Coz: Finding Code that Counts with Casual Profiling

Charlie Curtsinger, Emery D. Berger

Grinell College
University of Massachusetts Amherst

Presented at SOSP 2015

Causal

Coz: Finding Code that Counts with Casial Profiling

Charlie Curtsinger, Emery D. Berger

Grinell College
University of Massachusetts Amherst

Presented at SOSP 2015

Conventional Profilers:

e don't tell you what to optimize
e don't tell you about gains

e are not really made for concurrency
example.cpp

void a() { // 6.7 seconds
for{volatile size_t x=0; x<2000000000; =x++) {}
}
void b() { // 6.4 seconds
for(volatile size_t y=0; y<19%00000000; y++) {}
}
int main() {
// Spawn both threads and wait for them.
thread a_thread(a), b_thread(b);
a_thread. join(}; b_thread. join();
}

== V= R - - I I = I [<A L

_— =

(= - S D = T T S S Iy % I

_— =
[—

void a() { // “6.7 seconds

for(veolatile size_t x=0; x<2000000000; =x++) {}
1
void b() { // 6.4 seconds

for(velatile size_t y=0; y<1900000000; vy++) {1}
1
int main({) {

// Spawn both threads and wait for them.

thread a_thread(a), b_thread(b);

a_thread.join(); b_thread. join();
}

Conventional Profile for example . cpp
% cumulatiwve self self total

time seconds seconds calls Ts/call Ts/call name
55.20 7.20 7.20 1 al)
45.19 13.09 5.89 1 b{)
% time self children called name

<spontanecus>
55.0 7.20 0.00 al)
<spontanecus>
45.0 5.89 0.00 B{)

Program Speedup

Program Speedup

=
=

=
=

=

=] 4: =)
s

=

!
0%

!
25%

I
50%

Line Speedup

line 5 (b)

h“‘ A

A

75% 100%

0% 25% 50% 75% 100%

Perform performance experiments during program execution
that measure how fast a program gets if you slow down a specific
line of code

t1

t2

N

original runtime

./

t1

t2

|

effect of optimizing . by d

t1

t2

~

original runtime

(b) Actual Speedup
|
o - |
: 0riginal+runtime
|
(c) Virtual Speedup effect of optimizing [if]] by d
|
!
t1 i
|—|=
|
| [{* 8 IR
|

Implementation

1) Startup
coz run —--- <program> <args>
2) Experiment Initialization
randomly choose source line and speedup (5% steps)
3) Apply virtual speedup
sample each thread every ms, apply virtual speedup when selected source line runs

4) Ending virtual experiment
after predetermined time, at least five visits to selected line, else double time

5) Produce profile
analyze all logged results, calculate speedups

6) Interpret casual profiles Line 16916
25% =
line 2 (a) " line 5 (b) . ‘”‘\ -
3600—!._!. %600— O/JD_ e
3 0 0% 0 = oo g e
4% = o0 7 o 4% — =
i p 5% - ® W =e
2% = 2% = AL A
Eh 0% —: Eh 0% — :‘bl“- ‘-—‘P&;‘_ “‘Aﬁ
2 I | I I I £ I A I [I —50% _I I
0% 25% 50% 75% 100% 0% 25% 50% 75% 100% 0% 50%

Line Speedup

Challanges

Blocking: Who has to wait when?
- 1/0 simple (delay after io finishes)

— Synchronization primitives: hard, don't punish twice

Potentially blocking calls

Potentially unblocking calls pthread mutex_lock lock a mutex

pthread mutex_unlock unlock a mutex pthread cond wait wait on a condition variable

pthread_cond_signal wake one waiter on ac.v. pthread barrier wait wait at a barrier

pthread_cond_broadcast wake all waiters onc.v. pthread_join wait for a thread to complete

pthread barrier_wait wait at a barrier sigwait wait for a signal

pthread_kill send signal to a thread sigwaitinto wait for a signal

pthread_exit terminate this thread s:lgt imedwait wa?t for a s¥gnal (with timeout)
sigsuspend wait for a signal

Results (dedup)

While toop in hashtable_search function

300 — o
200 — U?I
0~ 4|- HM H {4- 11t o8
HI H ‘ 1\ |||| e -h-JH =
I

0 1006'9 2000 3000 4000
| 3
. g'
' B | ‘ H|||||| I T Wg
0.0 =, | | | | -

0 1000 2000 3000 4000

Results (ferret)

Improvement
opportunities in three of
the four threads

INPUT

|
IMAGE L FEATURE b
SEGMENTATION | EXTRACTION

BB |88 835
@0 Q Line 320 Line 358 Line 255

o/ _ L
2 507 . L X | n I
0/ [|
% 2% ,ﬁ" :‘ Anre
£ 0% -¢ TI‘ e

I I | I I
0% 50% 100%0% 50% 100%0% 50% 100%

Line Speedup

Results (SQLite)

Line 16916 Line 18974
§~ 25% =
o S)
O & {“‘ A
84 (}%-—‘ N A ‘h? 51.‘
n ‘Q < ;
§ —25% = L % =o b
)
=
& —50% -

0% 50% 0% 50% Q
Line Spe@

Q\O

Remove unnecessary
'vtable' calls

LT
|

\b.QQ
®®

50%

% Runtime Symbol

85.55% _raw_spin_lock
1.76% x86_pmu_enable_all
s 0 BEDES o

0.10% rcu_1irg_enter
0.09% sglite3MemSize
0.09% source_load

$u b ines B
0.03% __queue_work
0.03% pcachelFetch
0.03% kmem_cache_free
0.03% update_cfs_rqg blocked_load
0.03% pthreadMutexLeave
0.03% sglite3MemMalloc

Results (more)

Benchmark Cause Improvement
fluidanimate Custom barrier 37.5%
streamcluster Custom barrier 68%
memcached 'false' Lock sharing 9%
blackscholes Common subexpressions 2.6%
swaptions Inefficient array handling 15%
Line 151 Line 184
= 10% -
E o, A
8. 0%-e = ® -
v .'.2 ... x‘A
~. e -
%‘10% - ;!-; o 'y ‘A““\‘#
& -20% = | o I |
0% 50% 100% 0% 50% 100%

Line Speedup

Efficiency

Overhead of C0z
o] —T
o 60% —
""g 1]
40% ~
& Il m

Delays . Sampling . Startup

* Cool Idea
 How long do you have to sample for reasonable coverage of
148k lines of sglite? (1ms, each 5 times, so 500s? How is

the coverage of this?)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

