−>n e x t = n e x t ;
new−>p r e v = p r e v ;
r c u a s s i g n p o i n t e r (l i s t n e x t r c u (p r e v) , new) ;
next−>p r e v = new ;

}

RLU style

/∗ . . . some impor tan t code tha t
we c o n s i d e r l a t e r . . . ∗/

/∗ Update r e f e r e n c e s ∗/
r l u a s s i g n p t r (&(new−>n e x t) , n e x t) ;
r l u a s s i g n p t r (&(prev−>n e x t) , new) ;
/∗ Commit ∗/
r l u r e a d e r u n l o c k () ;

Table of Contents

Introduction

RLU design

Evaluation

Conclusion

Basic idea

1. All operations read the global clock when they start;

2. Clock is used to dereference shared objects;

3. Write operations write to a log (RCU-style copy of an object);

4. Increment global clock to commit write (Swap pointers in
RCU);

5. Wait old readers to finish (synchronize_rcu);

6. Write-back objects from the log. (Corresponds to RCU
memory reclamation)

Read-read example

22g-clock
∞w-clock

—w-log

—T1 …

∞w-clock

—w-log

—T2 …

∞w-clock

—w-log

—T3 …
O1

—lock

O2

—lock

O3

—lock

read g-clock
(l-clock←22)

22l-clock 22l-clock —l-clock

➊

read O1
(not locked)

➋
➊

➋

➌

22g-clock
∞w-clock

—w-log

—T1 …

∞w-clock
O2w-log
O3T2 …

∞w-clock

—w-log

—T3 …
O1

—lock

O2

T2lock

O3

T2lock

read O2
(locked by T2)

22l-clock 22l-clock —l-clock

➌

if (l-clock ≥
T2.w-clock)

→

read g-clock
(l-clock←22)

read O1
(not locked)

read O2
(not locked)

steal new
copy from
T2.w-log

else→
read O2

➍ log O2
(and lock)

➎update O2
(in w-log)

➏ log O3
(and lock)

➐update O3
(in w-log)

23g-clock
∞w-clock

—w-log

—T1 …

w-clock
O2w-log
O3T2 …

∞w-clock

—w-log

—T3 …
O1

—lock

O2

T2lock

O3

T2lock

…done

22l-clock 23l-clock 23l-clock

➍

➑commit
w-clock←231)
g-clock←232)
wait for
readers (with
l-clock < 23)

3)

wait for T1……

write back
w-log

4)

read g-clock
(l-clock←23)

➊

read O2
(locked by T2)

➋

if (l-clock ≥
T2.w-clock)

→

steal new
copy from
T2.w-log

read copy→

23

wait for T1……
wait for T1……

Threads Memory

…

…

…

T1 T2 T3

T1 T2 T3

T1 T2 T3

T1 T2 T3

T1 T2 T3

T1 T2 T3

mem

mem

mem

Figure 3. Basic Principle of RLU.

the RLU mechanism. Programmers can therefore use this
locking process to coordinate write operations. For example,
in a linked-list implementation, instead of grabbing a global
lock for each writer, a programmer can use RLU to traverse
the linked list, and then use the RLU mechanism to lock the
target node and its predecessor. If the locking fails, then the
operation restarts, otherwise the programmer can proceed
and modify the target node (e.g., insertion or removal) and
release the locks.

3.3 Fine-grained Locking Using RLU
Programmers can use RLU locks as a fine-grained locking
mechanism, in the same way they use standard locks. How-
ever, RLU locks are much easier to use due to the fact that
all object reads and writes execute inside “RLU protected”

sections that are subject to the RCU-based quiescence mech-
anism of each writer. This means that when some thread
reads or writes (locks and logs) objects, no other concurrent
thread may overwrite any of these objects. With RLU, after
the object lock has been acquired, no other action is nec-
essary whereas, with standard locks, one needs to execute
post-lock customized verifications to ensure that the state of
the object is still the same as it was before locking.

3.4 RLU Metadata
Global. RLU maintains a global clock and a global array
of threads. The global array is used by the quiescence mech-
anism to identify the currently active threads.

Thread. RLU maintains two write-logs, a run counter, and
a local clock and write clock for each thread. The write-logs
hold new object copies, the run counter indicates when the
thread is active, and the local clock and write clock con-
trol the write-log stealing mechanism of threads. In addi-
tion, each object copy in the write-log has a header that in-
cludes: (1) a thread identifier, (2) a pointer to the actual ob-
ject, (3) the object size, and (4) a special pointer value that
indicates this is a copy (constant).

Object. RLU attaches a header for each object, which in-
cludes a single pointer that points to the copy of this object
in a write-log. If this pointer is NULL, then there is no copy
and the object is unlocked.

In our implementation, we attach a header to each object
by hooking the malloc() call with a call to rlu alloc() that
allocates each object with the attached header. In addition,
we also hook the free() call with rlu free() to ensure proper
deallocation of objects that include headers. Note that any
allocator library can be used with RLU.

We use simple macros to access and modify the metadata
headers of an object. First, we use get copy(obj) to get ptr-
copy: the value of the pointer (to copy) that resides in the
header of obj. Then, we use this ptr-copy as a parameter in
macros: (1) is unlocked(ptr-copy) that checks if the object is
free, (2) is copy(ptr-copy) that checks if this object is a copy
in a write-log, (3) get actual(obj) that returns a pointer to the
actual object in memory in case this is a copy in a write-log,
and (4) get thread id(ptr-copy) that returns the identifier of
the thread that currently locked this object.

We use 64-bit clocks and counters to avoid overflows and
initialize all RLU metadata to zero. The only exception is
write clocks of threads, that are initialized to ∞ (maximum
64-bit value).

3.5 RLU Pseudo-Code
Algorithm 1 presents the pseudo-code for the main functions
of RLU. An RLU protected section starts by calling rlu -
reader lock() that registers the thread: it increments the run
counter and initializes the local clock to the global clock.
Then, during execution of the section, it dereferences each
object by calling the rlu dereference() function, which first

172

Write-read example

22g-clock
∞w-clock

—w-log

—T1 …

∞w-clock

—w-log

—T2 …

∞w-clock

—w-log

—T3 …
O1

—lock

O2

—lock

O3

—lock

read g-clock
(l-clock←22)

22l-clock 22l-clock —l-clock

➊

read O1
(not locked)

➋
➊

➋

➌

22g-clock
∞w-clock

—w-log

—T1 …

∞w-clock
O2w-log
O3T2 …

∞w-clock

—w-log

—T3 …
O1

—lock

O2

T2lock

O3

T2lock

read O2
(locked by T2)

22l-clock 22l-clock —l-clock

➌

if (l-clock ≥
T2.w-clock)

→

read g-clock
(l-clock←22)

read O1
(not locked)

read O2
(not locked)

steal new
copy from
T2.w-log

else→
read O2

➍ log O2
(and lock)

➎update O2
(in w-log)

➏ log O3
(and lock)

➐update O3
(in w-log)

23g-clock
∞w-clock

—w-log

—T1 …

w-clock
O2w-log
O3T2 …

∞w-clock

—w-log

—T3 …
O1

—lock

O2

T2lock

O3

T2lock

…done

22l-clock 23l-clock 23l-clock

➍

➑commit
w-clock←231)
g-clock←232)
wait for
readers (with
l-clock < 23)

3)

wait for T1……

write back
w-log

4)

read g-clock
(l-clock←23)

➊

read O2
(locked by T2)

➋

if (l-clock ≥
T2.w-clock)

→

steal new
copy from
T2.w-log

read copy→

23

wait for T1……
wait for T1……

Threads Memory

…

…

…

T1 T2 T3

T1 T2 T3

T1 T2 T3

T1 T2 T3

T1 T2 T3

T1 T2 T3

mem

mem

mem

Figure 3. Basic Principle of RLU.

the RLU mechanism. Programmers can therefore use this
locking process to coordinate write operations. For example,
in a linked-list implementation, instead of grabbing a global
lock for each writer, a programmer can use RLU to traverse
the linked list, and then use the RLU mechanism to lock the
target node and its predecessor. If the locking fails, then the
operation restarts, otherwise the programmer can proceed
and modify the target node (e.g., insertion or removal) and
release the locks.

3.3 Fine-grained Locking Using RLU
Programmers can use RLU locks as a fine-grained locking
mechanism, in the same way they use standard locks. How-
ever, RLU locks are much easier to use due to the fact that
all object reads and writes execute inside “RLU protected”

sections that are subject to the RCU-based quiescence mech-
anism of each writer. This means that when some thread
reads or writes (locks and logs) objects, no other concurrent
thread may overwrite any of these objects. With RLU, after
the object lock has been acquired, no other action is nec-
essary whereas, with standard locks, one needs to execute
post-lock customized verifications to ensure that the state of
the object is still the same as it was before locking.

3.4 RLU Metadata
Global. RLU maintains a global clock and a global array
of threads. The global array is used by the quiescence mech-
anism to identify the currently active threads.

Thread. RLU maintains two write-logs, a run counter, and
a local clock and write clock for each thread. The write-logs
hold new object copies, the run counter indicates when the
thread is active, and the local clock and write clock con-
trol the write-log stealing mechanism of threads. In addi-
tion, each object copy in the write-log has a header that in-
cludes: (1) a thread identifier, (2) a pointer to the actual ob-
ject, (3) the object size, and (4) a special pointer value that
indicates this is a copy (constant).

Object. RLU attaches a header for each object, which in-
cludes a single pointer that points to the copy of this object
in a write-log. If this pointer is NULL, then there is no copy
and the object is unlocked.

In our implementation, we attach a header to each object
by hooking the malloc() call with a call to rlu alloc() that
allocates each object with the attached header. In addition,
we also hook the free() call with rlu free() to ensure proper
deallocation of objects that include headers. Note that any
allocator library can be used with RLU.

We use simple macros to access and modify the metadata
headers of an object. First, we use get copy(obj) to get ptr-
copy: the value of the pointer (to copy) that resides in the
header of obj. Then, we use this ptr-copy as a parameter in
macros: (1) is unlocked(ptr-copy) that checks if the object is
free, (2) is copy(ptr-copy) that checks if this object is a copy
in a write-log, (3) get actual(obj) that returns a pointer to the
actual object in memory in case this is a copy in a write-log,
and (4) get thread id(ptr-copy) that returns the identifier of
the thread that currently locked this object.

We use 64-bit clocks and counters to avoid overflows and
initialize all RLU metadata to zero. The only exception is
write clocks of threads, that are initialized to ∞ (maximum
64-bit value).

3.5 RLU Pseudo-Code
Algorithm 1 presents the pseudo-code for the main functions
of RLU. An RLU protected section starts by calling rlu -
reader lock() that registers the thread: it increments the run
counter and initializes the local clock to the global clock.
Then, during execution of the section, it dereferences each
object by calling the rlu dereference() function, which first

172

Read-write-steal example

22g-clock
∞w-clock

—w-log

—T1 …

∞w-clock

—w-log

—T2 …

∞w-clock

—w-log

—T3 …
O1

—lock

O2

—lock

O3

—lock

read g-clock
(l-clock←22)

22l-clock 22l-clock —l-clock

➊

read O1
(not locked)

➋
➊

➋

➌

22g-clock
∞w-clock

—w-log

—T1 …

∞w-clock
O2w-log
O3T2 …

∞w-clock

—w-log

—T3 …
O1

—lock

O2

T2lock

O3

T2lock

read O2
(locked by T2)

22l-clock 22l-clock —l-clock

➌

if (l-clock ≥
T2.w-clock)

→

read g-clock
(l-clock←22)

read O1
(not locked)

read O2
(not locked)

steal new
copy from
T2.w-log

else→
read O2

➍ log O2
(and lock)

➎update O2
(in w-log)

➏ log O3
(and lock)

➐update O3
(in w-log)

23g-clock
∞w-clock

—w-log

—T1 …

w-clock
O2w-log
O3T2 …

∞w-clock

—w-log

—T3 …
O1

—lock

O2

T2lock

O3

T2lock

…done

22l-clock 23l-clock 23l-clock

➍

➑commit
w-clock←231)
g-clock←232)
wait for
readers (with
l-clock < 23)

3)

wait for T1……

write back
w-log

4)

read g-clock
(l-clock←23)

➊

read O2
(locked by T2)

➋

if (l-clock ≥
T2.w-clock)

→

steal new
copy from
T2.w-log

read copy→

23

wait for T1……
wait for T1……

Threads Memory

…

…

…

T1 T2 T3

T1 T2 T3

T1 T2 T3

T1 T2 T3

T1 T2 T3

T1 T2 T3

mem

mem

mem

Figure 3. Basic Principle of RLU.

the RLU mechanism. Programmers can therefore use this
locking process to coordinate write operations. For example,
in a linked-list implementation, instead of grabbing a global
lock for each writer, a programmer can use RLU to traverse
the linked list, and then use the RLU mechanism to lock the
target node and its predecessor. If the locking fails, then the
operation restarts, otherwise the programmer can proceed
and modify the target node (e.g., insertion or removal) and
release the locks.

3.3 Fine-grained Locking Using RLU
Programmers can use RLU locks as a fine-grained locking
mechanism, in the same way they use standard locks. How-
ever, RLU locks are much easier to use due to the fact that
all object reads and writes execute inside “RLU protected”

sections that are subject to the RCU-based quiescence mech-
anism of each writer. This means that when some thread
reads or writes (locks and logs) objects, no other concurrent
thread may overwrite any of these objects. With RLU, after
the object lock has been acquired, no other action is nec-
essary whereas, with standard locks, one needs to execute
post-lock customized verifications to ensure that the state of
the object is still the same as it was before locking.

3.4 RLU Metadata
Global. RLU maintains a global clock and a global array
of threads. The global array is used by the quiescence mech-
anism to identify the currently active threads.

Thread. RLU maintains two write-logs, a run counter, and
a local clock and write clock for each thread. The write-logs
hold new object copies, the run counter indicates when the
thread is active, and the local clock and write clock con-
trol the write-log stealing mechanism of threads. In addi-
tion, each object copy in the write-log has a header that in-
cludes: (1) a thread identifier, (2) a pointer to the actual ob-
ject, (3) the object size, and (4) a special pointer value that
indicates this is a copy (constant).

Object. RLU attaches a header for each object, which in-
cludes a single pointer that points to the copy of this object
in a write-log. If this pointer is NULL, then there is no copy
and the object is unlocked.

In our implementation, we attach a header to each object
by hooking the malloc() call with a call to rlu alloc() that
allocates each object with the attached header. In addition,
we also hook the free() call with rlu free() to ensure proper
deallocation of objects that include headers. Note that any
allocator library can be used with RLU.

We use simple macros to access and modify the metadata
headers of an object. First, we use get copy(obj) to get ptr-
copy: the value of the pointer (to copy) that resides in the
header of obj. Then, we use this ptr-copy as a parameter in
macros: (1) is unlocked(ptr-copy) that checks if the object is
free, (2) is copy(ptr-copy) that checks if this object is a copy
in a write-log, (3) get actual(obj) that returns a pointer to the
actual object in memory in case this is a copy in a write-log,
and (4) get thread id(ptr-copy) that returns the identifier of
the thread that currently locked this object.

We use 64-bit clocks and counters to avoid overflows and
initialize all RLU metadata to zero. The only exception is
write clocks of threads, that are initialized to ∞ (maximum
64-bit value).

3.5 RLU Pseudo-Code
Algorithm 1 presents the pseudo-code for the main functions
of RLU. An RLU protected section starts by calling rlu -
reader lock() that registers the thread: it increments the run
counter and initializes the local clock to the global clock.
Then, during execution of the section, it dereferences each
object by calling the rlu dereference() function, which first

172

Real list add

i n t r l u l i s t a d d (r l u t h r e a d d a t a t ∗ s e l f ,
l i s t t ∗ l i s t , v a l t v a l) {

n o d e t ∗ prev , ∗next , ∗node ;
v a l t v ;

r e s t a r t :
r l u r e a d e r l o c k () ;
/∗ Find r i g h t p l a c e . . . ∗/
i f (! r l u t r y l o c k (s e l f , &p r e v) | |

! r l u t r y l o c k (s e l f , &n e x t)) {
r l u a b o r t (s e l f) ;
goto r e s t a r t ;

}
new = r l u n e w n o d e () ; new−>v a l = v a l ;
r l u a s s i g n p t r (&(new−>n e x t) , n e x t) ;
r l u a s s i g n p t r (&(prev−>n e x t) , new) ;
r l u r e a d e r u n l o c k () ;

}

Real list add

i n t r l u l i s t a d d (r l u t h r e a d d a t a t ∗ s e l f ,
l i s t t ∗ l i s t , v a l t v a l) {

n o d e t ∗ prev , ∗next , ∗node ;
v a l t v ;

r e s t a r t :
r l u r e a d e r l o c k () ;
/∗ Find r i g h t p l a c e . . . ∗/
i f (! r l u t r y l o c k (s e l f , &p r e v) | |

! r l u t r y l o c k (s e l f , &n e x t)) {
r l u a b o r t (s e l f) ;
goto r e s t a r t ;

}
new = r l u n e w n o d e () ; new−>v a l = v a l ;
r l u a s s i g n p t r (&(new−>n e x t) , n e x t) ;
r l u a s s i g n p t r (&(prev−>n e x t) , new) ;
r l u r e a d e r u n l o c k () ;

}

Real list add

i n t r l u l i s t a d d (r l u t h r e a d d a t a t ∗ s e l f ,
l i s t t ∗ l i s t , v a l t v a l) {

n o d e t ∗ prev , ∗next , ∗node ;
v a l t v ;

r e s t a r t :
r l u r e a d e r l o c k () ;
/∗ Find r i g h t p l a c e . . . ∗/
i f (! r l u t r y l o c k (s e l f , &p r e v) | |

! r l u t r y l o c k (s e l f , &n e x t)) {
r l u a b o r t (s e l f) ;
goto r e s t a r t ;

}
new = r l u n e w n o d e () ; new−>v a l = v a l ;
r l u a s s i g n p t r (&(new−>n e x t) , n e x t) ;
r l u a s s i g n p t r (&(prev−>n e x t) , new) ;
r l u r e a d e r u n l o c k () ;

}

Reader lock

Algorithm 1 RLU pseudo-code: main functions
1: function RLU_READER_LOCK(ctx)
2: ctx.is-writer← false
3: ctx.run-cnt← ctx.run-cnt +1 . Set active
4: memory fence
5: ctx.local-clock← global-clock . Record global clock

6: function RLU_READER_UNLOCK(ctx)
7: ctx.run-cnt← ctx.run-cnt +1 . Set inactive
8: if ctx.is-writer then
9: RLU_COMMIT_WRITE_LOG(ctx) . Write updates

10: function RLU_DEREFERENCE(ctx, obj)
11: ptr-copy← GET_COPY(obj) . Get copy pointer
12: if IS_UNLOCKED(ptr-copy) then . Is free?
13: return obj . Yes⇒ return object
14: if IS_COPY(ptr-copy) then . Already a copy?
15: return obj . Yes⇒ return object
16: thr-id← GET_THREAD_ID(ptr-copy)
17: if thr-id = ctx.thr-id then . Locked by us?
18: return ptr-copy . Yes⇒ return copy
19: other-ctx← GET_CTX(thr-id) . No⇒ check for steal
20: if other-ctx.write-clock ≤ ctx.local-clock then
21: return ptr-copy . Stealing⇒ return copy
22: return obj . No stealing⇒ return object

23: function RLU_TRY_LOCK(ctx, obj)
24: ctx.is-writer← true . Write detected
25: obj← GET_ACTUAL(obj) . Read actual object
26: ptr-copy← GET_COPY(obj) . Get pointer to copy
27: if ¬ IS_UNLOCKED(ptr-copy) then
28: thr-id← GET_THREAD_ID(ptr-copy)
29: if thr-id = ctx.thr-id then . Locked by us?
30: return ptr-copy . Yes⇒ return copy
31: RLU_ABORT(ctx) . No⇒ retry RLU section
32: obj-header.thr-id← ctx.thr-id . Prepare write-log
33: obj-header.obj← obj
34: obj-header.obj-size← SIZEOF(obj)
35: ptr-copy← LOG_APPEND(ctx.write-log, obj-header)
36: if ¬ TRY_LOCK(obj, ptr-copy) then . Try to install copy
37: RLU_ABORT(ctx) . Failed⇒ retry RLU section
38: LOG_APPEND(ctx.write-log, obj) . Locked⇒ copy object
39: return ptr-copy

40: function RLU_CMP_OBJS(ctx, obj1, obj2)
41: return GET_ACTUAL(obj1) = GET_ACTUAL(obj2)

42: function RLU_ASSIGN_PTR(ctx, handle, obj)
43: ∗handle← GET_ACTUAL(obj)

44: function RLU_COMMIT_WRITE_LOG(ctx)
45: ctx.write-clock← global-clock +1 . Enable stealing
46: FETCH_AND_ADD(global-clock, 1) . Advance clock
47: RLU_SYNCHRONIZE(ctx) . Drain readers
48: RLU_WRITEBACK_WRITE_LOG(ctx) . Safe to write back
49: RLU_UNLOCK_WRITE_LOG(ctx)
50: ctx.write-clock←∞ . Disable stealing
51: RLU_SWAP_WRITE_LOGS(ctx) . Quiesce write-log

52: function RLU_SYNCHRONIZE(ctx)
53: for thr-id ∈ active-threads do
54: other← GET_CTX(thr-id)
55: ctx.sync_cnts[thr-id]← other.run-cnt
56: for thr-id ∈ active-threads do
57: while true do . Spin loop on thread
58: if ctx.sync-cnts[thr-id] is even then
59: break . Not active
60: other← GET_CTX(thr-id)
61: if ctx.sync-cnts[thr-id] 6= other.run-cnt then
62: break . Progressed
63: if ctx.write-clock ≤ other.local-clock then
64: break . Started after me

65: function RLU_SWAP_WRITE_LOGS(ctx)
66: ptr-write-log← ctx.write-log-quiesce . Swap pointers
67: ctx.write-log-quiesce← ctx.write-log
68: ctx.write-log← ptr-write-log

69: function RLU_ABORT(ctx, obj)
70: ctx.run-cnt← ctx.run-cnt +1 . Set inactive
71: if ctx.is-writer then
72: RLU_UNLOCK_WRITE_LOG(ctx) . Unlock
73: RETRY . Specific retry code

checks whether the object is unlocked or a copy and, in that
case, returns the object. Otherwise, the object is locked by
some other thread, so the function checks whether it needs
to steal the new copy from the other thread’s write-log. For
this purpose, the current thread checks if its local clock is
greater than or equal to the write clock of the other thread
and, if so, it steals the new copy. Notice, that the write-clock
of a thread is initially ∞, so stealing from a thread is only
possible when it updates the write-clock during the commit.

Next, the algorithm locks each object to be modified
by calling rlu try lock(). First, this function sets a flag to

indicate that this thread is a writer. Then, it checks if the
object is already locked by some other thread, in which case
it fails and retries. Otherwise, it starts the locking process
that first prepares a write-log header for the object, and then
installs a pointer to object copy by using compare-and-swap
(CAS) instruction. If the locking succeeds, the thread copies
the object to the write-log, and returns a pointer to the newly
created copy. Note that the code also uses the rlu cmp -
objs() and rlu assign ptr() functions that hide the internal
implementation of object duplication and manipulation.

173

Algorithm 1 RLU pseudo-code: main functions
1: function RLU_READER_LOCK(ctx)
2: ctx.is-writer← false
3: ctx.run-cnt← ctx.run-cnt +1 . Set active
4: memory fence
5: ctx.local-clock← global-clock . Record global clock

6: function RLU_READER_UNLOCK(ctx)
7: ctx.run-cnt← ctx.run-cnt +1 . Set inactive
8: if ctx.is-writer then
9: RLU_COMMIT_WRITE_LOG(ctx) . Write updates

10: function RLU_DEREFERENCE(ctx, obj)
11: ptr-copy← GET_COPY(obj) . Get copy pointer
12: if IS_UNLOCKED(ptr-copy) then . Is free?
13: return obj . Yes⇒ return object
14: if IS_COPY(ptr-copy) then . Already a copy?
15: return obj . Yes⇒ return object
16: thr-id← GET_THREAD_ID(ptr-copy)
17: if thr-id = ctx.thr-id then . Locked by us?
18: return ptr-copy . Yes⇒ return copy
19: other-ctx← GET_CTX(thr-id) . No⇒ check for steal
20: if other-ctx.write-clock ≤ ctx.local-clock then
21: return ptr-copy . Stealing⇒ return copy
22: return obj . No stealing⇒ return object

23: function RLU_TRY_LOCK(ctx, obj)
24: ctx.is-writer← true . Write detected
25: obj← GET_ACTUAL(obj) . Read actual object
26: ptr-copy← GET_COPY(obj) . Get pointer to copy
27: if ¬ IS_UNLOCKED(ptr-copy) then
28: thr-id← GET_THREAD_ID(ptr-copy)
29: if thr-id = ctx.thr-id then . Locked by us?
30: return ptr-copy . Yes⇒ return copy
31: RLU_ABORT(ctx) . No⇒ retry RLU section
32: obj-header.thr-id← ctx.thr-id . Prepare write-log
33: obj-header.obj← obj
34: obj-header.obj-size← SIZEOF(obj)
35: ptr-copy← LOG_APPEND(ctx.write-log, obj-header)
36: if ¬ TRY_LOCK(obj, ptr-copy) then . Try to install copy
37: RLU_ABORT(ctx) . Failed⇒ retry RLU section
38: LOG_APPEND(ctx.write-log, obj) . Locked⇒ copy object
39: return ptr-copy

40: function RLU_CMP_OBJS(ctx, obj1, obj2)
41: return GET_ACTUAL(obj1) = GET_ACTUAL(obj2)

42: function RLU_ASSIGN_PTR(ctx, handle, obj)
43: ∗handle← GET_ACTUAL(obj)

44: function RLU_COMMIT_WRITE_LOG(ctx)
45: ctx.write-clock← global-clock +1 . Enable stealing
46: FETCH_AND_ADD(global-clock, 1) . Advance clock
47: RLU_SYNCHRONIZE(ctx) . Drain readers
48: RLU_WRITEBACK_WRITE_LOG(ctx) . Safe to write back
49: RLU_UNLOCK_WRITE_LOG(ctx)
50: ctx.write-clock←∞ . Disable stealing
51: RLU_SWAP_WRITE_LOGS(ctx) . Quiesce write-log

52: function RLU_SYNCHRONIZE(ctx)
53: for thr-id ∈ active-threads do
54: other← GET_CTX(thr-id)
55: ctx.sync_cnts[thr-id]← other.run-cnt
56: for thr-id ∈ active-threads do
57: while true do . Spin loop on thread
58: if ctx.sync-cnts[thr-id] is even then
59: break . Not active
60: other← GET_CTX(thr-id)
61: if ctx.sync-cnts[thr-id] 6= other.run-cnt then
62: break . Progressed
63: if ctx.write-clock ≤ other.local-clock then
64: break . Started after me

65: function RLU_SWAP_WRITE_LOGS(ctx)
66: ptr-write-log← ctx.write-log-quiesce . Swap pointers
67: ctx.write-log-quiesce← ctx.write-log
68: ctx.write-log← ptr-write-log

69: function RLU_ABORT(ctx, obj)
70: ctx.run-cnt← ctx.run-cnt +1 . Set inactive
71: if ctx.is-writer then
72: RLU_UNLOCK_WRITE_LOG(ctx) . Unlock
73: RETRY . Specific retry code

checks whether the object is unlocked or a copy and, in that
case, returns the object. Otherwise, the object is locked by
some other thread, so the function checks whether it needs
to steal the new copy from the other thread’s write-log. For
this purpose, the current thread checks if its local clock is
greater than or equal to the write clock of the other thread
and, if so, it steals the new copy. Notice, that the write-clock
of a thread is initially ∞, so stealing from a thread is only
possible when it updates the write-clock during the commit.

Next, the algorithm locks each object to be modified
by calling rlu try lock(). First, this function sets a flag to

indicate that this thread is a writer. Then, it checks if the
object is already locked by some other thread, in which case
it fails and retries. Otherwise, it starts the locking process
that first prepares a write-log header for the object, and then
installs a pointer to object copy by using compare-and-swap
(CAS) instruction. If the locking succeeds, the thread copies
the object to the write-log, and returns a pointer to the newly
created copy. Note that the code also uses the rlu cmp -
objs() and rlu assign ptr() functions that hide the internal
implementation of object duplication and manipulation.

173

Memory commit

Algorithm 1 RLU pseudo-code: main functions
1: function RLU_READER_LOCK(ctx)
2: ctx.is-writer← false
3: ctx.run-cnt← ctx.run-cnt +1 . Set active
4: memory fence
5: ctx.local-clock← global-clock . Record global clock

6: function RLU_READER_UNLOCK(ctx)
7: ctx.run-cnt← ctx.run-cnt +1 . Set inactive
8: if ctx.is-writer then
9: RLU_COMMIT_WRITE_LOG(ctx) . Write updates

10: function RLU_DEREFERENCE(ctx, obj)
11: ptr-copy← GET_COPY(obj) . Get copy pointer
12: if IS_UNLOCKED(ptr-copy) then . Is free?
13: return obj . Yes⇒ return object
14: if IS_COPY(ptr-copy) then . Already a copy?
15: return obj . Yes⇒ return object
16: thr-id← GET_THREAD_ID(ptr-copy)
17: if thr-id = ctx.thr-id then . Locked by us?
18: return ptr-copy . Yes⇒ return copy
19: other-ctx← GET_CTX(thr-id) . No⇒ check for steal
20: if other-ctx.write-clock ≤ ctx.local-clock then
21: return ptr-copy . Stealing⇒ return copy
22: return obj . No stealing⇒ return object

23: function RLU_TRY_LOCK(ctx, obj)
24: ctx.is-writer← true . Write detected
25: obj← GET_ACTUAL(obj) . Read actual object
26: ptr-copy← GET_COPY(obj) . Get pointer to copy
27: if ¬ IS_UNLOCKED(ptr-copy) then
28: thr-id← GET_THREAD_ID(ptr-copy)
29: if thr-id = ctx.thr-id then . Locked by us?
30: return ptr-copy . Yes⇒ return copy
31: RLU_ABORT(ctx) . No⇒ retry RLU section
32: obj-header.thr-id← ctx.thr-id . Prepare write-log
33: obj-header.obj← obj
34: obj-header.obj-size← SIZEOF(obj)
35: ptr-copy← LOG_APPEND(ctx.write-log, obj-header)
36: if ¬ TRY_LOCK(obj, ptr-copy) then . Try to install copy
37: RLU_ABORT(ctx) . Failed⇒ retry RLU section
38: LOG_APPEND(ctx.write-log, obj) . Locked⇒ copy object
39: return ptr-copy

40: function RLU_CMP_OBJS(ctx, obj1, obj2)
41: return GET_ACTUAL(obj1) = GET_ACTUAL(obj2)

42: function RLU_ASSIGN_PTR(ctx, handle, obj)
43: ∗handle← GET_ACTUAL(obj)

44: function RLU_COMMIT_WRITE_LOG(ctx)
45: ctx.write-clock← global-clock +1 . Enable stealing
46: FETCH_AND_ADD(global-clock, 1) . Advance clock
47: RLU_SYNCHRONIZE(ctx) . Drain readers
48: RLU_WRITEBACK_WRITE_LOG(ctx) . Safe to write back
49: RLU_UNLOCK_WRITE_LOG(ctx)
50: ctx.write-clock←∞ . Disable stealing
51: RLU_SWAP_WRITE_LOGS(ctx) . Quiesce write-log

52: function RLU_SYNCHRONIZE(ctx)
53: for thr-id ∈ active-threads do
54: other← GET_CTX(thr-id)
55: ctx.sync_cnts[thr-id]← other.run-cnt
56: for thr-id ∈ active-threads do
57: while true do . Spin loop on thread
58: if ctx.sync-cnts[thr-id] is even then
59: break . Not active
60: other← GET_CTX(thr-id)
61: if ctx.sync-cnts[thr-id] 6= other.run-cnt then
62: break . Progressed
63: if ctx.write-clock ≤ other.local-clock then
64: break . Started after me

65: function RLU_SWAP_WRITE_LOGS(ctx)
66: ptr-write-log← ctx.write-log-quiesce . Swap pointers
67: ctx.write-log-quiesce← ctx.write-log
68: ctx.write-log← ptr-write-log

69: function RLU_ABORT(ctx, obj)
70: ctx.run-cnt← ctx.run-cnt +1 . Set inactive
71: if ctx.is-writer then
72: RLU_UNLOCK_WRITE_LOG(ctx) . Unlock
73: RETRY . Specific retry code

checks whether the object is unlocked or a copy and, in that
case, returns the object. Otherwise, the object is locked by
some other thread, so the function checks whether it needs
to steal the new copy from the other thread’s write-log. For
this purpose, the current thread checks if its local clock is
greater than or equal to the write clock of the other thread
and, if so, it steals the new copy. Notice, that the write-clock
of a thread is initially ∞, so stealing from a thread is only
possible when it updates the write-clock during the commit.

Next, the algorithm locks each object to be modified
by calling rlu try lock(). First, this function sets a flag to

indicate that this thread is a writer. Then, it checks if the
object is already locked by some other thread, in which case
it fails and retries. Otherwise, it starts the locking process
that first prepares a write-log header for the object, and then
installs a pointer to object copy by using compare-and-swap
(CAS) instruction. If the locking succeeds, the thread copies
the object to the write-log, and returns a pointer to the newly
created copy. Note that the code also uses the rlu cmp -
objs() and rlu assign ptr() functions that hide the internal
implementation of object duplication and manipulation.

173

Pointer dereference

Algorithm 1 RLU pseudo-code: main functions
1: function RLU_READER_LOCK(ctx)
2: ctx.is-writer← false
3: ctx.run-cnt← ctx.run-cnt +1 . Set active
4: memory fence
5: ctx.local-clock← global-clock . Record global clock

6: function RLU_READER_UNLOCK(ctx)
7: ctx.run-cnt← ctx.run-cnt +1 . Set inactive
8: if ctx.is-writer then
9: RLU_COMMIT_WRITE_LOG(ctx) . Write updates

10: function RLU_DEREFERENCE(ctx, obj)
11: ptr-copy← GET_COPY(obj) . Get copy pointer
12: if IS_UNLOCKED(ptr-copy) then . Is free?
13: return obj . Yes⇒ return object
14: if IS_COPY(ptr-copy) then . Already a copy?
15: return obj . Yes⇒ return object
16: thr-id← GET_THREAD_ID(ptr-copy)
17: if thr-id = ctx.thr-id then . Locked by us?
18: return ptr-copy . Yes⇒ return copy
19: other-ctx← GET_CTX(thr-id) . No⇒ check for steal
20: if other-ctx.write-clock ≤ ctx.local-clock then
21: return ptr-copy . Stealing⇒ return copy
22: return obj . No stealing⇒ return object

23: function RLU_TRY_LOCK(ctx, obj)
24: ctx.is-writer← true . Write detected
25: obj← GET_ACTUAL(obj) . Read actual object
26: ptr-copy← GET_COPY(obj) . Get pointer to copy
27: if ¬ IS_UNLOCKED(ptr-copy) then
28: thr-id← GET_THREAD_ID(ptr-copy)
29: if thr-id = ctx.thr-id then . Locked by us?
30: return ptr-copy . Yes⇒ return copy
31: RLU_ABORT(ctx) . No⇒ retry RLU section
32: obj-header.thr-id← ctx.thr-id . Prepare write-log
33: obj-header.obj← obj
34: obj-header.obj-size← SIZEOF(obj)
35: ptr-copy← LOG_APPEND(ctx.write-log, obj-header)
36: if ¬ TRY_LOCK(obj, ptr-copy) then . Try to install copy
37: RLU_ABORT(ctx) . Failed⇒ retry RLU section
38: LOG_APPEND(ctx.write-log, obj) . Locked⇒ copy object
39: return ptr-copy

40: function RLU_CMP_OBJS(ctx, obj1, obj2)
41: return GET_ACTUAL(obj1) = GET_ACTUAL(obj2)

42: function RLU_ASSIGN_PTR(ctx, handle, obj)
43: ∗handle← GET_ACTUAL(obj)

44: function RLU_COMMIT_WRITE_LOG(ctx)
45: ctx.write-clock← global-clock +1 . Enable stealing
46: FETCH_AND_ADD(global-clock, 1) . Advance clock
47: RLU_SYNCHRONIZE(ctx) . Drain readers
48: RLU_WRITEBACK_WRITE_LOG(ctx) . Safe to write back
49: RLU_UNLOCK_WRITE_LOG(ctx)
50: ctx.write-clock←∞ . Disable stealing
51: RLU_SWAP_WRITE_LOGS(ctx) . Quiesce write-log

52: function RLU_SYNCHRONIZE(ctx)
53: for thr-id ∈ active-threads do
54: other← GET_CTX(thr-id)
55: ctx.sync_cnts[thr-id]← other.run-cnt
56: for thr-id ∈ active-threads do
57: while true do . Spin loop on thread
58: if ctx.sync-cnts[thr-id] is even then
59: break . Not active
60: other← GET_CTX(thr-id)
61: if ctx.sync-cnts[thr-id] 6= other.run-cnt then
62: break . Progressed
63: if ctx.write-clock ≤ other.local-clock then
64: break . Started after me

65: function RLU_SWAP_WRITE_LOGS(ctx)
66: ptr-write-log← ctx.write-log-quiesce . Swap pointers
67: ctx.write-log-quiesce← ctx.write-log
68: ctx.write-log← ptr-write-log

69: function RLU_ABORT(ctx, obj)
70: ctx.run-cnt← ctx.run-cnt +1 . Set inactive
71: if ctx.is-writer then
72: RLU_UNLOCK_WRITE_LOG(ctx) . Unlock
73: RETRY . Specific retry code

checks whether the object is unlocked or a copy and, in that
case, returns the object. Otherwise, the object is locked by
some other thread, so the function checks whether it needs
to steal the new copy from the other thread’s write-log. For
this purpose, the current thread checks if its local clock is
greater than or equal to the write clock of the other thread
and, if so, it steals the new copy. Notice, that the write-clock
of a thread is initially ∞, so stealing from a thread is only
possible when it updates the write-clock during the commit.

Next, the algorithm locks each object to be modified
by calling rlu try lock(). First, this function sets a flag to

indicate that this thread is a writer. Then, it checks if the
object is already locked by some other thread, in which case
it fails and retries. Otherwise, it starts the locking process
that first prepares a write-log header for the object, and then
installs a pointer to object copy by using compare-and-swap
(CAS) instruction. If the locking succeeds, the thread copies
the object to the write-log, and returns a pointer to the newly
created copy. Note that the code also uses the rlu cmp -
objs() and rlu assign ptr() functions that hide the internal
implementation of object duplication and manipulation.

173

RLU Deferring

1. On commit do not increment the global clock and execute
RLU sync;

2. Instead, save writer-log and create a new log for the next
writer

3. Synchronize when a writer tries to lock an object that is
already locked.

RLU Deferring advantages

1. Reduce the amount of RLU synchronize calls

2. Reduce contention on a global clock

3. Less stealing – less cache misses

Table of Contents

Introduction

RLU design

Evaluation

Conclusion

Linked lists

1 int rlu_list_add (rlu_thread_data_t ∗self ,
2 list_t ∗list , val_t val) {
3 int result ;
4 node_t ∗prev , ∗next , ∗node ;
5 val_t v ;

6 restart :
7 rlu_reader_lock () ;
8 prev = rlu_dereference (list−>head) ;
9 next = rlu_dereference (prev−>next) ;

10 while (next−>val < val) {
11 prev = next ;
12 next = rlu_dereference (prev−>next) ;
13 }
14 result = (next−>val != val) ;
15 if (result) {
16 if (!rlu_try_lock (self , &prev) | |
17 !rlu_try_lock (self , &next)) {
18 rlu_abort (self) ;
19 goto restart ;
20 }
21 node = rlu_new_node () ;
22 node−>val = val ;
23 rlu_assign_ptr(&(node−>next) , next) ;
24 rlu_assign_ptr(&(prev−>next) , node) ;
25 }
26 rlu_reader_unlock () ;

27 return result ;
28 }

Listing 2. RLU list: add function.

which requires simultaneous manipulation of several con-
current data structures, to use RCU.

4.1 Linked List
In our first benchmark, we apply RLU to the linked list data-
structure. We compare our RLU implementation to the state-
of-the-art concurrent non-blocking Harris-Michael linked
list (designed by Harris and improved by Michael) [16, 31].
The code for the Harris-Michael list is from synchrobench
[14] and, since this implementation leaks memory (it has no
support for memory reclamation), we generate an additional
more practical version of the list that uses hazard pointers
[32] to detect stale pointers to deleted nodes. We also com-
pare our RLU list to an RCU implementation based on the
user-space RCU library [2, 6]. In the RCU list, the simple
implementation serializes RCU writers. Note that it may
seem that one can combine RCU with fine-grained per node
locks and make RCU writers concurrent. However, this is not
the case, since nodes may change after the locking is com-
plete. As a result, it requires special post-lock validations,
ABA checks, and more, which complicates the solution and
makes it similar to Harris-Michael list. We show that by us-
ing RLU locks, one can provide concurrency among RLU
writers and maintain the same simplicity as that of RCU
code with serial writers. Our evaluation is performed on a
16-way Intel Core i7-5960X 3GHz 8-core chip with two
hardware hyperthreads per core, on Linux 3.13 x86_64 with
GCC 4.8.2 C/C++ compiler.

In Figure 4 one can see throughput results for various
linked lists with various mutation ratios. Specifically, the
figure presents 2%, 20%, and 40% mutation ratios for each
algorithm (insert:remove ratio is always 1:1):

 0

 1

 2

 3

 4

 5

 6

 7

 4 8 12 16

User-space linked list (1,000 nodes)

Number of threads

O
p
e
ra

ti
o
n
s
/µ

s

2% updates

RCU
RLU

 4 8 12 16

20% updates

Harris
(leaky)

 4 8 12 16

40% updates

Harris (HP)

Figure 4. Throughput for linked lists with 2% (left), 20%
(middle), and 40% (right) updates.

1. Harris leaky: The original list of Harris-Michael that
leaks memory.

2. Harris HP: The more practical list of Harris-Michael
with a fixed memory leak via the use of hazard pointers.

3. RCU: The RCU-based list that uses the user-space RCU
library and executes serial writers.

4. RLU: The basic RLU, as described in Section 3, that uses
RLU locks to concurrently execute RLU writers.

5. RLU defer: The more advanced RLU that defers RLU
synchronize calls to the actual data conflicts between
threads. The maximum defer limit is set to 10 write-sets.

In Figure 4, as expected the leaky Harris-Michael list pro-
vides the best overall performance across all concurrency
levels. The more realistic HP Harris-Michael list with the
leak fixed is much slower due to the overhead of hazard
pointers that execute a memory fence on each object deref-
erence. Next, the RCU-based list with writers executing se-
rially has a significant overhead due to writer serialization.
This is the cost RCU must pay to achieve a simple imple-
mentation, whereas by using RLU we achieve the same sim-
plicity but a better concurrency that allows RLU to perform
much better than RCU. Listing 2 shows the actual code for
the list add() function that uses RLU. One can see that the
implementation is simple: by using RLU to lock nodes, there
is no need to program custom post-lock validations, ABA
identifications, mark bits, tags and more, as is usually done
for standard fine-grained locking schemes [2, 18, 21] (con-
sider also the related example in Listing 3). Finally, in this
execution, the difference between RLU and deferred RLU is
not significant, so we plot only RLU.

4.2 Hash Table
Next, we construct a simple hash table data-structure that
uses one linked list per bucket. For each key, it first hashes
the key into a bucket, and then traverses the associated linked
list using the specific implementations discussed above.

Figure 5 shows the results for various hash tables and mu-
tation ratios. Here we base the RCU hash table implementa-
tion on per-bucket locks, so RCU writers that access differ-

176

Hash table

 0

 2

 4

 6

 8

 10

 12

 14

 4 8 12 16

User-space hash table (1,000 buckets of 100 nodes)

Number of threads

O
p
e
ra

ti
o
n
s
/µ

s

2% updates

RCU
RLU

 4 8 12 16

20% updates

RLU (defer)
Harris
(leaky)

 4 8 12 16

40% updates

Harris (HP)

Figure 5. Throughput for hash tables with 2% (left), 20%
(middle), and 40% (right) updates.

ent buckets can execute concurrently. As a result, RCU is
highly effective and even outperforms (by 15%) the highly
concurrent hash table design that uses Harris-Michael lists as
buckets. The reason for this is simply the fact that RCU read-
ers do less constant work than the readers of Harris-Michael
(that execute mark bits checks and more). In addition, in this
benchmark we show deferred RLU since it has a more sig-
nificant effect here than in the linked-list. This is because
the probability of getting an actual data conflict in a hash ta-
ble is significantly lower than getting a conflict in a list, so
the deferred RLU reduces the amount of synchronize calls
by an order of magnitude as compared to the basic RLU.
As one can see, the basic RLU incurs visible penalties for
increasing mutation ratios. This is a result of RLU synchro-
nize calls that have more effect when operations are short
and fast. However, the deferred RLU eliminates these penal-
ties and matches the performance of Harris-Michael. Note
that hazard pointers are less expensive in this case, since op-
erations are shorter and are more prone to generate a cache
miss due to sparse memory accesses of hashing.

4.3 Resizable Hash Table
To further evaluate RLU on highly-efficient data structures,
we implement an RCU-based resizable hash table of Triplett,
McKenney, and Walpole [35]. In RCU, the table expand pro-
cess first creates a new array of buckets that is linked to the
old buckets. As a result, the new buckets are “zipped” and,
in the next stage, the algorithm uses a “column-wise” iter-
ative RCU process to unzip the buckets: it unzips each pair
of buckets one step and, before moving to the next step, it
executes the RCU synchronize call. The main reason for this
column-wise design is the single pointer update limitation
of RCU. Notice that this design exposes intermediate “un-
zip point” nodes to concurrent inserts and removes, which
significantly complicates these operations in RCU.

We convert the RCU table to RLU that uses per bucket
writer locks, and eliminate the column-wise design: each
pair of buckets is fully unzipped in “one shot” unzip oper-
ation. As a result, in RLU, there is no need to handle inter-
mediate “unzip point” nodes during inserts or removes, so

 0

 20

 40

 60

 80

 100

 120

 1 2 4 6 8 10 12 14

O
p
e
ra

ti
o
n
s
/µ

s

Number of threads

Resizable hash table (64K items, 8-16K buckets)

RCU 8K
RCU 16K
RCU 8-16K
RLU 8K
RLU 16K
RLU 8-16K

Figure 6. Throughput for the resizable hash table.

they can can execute concurrently without any programming
effort.

The authors of RCU-based resizable hash table provide
source code that has no support for concurrent inserts or re-
moves (only lookups). As a result, we use the same bench-
mark as in their original paper [35]: a table of 216 items that
constantly expands and shrinks between 213 and 214 buck-
ets (resizing is done by a dedicated thread), while there are
concurrent lookups.

Figure 6 presents results for RCU and RLU resizable
hash tables. For both, it shows the 8K graph, which is the
213 buckets table without resizes, the 16K graph, which is
the 214 table without resizes, and the 8K-16K, which is the
table that constantly resizes between 213 and 214 buckets. As
can be seen in the graphs, RLU provides throughput that is
similar to RCU.

We also compared the total number of resizes and saw
that the RLU resize is twice slower than the RCU resize due
to the overheads of duplicating nodes in RLU. However, re-
sizes are usually infrequent, so we would expect the latency
of a resize to be less critical than the latency that it introduces
into concurrent lookups.

4.4 Update-only Stress Test
In order to evaluate the main overheads of RLU compared to
RCU, we execute an additional micro-benchmark that repro-
duces pathological cases that stress RLU object duplication
and synchronize calls. The benchmark executes 100% up-
dates on a 10,000 bucket hash table that has only one item
in each bucket. As a result, RCU-based updates are quick:
they simply hash into the bucket and update the single item
of this bucket, whereas the RLU-based updates must also
duplicate the single item of the bucket and then execute the
RLU synchronize call.

Figure 7 presents results for this stress test. As can be
seen, RLU is 2-5 times slower than RCU. Notice that, for
a single-thread, RLU is already twice slower than RCU,
which is a result of RLU object duplications (synchronize
has no penalty for a single thread). Then, with increased
concurrency, the RLU penalty increases due to RLU syn-
chronize calls. However, by using RLU deferral, this penalty
decreases to the level of the single-thread execution. This

177

Resizable Hash table

 0

 2

 4

 6

 8

 10

 12

 14

 4 8 12 16

User-space hash table (1,000 buckets of 100 nodes)

Number of threads

O
p
e
ra

ti
o
n
s
/µ

s

2% updates

RCU
RLU

 4 8 12 16

20% updates

RLU (defer)
Harris
(leaky)

 4 8 12 16

40% updates

Harris (HP)

Figure 5. Throughput for hash tables with 2% (left), 20%
(middle), and 40% (right) updates.

ent buckets can execute concurrently. As a result, RCU is
highly effective and even outperforms (by 15%) the highly
concurrent hash table design that uses Harris-Michael lists as
buckets. The reason for this is simply the fact that RCU read-
ers do less constant work than the readers of Harris-Michael
(that execute mark bits checks and more). In addition, in this
benchmark we show deferred RLU since it has a more sig-
nificant effect here than in the linked-list. This is because
the probability of getting an actual data conflict in a hash ta-
ble is significantly lower than getting a conflict in a list, so
the deferred RLU reduces the amount of synchronize calls
by an order of magnitude as compared to the basic RLU.
As one can see, the basic RLU incurs visible penalties for
increasing mutation ratios. This is a result of RLU synchro-
nize calls that have more effect when operations are short
and fast. However, the deferred RLU eliminates these penal-
ties and matches the performance of Harris-Michael. Note
that hazard pointers are less expensive in this case, since op-
erations are shorter and are more prone to generate a cache
miss due to sparse memory accesses of hashing.

4.3 Resizable Hash Table
To further evaluate RLU on highly-efficient data structures,
we implement an RCU-based resizable hash table of Triplett,
McKenney, and Walpole [35]. In RCU, the table expand pro-
cess first creates a new array of buckets that is linked to the
old buckets. As a result, the new buckets are “zipped” and,
in the next stage, the algorithm uses a “column-wise” iter-
ative RCU process to unzip the buckets: it unzips each pair
of buckets one step and, before moving to the next step, it
executes the RCU synchronize call. The main reason for this
column-wise design is the single pointer update limitation
of RCU. Notice that this design exposes intermediate “un-
zip point” nodes to concurrent inserts and removes, which
significantly complicates these operations in RCU.

We convert the RCU table to RLU that uses per bucket
writer locks, and eliminate the column-wise design: each
pair of buckets is fully unzipped in “one shot” unzip oper-
ation. As a result, in RLU, there is no need to handle inter-
mediate “unzip point” nodes during inserts or removes, so

 0

 20

 40

 60

 80

 100

 120

 1 2 4 6 8 10 12 14

O
p
e
ra

ti
o
n
s
/µ

s

Number of threads

Resizable hash table (64K items, 8-16K buckets)

RCU 8K
RCU 16K
RCU 8-16K
RLU 8K
RLU 16K
RLU 8-16K

Figure 6. Throughput for the resizable hash table.

they can can execute concurrently without any programming
effort.

The authors of RCU-based resizable hash table provide
source code that has no support for concurrent inserts or re-
moves (only lookups). As a result, we use the same bench-
mark as in their original paper [35]: a table of 216 items that
constantly expands and shrinks between 213 and 214 buck-
ets (resizing is done by a dedicated thread), while there are
concurrent lookups.

Figure 6 presents results for RCU and RLU resizable
hash tables. For both, it shows the 8K graph, which is the
213 buckets table without resizes, the 16K graph, which is
the 214 table without resizes, and the 8K-16K, which is the
table that constantly resizes between 213 and 214 buckets. As
can be seen in the graphs, RLU provides throughput that is
similar to RCU.

We also compared the total number of resizes and saw
that the RLU resize is twice slower than the RCU resize due
to the overheads of duplicating nodes in RLU. However, re-
sizes are usually infrequent, so we would expect the latency
of a resize to be less critical than the latency that it introduces
into concurrent lookups.

4.4 Update-only Stress Test
In order to evaluate the main overheads of RLU compared to
RCU, we execute an additional micro-benchmark that repro-
duces pathological cases that stress RLU object duplication
and synchronize calls. The benchmark executes 100% up-
dates on a 10,000 bucket hash table that has only one item
in each bucket. As a result, RCU-based updates are quick:
they simply hash into the bucket and update the single item
of this bucket, whereas the RLU-based updates must also
duplicate the single item of the bucket and then execute the
RLU synchronize call.

Figure 7 presents results for this stress test. As can be
seen, RLU is 2-5 times slower than RCU. Notice that, for
a single-thread, RLU is already twice slower than RCU,
which is a result of RLU object duplications (synchronize
has no penalty for a single thread). Then, with increased
concurrency, the RLU penalty increases due to RLU syn-
chronize calls. However, by using RLU deferral, this penalty
decreases to the level of the single-thread execution. This

177

Update only stress test (hash table)

 0

 20

 40

 60

 80

 100

 120

 1 2 4 6 8 10 12 14 16

O
p
e
ra

ti
o
n
s
/µ

s

Number of threads

Hash table (10,000 buckets of 1 node) 100% updates

RCU
RLU
RLU (defer)

Figure 7. Throughput for the stress test on a hash table with
100% updates and a single item per bucket.

means that RLU deferral is effective in eliminating the
penalty of RLU synchronize calls.

4.5 Citrus Search Tree
A recent paper by Arbel and Attiya [2] presents a new design
of the Bonsai search tree of Clements et al. [5], which was
initially proposed to provide a scalable implementation for
address spaces in the kernel. The new design, called the
Citrus tree, combines RCU and fine-grained locks to support
concurrent write operations that traverse the search tree by
using RCU protected sections. The results of this work are
encouraging, and they show that scalable concurrency is
possible using RCU.

The design of Citrus is however quite complex and it re-
quires careful understanding of concurrency and rigorous
proof procedures. Specifically, a write operation in Citrus
first traverses the tree by using RCU protected read-side sec-
tion, and then uses fine-grained locks to lock the target node
(and possibly successor and parent nodes). Then, after node
locking succeeds, it executes post-lock validations, makes
node duplications, performs an RCU synchronize call, and
manipulates object pointers. As a result, the first phase that
traverses the tree is simple and efficient, while the second
phase of locking, validation, and modification is manual,
complex, and error-prone.

We use RLU to reimplement the Citrus tree, and our re-
sults show that the new code is much simpler: RLU com-
pletely automates the complex locking, validation, dupli-
cation, and pointer manipulation steps of the Citrus writer,
which a programmer would have previously needed to man-
ually design, code, and verify. Listings 3 and 4 present the
code of Citrus delete() function for RCU and RLU (for clar-
ity, some details are omitted). Notice, that the RCU imple-
mentation is based on mark bits, tags (to avoid ABA), post-
lock custom validations, and manual RCU-style node dupli-
cation and installation. In contrast, the RLU implementation
is straightforward: it just locks each node before writing to
it, and then performs “sequential” reads and writes.

Figure 8 presents performance results for RCU and RLU
Citrus trees. In this benchmark, we execute on an 80-way
highly concurrent 4 socket Intel machine, in which each
socket is an Intel Xeon E7-4870 2.4GHz 10-core chip with

 0

 10

 20

 30

 40

 50

 60

 70

 1 8 16 24 32 40 48 56 64 72 80

O
p
e
ra

ti
o
n
s
/µ

s

Number of threads

Citrus tree (100,000 nodes)

RCU 10%
RCU 20%
RCU 40%
RLU 10%
RLU 20%
RLU 40%

 0

 100

 200

 300

 400

 500

1 8 16 24 32 40 48 56 64 72 80

Number of threads

Write-back quiescence

 0

 2

 4

 6

 8

 10

1 8 16 24 32 40 48 56 64 72 80

Sync per writer (%)

 0

 10

 20

 30

1 8 16 24 32 40 48 56 64 72 80

Read copy per writer (%)

RLU 10%

RLU 20%

RLU 40%

 0

 10

 20

 30

 40

 50

1 8 16 24 32 40 48 56 64 72 80

Sync request per writer (%)

Figure 8. Throughput for the Citrus tree with RCU and
RLU (top) and RLU statistics (bottom).

two hyperthreads per core. In addition, we apply the deferred
RLU algorithm to reduce the synchronization calls of RLU
and provide better scalability. We show results for 10%,
20%, and 40% mutation ratios for both RCU and RLU, and
also provide some RLU statistics:

1. RLU write-back quiescence: The average number of iter-
ations spent in the RLU synchronize waiting loop. This
provides a rough estimate for the cost of RLU synchro-
nize for each number of threads (each iteration includes
one cpu relax() call to reduce bus noise and contention).

2. RLU sync ratio: The probability for a write operation to
execute the RLU synchronize call, write-back, and un-
lock. In other words, the sync ratio indicates the proba-
bility for an actual data conflict between threads, where a
thread sends a sync request that forces another thread to
synchronize and “flush” the new data to the memory.

3. RLU read copy ratio: The probability for an object read
to steal a new copy from a write-log of another thread.
This provides an approximate indication for how many
read-write conflicts occur during benchmark execution.

4. RLU sync request ratio: The probability for a thread
to find a node locked by other thread. Notice, that this
number is higher than the actual RLU sync ratio, since
multiple threads may find the same locked object and
send multiple requests to the same thread to unlock the
same object.

178

Citrus Search Tree (throughput)

 0

 20

 40

 60

 80

 100

 120

 1 2 4 6 8 10 12 14 16

O
p

e
ra

ti
o

n
s
/µ

s

Number of threads

Hash table (10,000 buckets of 1 node) 100% updates

RCU
RLU
RLU (defer)

Figure 7. Throughput for the stress test on a hash table with
100% updates and a single item per bucket.

means that RLU deferral is effective in eliminating the
penalty of RLU synchronize calls.

4.5 Citrus Search Tree
A recent paper by Arbel and Attiya [2] presents a new design
of the Bonsai search tree of Clements et al. [5], which was
initially proposed to provide a scalable implementation for
address spaces in the kernel. The new design, called the
Citrus tree, combines RCU and fine-grained locks to support
concurrent write operations that traverse the search tree by
using RCU protected sections. The results of this work are
encouraging, and they show that scalable concurrency is
possible using RCU.

The design of Citrus is however quite complex and it re-
quires careful understanding of concurrency and rigorous
proof procedures. Specifically, a write operation in Citrus
first traverses the tree by using RCU protected read-side sec-
tion, and then uses fine-grained locks to lock the target node
(and possibly successor and parent nodes). Then, after node
locking succeeds, it executes post-lock validations, makes
node duplications, performs an RCU synchronize call, and
manipulates object pointers. As a result, the first phase that
traverses the tree is simple and efficient, while the second
phase of locking, validation, and modification is manual,
complex, and error-prone.

We use RLU to reimplement the Citrus tree, and our re-
sults show that the new code is much simpler: RLU com-
pletely automates the complex locking, validation, dupli-
cation, and pointer manipulation steps of the Citrus writer,
which a programmer would have previously needed to man-
ually design, code, and verify. Listings 3 and 4 present the
code of Citrus delete() function for RCU and RLU (for clar-
ity, some details are omitted). Notice, that the RCU imple-
mentation is based on mark bits, tags (to avoid ABA), post-
lock custom validations, and manual RCU-style node dupli-
cation and installation. In contrast, the RLU implementation
is straightforward: it just locks each node before writing to
it, and then performs “sequential” reads and writes.

Figure 8 presents performance results for RCU and RLU
Citrus trees. In this benchmark, we execute on an 80-way
highly concurrent 4 socket Intel machine, in which each
socket is an Intel Xeon E7-4870 2.4GHz 10-core chip with

 0

 10

 20

 30

 40

 50

 60

 70

 1 8 16 24 32 40 48 56 64 72 80

O
p

e
ra

ti
o

n
s
/µ

s

Number of threads

Citrus tree (100,000 nodes)

RCU 10%
RCU 20%
RCU 40%
RLU 10%
RLU 20%
RLU 40%

 0

 100

 200

 300

 400

 500

1 8 16 24 32 40 48 56 64 72 80

Number of threads

Write-back quiescence

 0

 2

 4

 6

 8

 10

1 8 16 24 32 40 48 56 64 72 80

Sync per writer (%)

 0

 10

 20

 30

1 8 16 24 32 40 48 56 64 72 80

Read copy per writer (%)

RLU 10%

RLU 20%

RLU 40%

 0

 10

 20

 30

 40

 50

1 8 16 24 32 40 48 56 64 72 80

Sync request per writer (%)

Figure 8. Throughput for the Citrus tree with RCU and
RLU (top) and RLU statistics (bottom).

two hyperthreads per core. In addition, we apply the deferred
RLU algorithm to reduce the synchronization calls of RLU
and provide better scalability. We show results for 10%,
20%, and 40% mutation ratios for both RCU and RLU, and
also provide some RLU statistics:

1. RLU write-back quiescence: The average number of iter-
ations spent in the RLU synchronize waiting loop. This
provides a rough estimate for the cost of RLU synchro-
nize for each number of threads (each iteration includes
one cpu relax() call to reduce bus noise and contention).

2. RLU sync ratio: The probability for a write operation to
execute the RLU synchronize call, write-back, and un-
lock. In other words, the sync ratio indicates the proba-
bility for an actual data conflict between threads, where a
thread sends a sync request that forces another thread to
synchronize and “flush” the new data to the memory.

3. RLU read copy ratio: The probability for an object read
to steal a new copy from a write-log of another thread.
This provides an approximate indication for how many
read-write conflicts occur during benchmark execution.

4. RLU sync request ratio: The probability for a thread
to find a node locked by other thread. Notice, that this
number is higher than the actual RLU sync ratio, since
multiple threads may find the same locked object and
send multiple requests to the same thread to unlock the
same object.

178

Citrus Search Tree (statistics)
 0

 20

 40

 60

 80

 100

 120

 1 2 4 6 8 10 12 14 16

O
p
e
ra

ti
o

n
s
/µ

s

Number of threads

Hash table (10,000 buckets of 1 node) 100% updates

RCU
RLU
RLU (defer)

Figure 7. Throughput for the stress test on a hash table with
100% updates and a single item per bucket.

means that RLU deferral is effective in eliminating the
penalty of RLU synchronize calls.

4.5 Citrus Search Tree
A recent paper by Arbel and Attiya [2] presents a new design
of the Bonsai search tree of Clements et al. [5], which was
initially proposed to provide a scalable implementation for
address spaces in the kernel. The new design, called the
Citrus tree, combines RCU and fine-grained locks to support
concurrent write operations that traverse the search tree by
using RCU protected sections. The results of this work are
encouraging, and they show that scalable concurrency is
possible using RCU.

The design of Citrus is however quite complex and it re-
quires careful understanding of concurrency and rigorous
proof procedures. Specifically, a write operation in Citrus
first traverses the tree by using RCU protected read-side sec-
tion, and then uses fine-grained locks to lock the target node
(and possibly successor and parent nodes). Then, after node
locking succeeds, it executes post-lock validations, makes
node duplications, performs an RCU synchronize call, and
manipulates object pointers. As a result, the first phase that
traverses the tree is simple and efficient, while the second
phase of locking, validation, and modification is manual,
complex, and error-prone.

We use RLU to reimplement the Citrus tree, and our re-
sults show that the new code is much simpler: RLU com-
pletely automates the complex locking, validation, dupli-
cation, and pointer manipulation steps of the Citrus writer,
which a programmer would have previously needed to man-
ually design, code, and verify. Listings 3 and 4 present the
code of Citrus delete() function for RCU and RLU (for clar-
ity, some details are omitted). Notice, that the RCU imple-
mentation is based on mark bits, tags (to avoid ABA), post-
lock custom validations, and manual RCU-style node dupli-
cation and installation. In contrast, the RLU implementation
is straightforward: it just locks each node before writing to
it, and then performs “sequential” reads and writes.

Figure 8 presents performance results for RCU and RLU
Citrus trees. In this benchmark, we execute on an 80-way
highly concurrent 4 socket Intel machine, in which each
socket is an Intel Xeon E7-4870 2.4GHz 10-core chip with

 0

 10

 20

 30

 40

 50

 60

 70

 1 8 16 24 32 40 48 56 64 72 80

O
p
e
ra

ti
o

n
s
/µ

s
Number of threads

Citrus tree (100,000 nodes)

RCU 10%
RCU 20%
RCU 40%
RLU 10%
RLU 20%
RLU 40%

 0

 100

 200

 300

 400

 500

1 8 16 24 32 40 48 56 64 72 80

Number of threads

Write-back quiescence

 0

 2

 4

 6

 8

 10

1 8 16 24 32 40 48 56 64 72 80

Sync per writer (%)

 0

 10

 20

 30

1 8 16 24 32 40 48 56 64 72 80

Read copy per writer (%)

RLU 10%

RLU 20%

RLU 40%

 0

 10

 20

 30

 40

 50

1 8 16 24 32 40 48 56 64 72 80

Sync request per writer (%)

Figure 8. Throughput for the Citrus tree with RCU and
RLU (top) and RLU statistics (bottom).

two hyperthreads per core. In addition, we apply the deferred
RLU algorithm to reduce the synchronization calls of RLU
and provide better scalability. We show results for 10%,
20%, and 40% mutation ratios for both RCU and RLU, and
also provide some RLU statistics:

1. RLU write-back quiescence: The average number of iter-
ations spent in the RLU synchronize waiting loop. This
provides a rough estimate for the cost of RLU synchro-
nize for each number of threads (each iteration includes
one cpu relax() call to reduce bus noise and contention).

2. RLU sync ratio: The probability for a write operation to
execute the RLU synchronize call, write-back, and un-
lock. In other words, the sync ratio indicates the proba-
bility for an actual data conflict between threads, where a
thread sends a sync request that forces another thread to
synchronize and “flush” the new data to the memory.

3. RLU read copy ratio: The probability for an object read
to steal a new copy from a write-log of another thread.
This provides an approximate indication for how many
read-write conflicts occur during benchmark execution.

4. RLU sync request ratio: The probability for a thread
to find a node locked by other thread. Notice, that this
number is higher than the actual RLU sync ratio, since
multiple threads may find the same locked object and
send multiple requests to the same thread to unlock the
same object.

178

Kernel space doubly linked lists

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2 4 6 8 10 12 14 16

Kernel doubly linked list (512 nodes)

Number of threads

O
p
e
ra

ti
o
n
s
/µ

s

0.1% updates

RCU
RCU (fixed)
RLU

 2 4 6 8 10 12 14 16

1% updates

Figure 9. Throughput for kernel doubly linked lists
(list_* APIs) with 0.1% (left) and 1% (right) updates.

propriate padding to fit an entire cache line. We used the
same test machine as for the user-space experiment (16-way
Intel i7-5960X) with version 3.16 of the Linux kernel and
non-preemptible RCU enabled, and we experimented with
low update rates of 0.1% and 1% updates that represent
the common case for using RCU-based synchronization in
the kernel. We implemented a performance fix in the RCU
list implementation (in list entry rcu()), which we have re-
ported to the Linux kernel mailing list. Results with the fix
are labeled as “RCU (fixed)” in the graphs.

We observe in Figure 9 that RCU has reduced overhead
compared to RLU in read-mostly scenarios. However, the
semantics provided by the two lists is different. RCU cannot
add an element atomically in the doubly-linked list and it
therefore by restricts all concurrent readers to only traverse
forward. Traversing the list backwards is unsafe since it can
lead to inconsistencies, so special care must be taken to avoid
memory corruptions and system crash [26]. In contrast, RLU
provides a consistent list at a reasonable cost.

We also conducted kernel tests with higher update rates
of 2%, 20% and 40% on a single-linked list and a hash-
table to match the userspace benchmarks and compare RLU
against the kernel implementation of RCU. Note that these
data structure are identical to those tested earlier in user
space, but they use the kernel implementation of RCU in-
stead of the user-space RCU library. Results are shown in
Figure 10 and Figure 11. As expected, in the linked-list, in-
creasing writers in RCU introduces a sequential bottleneck,
while RLU writers proceed concurrently and allow RLU to
scale. In the hash-table, RCU scales since it uses per bucket
locks and RLU matches RCU. Note that the deferred RLU
slightly outperforms RCU, which due to faster memory deal-
locations (and reuse) in RLU compared to RCU (that must
wait for the kernel threads to context-switch).

4.7 Kernel-space Torture Tests
The kernel implementation of RCU comes with a module,
named RCU torture, which tests the RCU implementation
for possible bugs and correctness problems. It contains many
tests that exercise the different implementations and operat-

 0

 1

 2

 3

 4

 5

 4 8 12 16

Kernel linked list (1,000 nodes)

Number of threads

O
p
e
ra

ti
o
n
s
/µ

s

2% updates

RCU
RLU

 4 8 12 16

20% updates

 4 8 12 16

40% updates

Figure 10. Throughput for linked lists running in the kernel
with 2% (left), 20% (middle), and 40% (right) updates.

 0

 2

 4

 6

 8

 10

 12

 14

 4 8 12 16

Kernel hash table (1,000 buckets of 100 nodes)

Number of threads

O
p
e
ra

ti
o
n
s
/µ

s

2% updates

RCU

 4 8 12 16

20% updates

RLU

 4 8 12 16

40% updates

RLU (defer)

Figure 11. Throughput for hash tables running in the kernel
with 2% (left), 20% (middle), and 40% (right) updates.

ing modes of RCU. As RLU does not support all the features
and variants of RCU, we only considered the basic RCU tor-
ture tests that check for consistency of the classic implemen-
tation of RCU and can be readily applied to RLU.

These basic consistency tests consist of 1 writer thread, n
reader threads, and n fake writer threads. The writer thread
gets an element from a private pool, shares it with other
threads using a shared variable, then takes it back to the
private pool using RCU mechanism (deferred free, synchro-
nize, etc.). The reader threads continuously read the shared
variable while the fake writers just invoke synchronize with
random delays. All the threads perform consistency checks
at different steps and with different delays.

We have successfully run this RLU torture test with de-
ferred free and up to 15 readers and fake writers on our 16-
way Intel i7-5960X machine. While our experiments only
cover a subset of all the RCU torture tests, it still provides
strong evidence of the correctness of our algorithm and its
implementation. We plan to expand the list of tests as we
add additional features and APIs to RLU.

4.8 Kyoto Cabinet Cache DB
We finally illustrate how to use RLU for an existing applica-
tion with the popular in-memory database implementation
Kyoto Cabinet Cache DB [12]. Kyoto Cache DB is writ-
ten in C++ and its DBM implementation is relatively simple

180

Kernel space single linked lists

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2 4 6 8 10 12 14 16

Kernel doubly linked list (512 nodes)

Number of threads

O
p

e
ra

ti
o

n
s
/µ

s

0.1% updates

RCU
RCU (fixed)
RLU

 2 4 6 8 10 12 14 16

1% updates

Figure 9. Throughput for kernel doubly linked lists
(list_* APIs) with 0.1% (left) and 1% (right) updates.

propriate padding to fit an entire cache line. We used the
same test machine as for the user-space experiment (16-way
Intel i7-5960X) with version 3.16 of the Linux kernel and
non-preemptible RCU enabled, and we experimented with
low update rates of 0.1% and 1% updates that represent
the common case for using RCU-based synchronization in
the kernel. We implemented a performance fix in the RCU
list implementation (in list entry rcu()), which we have re-
ported to the Linux kernel mailing list. Results with the fix
are labeled as “RCU (fixed)” in the graphs.

We observe in Figure 9 that RCU has reduced overhead
compared to RLU in read-mostly scenarios. However, the
semantics provided by the two lists is different. RCU cannot
add an element atomically in the doubly-linked list and it
therefore by restricts all concurrent readers to only traverse
forward. Traversing the list backwards is unsafe since it can
lead to inconsistencies, so special care must be taken to avoid
memory corruptions and system crash [26]. In contrast, RLU
provides a consistent list at a reasonable cost.

We also conducted kernel tests with higher update rates
of 2%, 20% and 40% on a single-linked list and a hash-
table to match the userspace benchmarks and compare RLU
against the kernel implementation of RCU. Note that these
data structure are identical to those tested earlier in user
space, but they use the kernel implementation of RCU in-
stead of the user-space RCU library. Results are shown in
Figure 10 and Figure 11. As expected, in the linked-list, in-
creasing writers in RCU introduces a sequential bottleneck,
while RLU writers proceed concurrently and allow RLU to
scale. In the hash-table, RCU scales since it uses per bucket
locks and RLU matches RCU. Note that the deferred RLU
slightly outperforms RCU, which due to faster memory deal-
locations (and reuse) in RLU compared to RCU (that must
wait for the kernel threads to context-switch).

4.7 Kernel-space Torture Tests
The kernel implementation of RCU comes with a module,
named RCU torture, which tests the RCU implementation
for possible bugs and correctness problems. It contains many
tests that exercise the different implementations and operat-

 0

 1

 2

 3

 4

 5

 4 8 12 16

Kernel linked list (1,000 nodes)

Number of threads

O
p

e
ra

ti
o

n
s
/µ

s

2% updates

RCU
RLU

 4 8 12 16

20% updates

 4 8 12 16

40% updates

Figure 10. Throughput for linked lists running in the kernel
with 2% (left), 20% (middle), and 40% (right) updates.

 0

 2

 4

 6

 8

 10

 12

 14

 4 8 12 16

Kernel hash table (1,000 buckets of 100 nodes)

Number of threads

O
p

e
ra

ti
o

n
s
/µ

s

2% updates

RCU

 4 8 12 16

20% updates

RLU

 4 8 12 16

40% updates

RLU (defer)

Figure 11. Throughput for hash tables running in the kernel
with 2% (left), 20% (middle), and 40% (right) updates.

ing modes of RCU. As RLU does not support all the features
and variants of RCU, we only considered the basic RCU tor-
ture tests that check for consistency of the classic implemen-
tation of RCU and can be readily applied to RLU.

These basic consistency tests consist of 1 writer thread, n
reader threads, and n fake writer threads. The writer thread
gets an element from a private pool, shares it with other
threads using a shared variable, then takes it back to the
private pool using RCU mechanism (deferred free, synchro-
nize, etc.). The reader threads continuously read the shared
variable while the fake writers just invoke synchronize with
random delays. All the threads perform consistency checks
at different steps and with different delays.

We have successfully run this RLU torture test with de-
ferred free and up to 15 readers and fake writers on our 16-
way Intel i7-5960X machine. While our experiments only
cover a subset of all the RCU torture tests, it still provides
strong evidence of the correctness of our algorithm and its
implementation. We plan to expand the list of tests as we
add additional features and APIs to RLU.

4.8 Kyoto Cabinet Cache DB
We finally illustrate how to use RLU for an existing applica-
tion with the popular in-memory database implementation
Kyoto Cabinet Cache DB [12]. Kyoto Cache DB is writ-
ten in C++ and its DBM implementation is relatively simple

180

Kernel space hash tables

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2 4 6 8 10 12 14 16

Kernel doubly linked list (512 nodes)

Number of threads

O
p

e
ra

ti
o

n
s
/µ

s

0.1% updates

RCU
RCU (fixed)
RLU

 2 4 6 8 10 12 14 16

1% updates

Figure 9. Throughput for kernel doubly linked lists
(list_* APIs) with 0.1% (left) and 1% (right) updates.

propriate padding to fit an entire cache line. We used the
same test machine as for the user-space experiment (16-way
Intel i7-5960X) with version 3.16 of the Linux kernel and
non-preemptible RCU enabled, and we experimented with
low update rates of 0.1% and 1% updates that represent
the common case for using RCU-based synchronization in
the kernel. We implemented a performance fix in the RCU
list implementation (in list entry rcu()), which we have re-
ported to the Linux kernel mailing list. Results with the fix
are labeled as “RCU (fixed)” in the graphs.

We observe in Figure 9 that RCU has reduced overhead
compared to RLU in read-mostly scenarios. However, the
semantics provided by the two lists is different. RCU cannot
add an element atomically in the doubly-linked list and it
therefore by restricts all concurrent readers to only traverse
forward. Traversing the list backwards is unsafe since it can
lead to inconsistencies, so special care must be taken to avoid
memory corruptions and system crash [26]. In contrast, RLU
provides a consistent list at a reasonable cost.

We also conducted kernel tests with higher update rates
of 2%, 20% and 40% on a single-linked list and a hash-
table to match the userspace benchmarks and compare RLU
against the kernel implementation of RCU. Note that these
data structure are identical to those tested earlier in user
space, but they use the kernel implementation of RCU in-
stead of the user-space RCU library. Results are shown in
Figure 10 and Figure 11. As expected, in the linked-list, in-
creasing writers in RCU introduces a sequential bottleneck,
while RLU writers proceed concurrently and allow RLU to
scale. In the hash-table, RCU scales since it uses per bucket
locks and RLU matches RCU. Note that the deferred RLU
slightly outperforms RCU, which due to faster memory deal-
locations (and reuse) in RLU compared to RCU (that must
wait for the kernel threads to context-switch).

4.7 Kernel-space Torture Tests
The kernel implementation of RCU comes with a module,
named RCU torture, which tests the RCU implementation
for possible bugs and correctness problems. It contains many
tests that exercise the different implementations and operat-

 0

 1

 2

 3

 4

 5

 4 8 12 16

Kernel linked list (1,000 nodes)

Number of threads

O
p

e
ra

ti
o

n
s
/µ

s

2% updates

RCU
RLU

 4 8 12 16

20% updates

 4 8 12 16

40% updates

Figure 10. Throughput for linked lists running in the kernel
with 2% (left), 20% (middle), and 40% (right) updates.

 0

 2

 4

 6

 8

 10

 12

 14

 4 8 12 16

Kernel hash table (1,000 buckets of 100 nodes)

Number of threads

O
p

e
ra

ti
o

n
s
/µ

s

2% updates

RCU

 4 8 12 16

20% updates

RLU

 4 8 12 16

40% updates

RLU (defer)

Figure 11. Throughput for hash tables running in the kernel
with 2% (left), 20% (middle), and 40% (right) updates.

ing modes of RCU. As RLU does not support all the features
and variants of RCU, we only considered the basic RCU tor-
ture tests that check for consistency of the classic implemen-
tation of RCU and can be readily applied to RLU.

These basic consistency tests consist of 1 writer thread, n
reader threads, and n fake writer threads. The writer thread
gets an element from a private pool, shares it with other
threads using a shared variable, then takes it back to the
private pool using RCU mechanism (deferred free, synchro-
nize, etc.). The reader threads continuously read the shared
variable while the fake writers just invoke synchronize with
random delays. All the threads perform consistency checks
at different steps and with different delays.

We have successfully run this RLU torture test with de-
ferred free and up to 15 readers and fake writers on our 16-
way Intel i7-5960X machine. While our experiments only
cover a subset of all the RCU torture tests, it still provides
strong evidence of the correctness of our algorithm and its
implementation. We plan to expand the list of tests as we
add additional features and APIs to RLU.

4.8 Kyoto Cabinet Cache DB
We finally illustrate how to use RLU for an existing applica-
tion with the popular in-memory database implementation
Kyoto Cabinet Cache DB [12]. Kyoto Cache DB is writ-
ten in C++ and its DBM implementation is relatively simple

180

Kernel-space Torture Tests

They tried even this!
RLU successfully passed all of the within implemented functionality.

Kyoto Cache DB

It was advertised in the abstract and finally here it is:

 0

 5

 10

 15

 20

 2 4 6 8 10 12 14 16

Kyoto Cabinet (1GB in-memory DB)

Number of threads

O
p
e
ra

ti
o
n
s
/µ

s

2% updates

 2 4 6 8 10 12 14 16

10% updates

Reader-writer lock
Ingress-egress lock
RLU

Figure 12. Throughput for the original and RLU versions
of the Kyoto Cache DB.

and straightforward. Internally, Kyoto breaks the database
into slots, where each slot is composed of buckets and each
bucket is a search tree. As a result, to find a key, Kyoto first
hashes the key into a slot, and then into a bucket in this slot.
Then, it traverses the search tree that resides in the bucket
and processes the record that includes the key and returns.

Database operations in Kyoto CacheDB are fast due to the
double hashing procedures and use of search trees. However,
Kyoto fails to scale with increasing numbers of threads, and
in fact it usually collapses after 3-4 threads. Recent work by
Dice et al. [9] observed a scalability bottleneck and indicated
that the problem is the global reader-writer lock that Kyoto
uses to synchronize database operations.

We conducted a performance analysis of Kyoto Cache
DB and concur with [9] that the global reader-writer lock
is indeed the problem. However, we also found that Kyoto
performs an excessive amount of thread context switches
due to the specific implementation of reader-writer spin
locks in the Linux pthreads library. We therefore decided to
first eliminate the context switches by replacing the reader-
writer lock of Kyoto with an ingress-egress reader-writer
lock implementation [7]. To the best of our knowledge, the
ingress-egress reader-writer locks perform the best on Intel
machines (ingress/enter counter and egress/exit counter for
read-lock/read-unlock) [1]. We note that one could use hier-
archical cohort-based reader-writer locks [10] in our bench-
mark to reduce the cache traffic in Kyoto, but this would
not have a significant effect since the performance analysis
reveals that the cache miss ratio is already low (4%-5%).

In addition to the global reader-writer lock, Kyoto also
uses a lock per slot. As a result, each operation acquires the
global reader-writer lock for a read or a write, depending
on whether the actual operation is read-only or not, and then
acquires the lock of the relevant slot. Based on this, we apply
the RLU scheme to Kyoto Cache DB in a way that eliminates
the need for the global reader-writer lock, and use the per slot
locks to synchronize the RLU writers. A good benefit of this
design is the fact that RLU writers are irrevocable and have
no need to support abort or undo procedures. As a result, the
conversion to RLU is simple and straightforward.

Figure 12 shows throughput results for the original, fixed
(ingress-egress reader-writer lock), and RLU-based Kyoto
Cache DB for 2% and 10% mutation ratios and 1GB DB.
This benchmark runs on a 16-way Intel 8-core chip, where
each thread randomly executes set(), add(), remove(), and
get() DB operations.

In the performance graph one can see that the new RLU
based Kyoto provides continued scalability where the origi-
nal Kyoto fails to scale due to the global reader-writer lock
(the slight drop of RLU from 8 to 10 threads is due to 8-
core hyper-threading). Observe that the original Kyoto im-
plementation fails to scale despite the fact that the amount
of read-only operations is high, about 90-98%. Fixing this
problem by replacing the global reader-writer lock with an
ingress-egress lock eliminates the excess context switching
and allows Kyoto to scale until 6-8 threads. Note that it is
possible to combine the ingress-egress lock with a passive
locking scheme [23] to avoid memory barriers on the read-
side of the lock, but writers still cannot execute concurrently
with readers and this approach introduces a sequential bot-
tleneck and limits scalability.

We believe that if one would convert Kyoto to RCU by
using the per slot locks for synchronization of writers (like
we did), it would provide the same performance as with
RLU. However, it is not clear how to even begin to convert
those update operations to use RCU. Kyoto’s update oper-
ation may modify multiple nodes in a search tree, multiple
locations in the hash tables, and maybe some more locations
in other helper data-structures. The result, we fear, will be a
non-trivial design, which in the end will deliver performance
similar to the one RLU provides quite readily today.

5. Conclusion
In summary, one can see that the increased parallelism hid-
den under the hood of the RLU system provides for a simple
programming methodology that delivers performance sim-
ilar or better than that obtainable with RCU, but at a sig-
nificantly lower intellectual cost to the programmer. RLU
is compatible with the RCU interface, and we hope that its
combination of good performance and more expressive se-
mantics will convince both kernel and user-space program-
mers to use it to parallelize real-world applications.

Acknowledgments
We would like to thank the anynymous reviewers for their
constructive comments, as well as Haibo Chen for his
help in preparing the final version of this paper. Sup-
port is gratefully acknowledged from the National Sci-
ence Foundation under grants CCF-1217921, CCF-1301926,
and IIS-1447786, the Department of Energy under grant
ER26116/DE-SC0008923, the European Union under COST
Action IC1001 (Euro-TM), and the Intel and Oracle corpo-
rations.

181

Table of Contents

Introduction

RLU design

Evaluation

Conclusion

Conclusion

I Performance similar to RCU.
Sometimes better, sometimes worse.

I Easier programming interface

I Compatible with RCU

I Good both in user and kernel space

I Severely benchmarked.

	Introduction
	RLU design
	Evaluation
	Conclusion

