
22.10.2015Paper-Reading Group

Coz: Finding Code that Counts with Casual Profiling

Charlie Curtsinger, Emery D. Berger

Grinell College
University of Massachusetts Amherst

Presented at SOSP 2015



22.10.2015Paper-Reading Group

Coz: Finding Code that Counts with Casual Profiling

Charlie Curtsinger, Emery D. Berger

Grinell College
University of Massachusetts Amherst

Presented at SOSP 2015

Causal



22.10.2015Paper-Reading Group

Motivation

Conventional Profilers:
● don't tell you what to optimize
● don't tell you about gains
● are not really made for concurrency



22.10.2015Paper-Reading Group4

Motivation



22.10.2015Paper-Reading Group5

Idea

Perform performance experiments during program execution 
that measure how fast a program gets if you slow down a specific 

line of code



22.10.2015Paper-Reading Group6

Idea



22.10.2015Paper-Reading Group7

Implementation

1) Startup
coz run --- <program> <args>

2) Experiment Initialization
randomly choose source line and speedup (5% steps)

3) Apply virtual speedup
sample each thread every ms, apply virtual speedup when selected source line runs

4) Ending virtual experiment
after predetermined time, at least five visits to selected line, else double time

5) Produce profile
analyze all logged results, calculate speedups

6) Interpret casual profiles



22.10.2015Paper-Reading Group8

Challanges

Blocking: Who has to wait when?

→ I/O simple (delay after io finishes)

→ Synchronization primitives: hard, don't punish twice



22.10.2015Paper-Reading Group9

Results (dedup)
While toop in hashtable_search function

9%
 S

pe
ed

up



22.10.2015Paper-Reading Group10

Results (ferret)

21
%

 S
pe

ed
up

Improvement 
opportunities in three of 

the four threads



22.10.2015Paper-Reading Group11

b

Results (SQLite)

26
%

 S
pe

ed
up

Remove unnecessary 
'vtable' calls



22.10.2015Paper-Reading Group12

Results (more)

Benchmark Cause Improvement

fluidanimate Custom barrier 37.5%

streamcluster Custom barrier 68%

memcached 'false' Lock sharing 9%

blackscholes Common subexpressions 2.6%

swaptions Inefficient array handling 15%



22.10.2015Paper-Reading Group13

Efficiency



22.10.2015Paper-Reading Group14

Discussion

● Cool Idea
● How long do you have to sample for reasonable coverage of 

148k lines of sqlite? (1ms, each 5 times, so 500s? How is 
the coverage of this?)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

