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Motivation

Conventional Profilers:
● don't tell you what to optimize
● don't tell you about gains
● are not really made for concurrency
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Motivation
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Idea

Perform performance experiments during program execution 
that measure how fast a program gets if you slow down a specific 

line of code
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Idea
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Implementation

1) Startup
coz run --- <program> <args>

2) Experiment Initialization
randomly choose source line and speedup (5% steps)

3) Apply virtual speedup
sample each thread every ms, apply virtual speedup when selected source line runs

4) Ending virtual experiment
after predetermined time, at least five visits to selected line, else double time

5) Produce profile
analyze all logged results, calculate speedups

6) Interpret casual profiles
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Challanges

Blocking: Who has to wait when?

→ I/O simple (delay after io finishes)

→ Synchronization primitives: hard, don't punish twice
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Results (dedup)
While toop in hashtable_search function
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Results (ferret)

21
%

 S
pe

ed
up

Improvement 
opportunities in three of 

the four threads
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Results (SQLite)
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Remove unnecessary 
'vtable' calls
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Results (more)

Benchmark Cause Improvement

fluidanimate Custom barrier 37.5%

streamcluster Custom barrier 68%

memcached 'false' Lock sharing 9%

blackscholes Common subexpressions 2.6%

swaptions Inefficient array handling 15%
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Efficiency
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Discussion

● Cool Idea
● How long do you have to sample for reasonable coverage of 

148k lines of sqlite? (1ms, each 5 times, so 500s? How is 
the coverage of this?)
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