
Locating Cache Performance Bottlenecks Using
Data Profiling

Aleksey Pesterev Nickolai Zeldovich Robert T. Morris

Computer Science and Artificial Intelligence Lab
Massachusetts Institute of Technology

EuroSys 2010

1 / 11

DProf

Classical profilers attribute time to source lines.
DProf attributes (cache miss) time to data.

2 / 11

Sampling

Access Samples IBS/PEBS gather IP, cache level, and latency for
random instructions; type deduced from address

Access Histories Debug registers gather all accesses to some
memory.

3 / 11

What does DProf give you? (Middle layer)

Address Set Set of all addresses (and thus cache sets) used for
objects of some type.

Path Traces Graph that shows all possible flows of accesses to
objects of some type, each with access latency, cache
hit rate, etc.

4 / 11

What does DProf give you? (Middle layer)

Address Set Set of all addresses (and thus cache sets) used for
objects of some type.

Path Traces Graph that shows all possible flows of accesses to
objects of some type, each with access latency, cache
hit rate, etc.

4 / 11

DProf profiles

For each data type DProf can collect
Data Profile Cache miss rates (and bounce flag),

Working Set Total size and count of objects in working set,
Miss Classification $REASON cache miss rates,

Data Flow Common sequences of functions that reference
objects of that type.

5 / 11

DProf profiles

For each data type DProf can collect
Data Profile Cache miss rates (and bounce flag),
Working Set Total size and count of objects in working set,

Miss Classification $REASON cache miss rates,
Data Flow Common sequences of functions that reference

objects of that type.

5 / 11

DProf profiles

For each data type DProf can collect
Data Profile Cache miss rates (and bounce flag),
Working Set Total size and count of objects in working set,

Miss Classification $REASON cache miss rates,

Data Flow Common sequences of functions that reference
objects of that type.

5 / 11

DProf profiles

For each data type DProf can collect
Data Profile Cache miss rates (and bounce flag),
Working Set Total size and count of objects in working set,

Miss Classification $REASON cache miss rates,
Data Flow Common sequences of functions that reference

objects of that type.

5 / 11

Working Set Example

Average Timestamp Program Counter CPU Change Offsets Cache Hit Probability Access Time
0 kalloc() no 0–128 — 0
5 tcp write() no 64–128 100% local L1 3 ns
10 tcp xmit() no 24–28 100% local L1 3 ns
25 dev xmit() yes 24–28 95% foreign cache 200 ns
50 kfree() no 0–128 — 0

Table 1. A sample path trace for a particular data type and execution path. This path trace is for a network packet structure
and the transmit path. The CPU change flag indicates whether that program counter was encountered on the same CPU as the
previous one, or on a different CPU. The offset indicates the offset into the data structure that was accessed at this program
counter location. The cache hit probabilities indicate the percentage of time that memory access was satisfied using different
caches in the system, and the access time indicates the average time spent waiting for that memory reference. An execution path
is defined by the sequence of program counter values and CPU change flags, and DProf keeps track of how frequently each
execution path is seen for each data type.

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500

U
n

iq
u

e
C

ac
h

e
L

in
es

Associtivity Set

Figure 1. First level cache associativity set histogram of
data accesses to 1024 byte network packet buffers. The y-
axis represents the number of unique cache lines accessed in
one associativity set. The gaps represent lost opportunities to
spread out references over multiple associativity sets. They
are formed because in Linux all 1024 byte packet buffers are
aligned so that each byte of the buffer can only fall into 32
different associativity sets.

of execution, but may also involve instructions from multiple
cores that are using the same object concurrently. DProf
collects path traces for a randomly selected subset of the
objects allocated during execution, and combines the traces
of objects of the same type if those objects are touched by the
same sequence of instructions. For each accessing instruction
in a combined trace, DProf records the hit probability of
the instruction in different levels of the cache hierarchy, the
average time to access the data, the average time since the
object’s allocation, and a flag indicating that the instruction
executed on a different core than the previous instruction.
DProf records how frequently each execution path is observed
for a given data type. Table 1 shows a path trace for a network
packet data structure, on an execution path that transmits the
packet.

The second kind of data is called an address set, which
includes the address and type of every object allocated during

execution. DProf uses the address set to map objects to
specific associativity sets in the cache. Thus, it is sufficient to
store addresses modulo the maximum cache size in this data
structure.

DProf is a statistical profiler and assumes a workload that
is uniform over time. Without a cyclic workload a statistical
profiler cannot capture enough samples to characterize the
workload. This assumption is similarly made by other time
and hardware-counter based statistical profilers.

Path traces are constructed by combining cache miss data
generated by hardware-counters with traces of references to
data gathered using hardware debug registers. Debug registers
can be setup to trigger interrupts every time a particular
memory location is accessed. We will describe how the path
traces and address sets are collected in the next section, but
for now we focus on the problem of generating different
views using these data sources.

3.1 Data Profile
Recall that a data profile reflects the miss rates and CPU
bouncing information for a given type (for example, see
Tables 4, 7, and 8). To construct a data profile for type T ,
DProf combines all of the path traces for T . The CPU bounce
flag in T ’s data profile will be set if any path trace for T
indicates a CPU change. The miss rate for T ’s data profile
is the average miss rate to DRAM or other CPUs’ caches
encountered on all of the execution paths, according to the
path traces, weighted by the frequency with which that path
is observed.

3.2 Working Set
The working set view presents two kinds of information. First,
an indication of whether some cache associativity sets suf-
fer many more misses than others (suggesting associativity
conflicts), and the data types involved in those misses. Fig-
ure 1 shows one such histogram for network packet buffers.
Second, an estimate of which types are most common in the
cache, to help diagnose capacity misses.

DProf runs a simple cache simulation to generate this
information. DProf randomly picks objects from the address

3

6 / 11

Data Flow Example
5.1 Case Study: True Sharing
Memcached [2] is an in-memory key-value store often used
to speed up web applications. A distributed key-value store
can be created by running multiple instances of memcached
and having clients deterministically distribute keys among all
available servers.

For this case study, the test machine ran 16 instances of
memcached. Each instance used a different UDP port and was
pinned to one core. Separate memcached processes were used
to avoid scalability bottlenecks with threaded memcached.
Each load generating machine ran a UDP memcached client
querying the same memcached instance, with different clients
querying different instances. The Ethernet hardware was con-
figured to deliver receive packet interrupts to the appropriate
server core. Each UDP client repeatedly asked for one non-
existent key.

This configuration aimed to isolate all data accesses to one
core and eliminate cross core sharing of data that results in
both contention for locks and cache misses. Even though we
configured the experiment to reduce cross core sharing, we
were still not getting linear speed up running memcached.

5.1.1 Profiling with DProf
Table 4 shows part of the data profile generated by DProf. A
few kernel objects had a high concentration of cache misses.
In addition, the same objects were bouncing between cores.
With a high proportion of cache misses, the size-1024 ob-
jects are a good place to start the analysis. These objects hold
packet payload. The DProf data flow view shows that many
of these objects move from one core to another between a call
to dev queue xmit and dev hard start xmit. This
means that individual packets are handled by multiple cores
during transmit processing, rather than by one as expected.
The size-1024 objects are only the packet payloads; per-
packet skbuff objects are used to store bookkeeping infor-
mation about each packet. Since skbuffs are on the list and
are also bouncing, they are worth looking at next.

Figure 2 shows a snippet of the data flow view gen-
erated by DProf for skbuffs. The view indicates that
skbuffs on the transmit path jump from one core to
another between a call to pfifo fast enqueue and
pfifo fast dequeue. Both of these functions are part
of the Qdisc Linux subsystem that is used to schedule
packet transmission. Packets are placed on the head of the
queue and are taken off the queue when the card is ready to
transmit them. The IXGBE driver was configured with 16
hardware transmit queues. In principle, each core should be
able to transmit a packet without contending for locks by
placing the packet onto a “local” queue dedicated to its use.
Since skbuffs jump to a different core at this point, this is
apparently not happening.

Now that we have an idea of what the problem is, we need
to find why packets are not placed on the local queue. The
data flow graph limits the scope of the search: we only need

ixgbe_alloc_rx_buffers

ixgbe_clean_rx_irq

netif_receive_skb

udp_recvmsg

...

ixgbe_xmit_frame

...

skb_tx_hash

dev_queue_xmit

pfifo_fast_enqueue

net_tx_action

__alloc_skb

sock_alloc_send_pskb __netdev_alloc_skb

...

__qdisc_run

ip_rcv

ip_local_deliver

pfifo_fast_dequeue

ip_local_out

...

...

free

alloc

Figure 2. Partial data flow view for skbuff objects in
memcached as reported by DProf. The thick line indicates a
transition from one core to another. Darker boxes represent
functions with high cache access latencies.

7

...

5.1 Case Study: True Sharing
Memcached [2] is an in-memory key-value store often used
to speed up web applications. A distributed key-value store
can be created by running multiple instances of memcached
and having clients deterministically distribute keys among all
available servers.

For this case study, the test machine ran 16 instances of
memcached. Each instance used a different UDP port and was
pinned to one core. Separate memcached processes were used
to avoid scalability bottlenecks with threaded memcached.
Each load generating machine ran a UDP memcached client
querying the same memcached instance, with different clients
querying different instances. The Ethernet hardware was con-
figured to deliver receive packet interrupts to the appropriate
server core. Each UDP client repeatedly asked for one non-
existent key.

This configuration aimed to isolate all data accesses to one
core and eliminate cross core sharing of data that results in
both contention for locks and cache misses. Even though we
configured the experiment to reduce cross core sharing, we
were still not getting linear speed up running memcached.

5.1.1 Profiling with DProf
Table 4 shows part of the data profile generated by DProf. A
few kernel objects had a high concentration of cache misses.
In addition, the same objects were bouncing between cores.
With a high proportion of cache misses, the size-1024 ob-
jects are a good place to start the analysis. These objects hold
packet payload. The DProf data flow view shows that many
of these objects move from one core to another between a call
to dev queue xmit and dev hard start xmit. This
means that individual packets are handled by multiple cores
during transmit processing, rather than by one as expected.
The size-1024 objects are only the packet payloads; per-
packet skbuff objects are used to store bookkeeping infor-
mation about each packet. Since skbuffs are on the list and
are also bouncing, they are worth looking at next.

Figure 2 shows a snippet of the data flow view gen-
erated by DProf for skbuffs. The view indicates that
skbuffs on the transmit path jump from one core to
another between a call to pfifo fast enqueue and
pfifo fast dequeue. Both of these functions are part
of the Qdisc Linux subsystem that is used to schedule
packet transmission. Packets are placed on the head of the
queue and are taken off the queue when the card is ready to
transmit them. The IXGBE driver was configured with 16
hardware transmit queues. In principle, each core should be
able to transmit a packet without contending for locks by
placing the packet onto a “local” queue dedicated to its use.
Since skbuffs jump to a different core at this point, this is
apparently not happening.

Now that we have an idea of what the problem is, we need
to find why packets are not placed on the local queue. The
data flow graph limits the scope of the search: we only need

ixgbe_alloc_rx_buffers

ixgbe_clean_rx_irq

netif_receive_skb

udp_recvmsg

...

ixgbe_xmit_frame

...

skb_tx_hash

dev_queue_xmit

pfifo_fast_enqueue

net_tx_action

__alloc_skb

sock_alloc_send_pskb __netdev_alloc_skb

...

__qdisc_run

ip_rcv

ip_local_deliver

pfifo_fast_dequeue

ip_local_out

...

...

free

alloc

Figure 2. Partial data flow view for skbuff objects in
memcached as reported by DProf. The thick line indicates a
transition from one core to another. Darker boxes represent
functions with high cache access latencies.

7

7 / 11

Evaluation

16 core AMD with 10GB Ethernet + 16 load generating machines
Case Study 1 Fixing unintended data sharing between cores (true

sharing cache miss) improved Memcached
performance by 57%

Case Study 2 Apache request serve rate dropped at high request
generation rate. Limiting request queue fixed that
(16% speedup).

Type Name Description Working Set View Data Profile View
Size % of all L1 misses Bounce

tcp sock TCP socket structure 1.1MB 11.0% no
task struct task structure 1.2MB 21.4% no
net device network device structure 128B 3.4% yes
size-1024 packet payload 4.2MB 5.2% no
skbuff packet bookkeeping structure 4.3MB 3.3% no

Total 10.8MB 44.2% —

Table 7. Working set and data profile views for the top data types in Apache at peak performance as reported by DProf.

Type Name Description Working Set View Data Profile View
Size % of all L1 misses Bounce

tcp sock TCP socket structure 11.6MB 21.5% no
task struct task structure 1.3MB 10.7% no
net device network device structure 128B 12.0% yes
size-1024 packet payload 6.3MB 4.1% no
skbuff packet bookkeeping structure 7.2MB 3.7% no

Total 26.3MB 52.1% —

Table 8. Working set and data profile views for the top data types in Apache at drop off as reported by DProf.

Lock Name Wait Time Overhead Functions
futex lock 1.98 0.4% do futex, futex wait, futex wake

Table 9. Lock statistics acquired by lock stats during a 30 second run of Apache. The wait time is a sum over all 16 cores.

case because Apache threads communicate with each other
using queues that implement thread wake up by using futexes.
This analysis does not reveal anything about the problem.

5.2.3 Profiling with OProfile
OProfile tracks events like context switches and thus does
more work than DProf when collecting samples regardless
of the sampling rate. We were not able to collect reliable
data with OProfile because any major perturbation to the test
machine caused the machine to go from the peak state straight
into the drop off state.

5.3 Access Sample Overhead
The overhead of data access profiling comes from taking
an interrupt to save an access sample. The overhead is
proportional to the IBS sampling rate; Figure 3 shows the
overhead of profiling for different IBS sampling rates for the
Apache and memcached applications. The sampling rate is
chosen based on the overhead tolerance. With lower sampling
rates it is critical to sample long enough to capture enough
access samples of data types in interest.

The cost of an IBS interrupt is about 2,000 cycles on the
test machine. Half of the cycles are spent reading IBS data
out of a core’s IBS registers, the rest is spent entering and
exiting the interrupt and resolving the data’s address to its
type.

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14 16 18

T
h

ro
u

g
h

p
u

t
O

v
er

h
ea

d
 (

%
)

Samples (thousands samples/s/core)

Apache
Memcached

Figure 3. DProf overhead for different IBS sampling rates.
The overhead is measured in percent connection throughput
reduction for the Apache and memcached applications.

Just like CPU cycle overhead, the memory overhead of
data access profiling is proportional to the number of samples
collected. Each access sample is 88 bytes. For example, a
sixty second profile of memcached generated 7.4 million
samples and took up 654MB of space; off-line aggregation
brought space use below 20MB.

10

Type Name Description Working Set View Data Profile View
Size % of all L1 misses Bounce

tcp sock TCP socket structure 1.1MB 11.0% no
task struct task structure 1.2MB 21.4% no
net device network device structure 128B 3.4% yes
size-1024 packet payload 4.2MB 5.2% no
skbuff packet bookkeeping structure 4.3MB 3.3% no

Total 10.8MB 44.2% —

Table 7. Working set and data profile views for the top data types in Apache at peak performance as reported by DProf.

Type Name Description Working Set View Data Profile View
Size % of all L1 misses Bounce

tcp sock TCP socket structure 11.6MB 21.5% no
task struct task structure 1.3MB 10.7% no
net device network device structure 128B 12.0% yes
size-1024 packet payload 6.3MB 4.1% no
skbuff packet bookkeeping structure 7.2MB 3.7% no

Total 26.3MB 52.1% —

Table 8. Working set and data profile views for the top data types in Apache at drop off as reported by DProf.

Lock Name Wait Time Overhead Functions
futex lock 1.98 0.4% do futex, futex wait, futex wake

Table 9. Lock statistics acquired by lock stats during a 30 second run of Apache. The wait time is a sum over all 16 cores.

case because Apache threads communicate with each other
using queues that implement thread wake up by using futexes.
This analysis does not reveal anything about the problem.

5.2.3 Profiling with OProfile
OProfile tracks events like context switches and thus does
more work than DProf when collecting samples regardless
of the sampling rate. We were not able to collect reliable
data with OProfile because any major perturbation to the test
machine caused the machine to go from the peak state straight
into the drop off state.

5.3 Access Sample Overhead
The overhead of data access profiling comes from taking
an interrupt to save an access sample. The overhead is
proportional to the IBS sampling rate; Figure 3 shows the
overhead of profiling for different IBS sampling rates for the
Apache and memcached applications. The sampling rate is
chosen based on the overhead tolerance. With lower sampling
rates it is critical to sample long enough to capture enough
access samples of data types in interest.

The cost of an IBS interrupt is about 2,000 cycles on the
test machine. Half of the cycles are spent reading IBS data
out of a core’s IBS registers, the rest is spent entering and
exiting the interrupt and resolving the data’s address to its
type.

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14 16 18

T
h
ro

u
g
h
p
u
t

O
v
er

h
ea

d
 (

%
)

Samples (thousands samples/s/core)

Apache
Memcached

Figure 3. DProf overhead for different IBS sampling rates.
The overhead is measured in percent connection throughput
reduction for the Apache and memcached applications.

Just like CPU cycle overhead, the memory overhead of
data access profiling is proportional to the number of samples
collected. Each access sample is 88 bytes. For example, a
sixty second profile of memcached generated 7.4 million
samples and took up 654MB of space; off-line aggregation
brought space use below 20MB.

10

Type Name Description Working Set View Data Profile View
Size % of all L1 misses Bounce

tcp sock TCP socket structure 1.1MB 11.0% no
task struct task structure 1.2MB 21.4% no
net device network device structure 128B 3.4% yes
size-1024 packet payload 4.2MB 5.2% no
skbuff packet bookkeeping structure 4.3MB 3.3% no

Total 10.8MB 44.2% —

Table 7. Working set and data profile views for the top data types in Apache at peak performance as reported by DProf.

Type Name Description Working Set View Data Profile View
Size % of all L1 misses Bounce

tcp sock TCP socket structure 11.6MB 21.5% no
task struct task structure 1.3MB 10.7% no
net device network device structure 128B 12.0% yes
size-1024 packet payload 6.3MB 4.1% no
skbuff packet bookkeeping structure 7.2MB 3.7% no

Total 26.3MB 52.1% —

Table 8. Working set and data profile views for the top data types in Apache at drop off as reported by DProf.

Lock Name Wait Time Overhead Functions
futex lock 1.98 0.4% do futex, futex wait, futex wake

Table 9. Lock statistics acquired by lock stats during a 30 second run of Apache. The wait time is a sum over all 16 cores.

case because Apache threads communicate with each other
using queues that implement thread wake up by using futexes.
This analysis does not reveal anything about the problem.

5.2.3 Profiling with OProfile
OProfile tracks events like context switches and thus does
more work than DProf when collecting samples regardless
of the sampling rate. We were not able to collect reliable
data with OProfile because any major perturbation to the test
machine caused the machine to go from the peak state straight
into the drop off state.

5.3 Access Sample Overhead
The overhead of data access profiling comes from taking
an interrupt to save an access sample. The overhead is
proportional to the IBS sampling rate; Figure 3 shows the
overhead of profiling for different IBS sampling rates for the
Apache and memcached applications. The sampling rate is
chosen based on the overhead tolerance. With lower sampling
rates it is critical to sample long enough to capture enough
access samples of data types in interest.

The cost of an IBS interrupt is about 2,000 cycles on the
test machine. Half of the cycles are spent reading IBS data
out of a core’s IBS registers, the rest is spent entering and
exiting the interrupt and resolving the data’s address to its
type.

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14 16 18

T
h
ro

u
g
h
p
u
t

O
v
er

h
ea

d
 (

%
)

Samples (thousands samples/s/core)

Apache
Memcached

Figure 3. DProf overhead for different IBS sampling rates.
The overhead is measured in percent connection throughput
reduction for the Apache and memcached applications.

Just like CPU cycle overhead, the memory overhead of
data access profiling is proportional to the number of samples
collected. Each access sample is 88 bytes. For example, a
sixty second profile of memcached generated 7.4 million
samples and took up 654MB of space; off-line aggregation
brought space use below 20MB.

10

8 / 11

Evaluation

16 core AMD with 10GB Ethernet + 16 load generating machines

Case Study 1 Fixing unintended data sharing between cores (true
sharing cache miss) improved Memcached
performance by 57%

Case Study 2 Apache request serve rate dropped at high request
generation rate. Limiting request queue fixed that
(16% speedup).

Type Name Description Working Set View Data Profile View
Size % of all L1 misses Bounce

tcp sock TCP socket structure 1.1MB 11.0% no
task struct task structure 1.2MB 21.4% no
net device network device structure 128B 3.4% yes
size-1024 packet payload 4.2MB 5.2% no
skbuff packet bookkeeping structure 4.3MB 3.3% no

Total 10.8MB 44.2% —

Table 7. Working set and data profile views for the top data types in Apache at peak performance as reported by DProf.

Type Name Description Working Set View Data Profile View
Size % of all L1 misses Bounce

tcp sock TCP socket structure 11.6MB 21.5% no
task struct task structure 1.3MB 10.7% no
net device network device structure 128B 12.0% yes
size-1024 packet payload 6.3MB 4.1% no
skbuff packet bookkeeping structure 7.2MB 3.7% no

Total 26.3MB 52.1% —

Table 8. Working set and data profile views for the top data types in Apache at drop off as reported by DProf.

Lock Name Wait Time Overhead Functions
futex lock 1.98 0.4% do futex, futex wait, futex wake

Table 9. Lock statistics acquired by lock stats during a 30 second run of Apache. The wait time is a sum over all 16 cores.

case because Apache threads communicate with each other
using queues that implement thread wake up by using futexes.
This analysis does not reveal anything about the problem.

5.2.3 Profiling with OProfile
OProfile tracks events like context switches and thus does
more work than DProf when collecting samples regardless
of the sampling rate. We were not able to collect reliable
data with OProfile because any major perturbation to the test
machine caused the machine to go from the peak state straight
into the drop off state.

5.3 Access Sample Overhead
The overhead of data access profiling comes from taking
an interrupt to save an access sample. The overhead is
proportional to the IBS sampling rate; Figure 3 shows the
overhead of profiling for different IBS sampling rates for the
Apache and memcached applications. The sampling rate is
chosen based on the overhead tolerance. With lower sampling
rates it is critical to sample long enough to capture enough
access samples of data types in interest.

The cost of an IBS interrupt is about 2,000 cycles on the
test machine. Half of the cycles are spent reading IBS data
out of a core’s IBS registers, the rest is spent entering and
exiting the interrupt and resolving the data’s address to its
type.

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14 16 18

T
h

ro
u

g
h

p
u

t
O

v
er

h
ea

d
 (

%
)

Samples (thousands samples/s/core)

Apache
Memcached

Figure 3. DProf overhead for different IBS sampling rates.
The overhead is measured in percent connection throughput
reduction for the Apache and memcached applications.

Just like CPU cycle overhead, the memory overhead of
data access profiling is proportional to the number of samples
collected. Each access sample is 88 bytes. For example, a
sixty second profile of memcached generated 7.4 million
samples and took up 654MB of space; off-line aggregation
brought space use below 20MB.

10

Type Name Description Working Set View Data Profile View
Size % of all L1 misses Bounce

tcp sock TCP socket structure 1.1MB 11.0% no
task struct task structure 1.2MB 21.4% no
net device network device structure 128B 3.4% yes
size-1024 packet payload 4.2MB 5.2% no
skbuff packet bookkeeping structure 4.3MB 3.3% no

Total 10.8MB 44.2% —

Table 7. Working set and data profile views for the top data types in Apache at peak performance as reported by DProf.

Type Name Description Working Set View Data Profile View
Size % of all L1 misses Bounce

tcp sock TCP socket structure 11.6MB 21.5% no
task struct task structure 1.3MB 10.7% no
net device network device structure 128B 12.0% yes
size-1024 packet payload 6.3MB 4.1% no
skbuff packet bookkeeping structure 7.2MB 3.7% no

Total 26.3MB 52.1% —

Table 8. Working set and data profile views for the top data types in Apache at drop off as reported by DProf.

Lock Name Wait Time Overhead Functions
futex lock 1.98 0.4% do futex, futex wait, futex wake

Table 9. Lock statistics acquired by lock stats during a 30 second run of Apache. The wait time is a sum over all 16 cores.

case because Apache threads communicate with each other
using queues that implement thread wake up by using futexes.
This analysis does not reveal anything about the problem.

5.2.3 Profiling with OProfile
OProfile tracks events like context switches and thus does
more work than DProf when collecting samples regardless
of the sampling rate. We were not able to collect reliable
data with OProfile because any major perturbation to the test
machine caused the machine to go from the peak state straight
into the drop off state.

5.3 Access Sample Overhead
The overhead of data access profiling comes from taking
an interrupt to save an access sample. The overhead is
proportional to the IBS sampling rate; Figure 3 shows the
overhead of profiling for different IBS sampling rates for the
Apache and memcached applications. The sampling rate is
chosen based on the overhead tolerance. With lower sampling
rates it is critical to sample long enough to capture enough
access samples of data types in interest.

The cost of an IBS interrupt is about 2,000 cycles on the
test machine. Half of the cycles are spent reading IBS data
out of a core’s IBS registers, the rest is spent entering and
exiting the interrupt and resolving the data’s address to its
type.

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14 16 18

T
h
ro

u
g
h
p
u
t

O
v
er

h
ea

d
 (

%
)

Samples (thousands samples/s/core)

Apache
Memcached

Figure 3. DProf overhead for different IBS sampling rates.
The overhead is measured in percent connection throughput
reduction for the Apache and memcached applications.

Just like CPU cycle overhead, the memory overhead of
data access profiling is proportional to the number of samples
collected. Each access sample is 88 bytes. For example, a
sixty second profile of memcached generated 7.4 million
samples and took up 654MB of space; off-line aggregation
brought space use below 20MB.

10

Type Name Description Working Set View Data Profile View
Size % of all L1 misses Bounce

tcp sock TCP socket structure 1.1MB 11.0% no
task struct task structure 1.2MB 21.4% no
net device network device structure 128B 3.4% yes
size-1024 packet payload 4.2MB 5.2% no
skbuff packet bookkeeping structure 4.3MB 3.3% no

Total 10.8MB 44.2% —

Table 7. Working set and data profile views for the top data types in Apache at peak performance as reported by DProf.

Type Name Description Working Set View Data Profile View
Size % of all L1 misses Bounce

tcp sock TCP socket structure 11.6MB 21.5% no
task struct task structure 1.3MB 10.7% no
net device network device structure 128B 12.0% yes
size-1024 packet payload 6.3MB 4.1% no
skbuff packet bookkeeping structure 7.2MB 3.7% no

Total 26.3MB 52.1% —

Table 8. Working set and data profile views for the top data types in Apache at drop off as reported by DProf.

Lock Name Wait Time Overhead Functions
futex lock 1.98 0.4% do futex, futex wait, futex wake

Table 9. Lock statistics acquired by lock stats during a 30 second run of Apache. The wait time is a sum over all 16 cores.

case because Apache threads communicate with each other
using queues that implement thread wake up by using futexes.
This analysis does not reveal anything about the problem.

5.2.3 Profiling with OProfile
OProfile tracks events like context switches and thus does
more work than DProf when collecting samples regardless
of the sampling rate. We were not able to collect reliable
data with OProfile because any major perturbation to the test
machine caused the machine to go from the peak state straight
into the drop off state.

5.3 Access Sample Overhead
The overhead of data access profiling comes from taking
an interrupt to save an access sample. The overhead is
proportional to the IBS sampling rate; Figure 3 shows the
overhead of profiling for different IBS sampling rates for the
Apache and memcached applications. The sampling rate is
chosen based on the overhead tolerance. With lower sampling
rates it is critical to sample long enough to capture enough
access samples of data types in interest.

The cost of an IBS interrupt is about 2,000 cycles on the
test machine. Half of the cycles are spent reading IBS data
out of a core’s IBS registers, the rest is spent entering and
exiting the interrupt and resolving the data’s address to its
type.

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14 16 18

T
h
ro

u
g
h
p
u
t

O
v
er

h
ea

d
 (

%
)

Samples (thousands samples/s/core)

Apache
Memcached

Figure 3. DProf overhead for different IBS sampling rates.
The overhead is measured in percent connection throughput
reduction for the Apache and memcached applications.

Just like CPU cycle overhead, the memory overhead of
data access profiling is proportional to the number of samples
collected. Each access sample is 88 bytes. For example, a
sixty second profile of memcached generated 7.4 million
samples and took up 654MB of space; off-line aggregation
brought space use below 20MB.

10

8 / 11

Evaluation

16 core AMD with 10GB Ethernet + 16 load generating machines
Case Study 1 Fixing unintended data sharing between cores (true

sharing cache miss) improved Memcached
performance by 57%

Case Study 2 Apache request serve rate dropped at high request
generation rate. Limiting request queue fixed that
(16% speedup).

Type Name Description Working Set View Data Profile View
Size % of all L1 misses Bounce

tcp sock TCP socket structure 1.1MB 11.0% no
task struct task structure 1.2MB 21.4% no
net device network device structure 128B 3.4% yes
size-1024 packet payload 4.2MB 5.2% no
skbuff packet bookkeeping structure 4.3MB 3.3% no

Total 10.8MB 44.2% —

Table 7. Working set and data profile views for the top data types in Apache at peak performance as reported by DProf.

Type Name Description Working Set View Data Profile View
Size % of all L1 misses Bounce

tcp sock TCP socket structure 11.6MB 21.5% no
task struct task structure 1.3MB 10.7% no
net device network device structure 128B 12.0% yes
size-1024 packet payload 6.3MB 4.1% no
skbuff packet bookkeeping structure 7.2MB 3.7% no

Total 26.3MB 52.1% —

Table 8. Working set and data profile views for the top data types in Apache at drop off as reported by DProf.

Lock Name Wait Time Overhead Functions
futex lock 1.98 0.4% do futex, futex wait, futex wake

Table 9. Lock statistics acquired by lock stats during a 30 second run of Apache. The wait time is a sum over all 16 cores.

case because Apache threads communicate with each other
using queues that implement thread wake up by using futexes.
This analysis does not reveal anything about the problem.

5.2.3 Profiling with OProfile
OProfile tracks events like context switches and thus does
more work than DProf when collecting samples regardless
of the sampling rate. We were not able to collect reliable
data with OProfile because any major perturbation to the test
machine caused the machine to go from the peak state straight
into the drop off state.

5.3 Access Sample Overhead
The overhead of data access profiling comes from taking
an interrupt to save an access sample. The overhead is
proportional to the IBS sampling rate; Figure 3 shows the
overhead of profiling for different IBS sampling rates for the
Apache and memcached applications. The sampling rate is
chosen based on the overhead tolerance. With lower sampling
rates it is critical to sample long enough to capture enough
access samples of data types in interest.

The cost of an IBS interrupt is about 2,000 cycles on the
test machine. Half of the cycles are spent reading IBS data
out of a core’s IBS registers, the rest is spent entering and
exiting the interrupt and resolving the data’s address to its
type.

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14 16 18

T
h

ro
u

g
h

p
u

t
O

v
er

h
ea

d
 (

%
)

Samples (thousands samples/s/core)

Apache
Memcached

Figure 3. DProf overhead for different IBS sampling rates.
The overhead is measured in percent connection throughput
reduction for the Apache and memcached applications.

Just like CPU cycle overhead, the memory overhead of
data access profiling is proportional to the number of samples
collected. Each access sample is 88 bytes. For example, a
sixty second profile of memcached generated 7.4 million
samples and took up 654MB of space; off-line aggregation
brought space use below 20MB.

10

Type Name Description Working Set View Data Profile View
Size % of all L1 misses Bounce

tcp sock TCP socket structure 1.1MB 11.0% no
task struct task structure 1.2MB 21.4% no
net device network device structure 128B 3.4% yes
size-1024 packet payload 4.2MB 5.2% no
skbuff packet bookkeeping structure 4.3MB 3.3% no

Total 10.8MB 44.2% —

Table 7. Working set and data profile views for the top data types in Apache at peak performance as reported by DProf.

Type Name Description Working Set View Data Profile View
Size % of all L1 misses Bounce

tcp sock TCP socket structure 11.6MB 21.5% no
task struct task structure 1.3MB 10.7% no
net device network device structure 128B 12.0% yes
size-1024 packet payload 6.3MB 4.1% no
skbuff packet bookkeeping structure 7.2MB 3.7% no

Total 26.3MB 52.1% —

Table 8. Working set and data profile views for the top data types in Apache at drop off as reported by DProf.

Lock Name Wait Time Overhead Functions
futex lock 1.98 0.4% do futex, futex wait, futex wake

Table 9. Lock statistics acquired by lock stats during a 30 second run of Apache. The wait time is a sum over all 16 cores.

case because Apache threads communicate with each other
using queues that implement thread wake up by using futexes.
This analysis does not reveal anything about the problem.

5.2.3 Profiling with OProfile
OProfile tracks events like context switches and thus does
more work than DProf when collecting samples regardless
of the sampling rate. We were not able to collect reliable
data with OProfile because any major perturbation to the test
machine caused the machine to go from the peak state straight
into the drop off state.

5.3 Access Sample Overhead
The overhead of data access profiling comes from taking
an interrupt to save an access sample. The overhead is
proportional to the IBS sampling rate; Figure 3 shows the
overhead of profiling for different IBS sampling rates for the
Apache and memcached applications. The sampling rate is
chosen based on the overhead tolerance. With lower sampling
rates it is critical to sample long enough to capture enough
access samples of data types in interest.

The cost of an IBS interrupt is about 2,000 cycles on the
test machine. Half of the cycles are spent reading IBS data
out of a core’s IBS registers, the rest is spent entering and
exiting the interrupt and resolving the data’s address to its
type.

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14 16 18

T
h
ro

u
g
h
p
u
t

O
v
er

h
ea

d
 (

%
)

Samples (thousands samples/s/core)

Apache
Memcached

Figure 3. DProf overhead for different IBS sampling rates.
The overhead is measured in percent connection throughput
reduction for the Apache and memcached applications.

Just like CPU cycle overhead, the memory overhead of
data access profiling is proportional to the number of samples
collected. Each access sample is 88 bytes. For example, a
sixty second profile of memcached generated 7.4 million
samples and took up 654MB of space; off-line aggregation
brought space use below 20MB.

10

Type Name Description Working Set View Data Profile View
Size % of all L1 misses Bounce

tcp sock TCP socket structure 1.1MB 11.0% no
task struct task structure 1.2MB 21.4% no
net device network device structure 128B 3.4% yes
size-1024 packet payload 4.2MB 5.2% no
skbuff packet bookkeeping structure 4.3MB 3.3% no

Total 10.8MB 44.2% —

Table 7. Working set and data profile views for the top data types in Apache at peak performance as reported by DProf.

Type Name Description Working Set View Data Profile View
Size % of all L1 misses Bounce

tcp sock TCP socket structure 11.6MB 21.5% no
task struct task structure 1.3MB 10.7% no
net device network device structure 128B 12.0% yes
size-1024 packet payload 6.3MB 4.1% no
skbuff packet bookkeeping structure 7.2MB 3.7% no

Total 26.3MB 52.1% —

Table 8. Working set and data profile views for the top data types in Apache at drop off as reported by DProf.

Lock Name Wait Time Overhead Functions
futex lock 1.98 0.4% do futex, futex wait, futex wake

Table 9. Lock statistics acquired by lock stats during a 30 second run of Apache. The wait time is a sum over all 16 cores.

case because Apache threads communicate with each other
using queues that implement thread wake up by using futexes.
This analysis does not reveal anything about the problem.

5.2.3 Profiling with OProfile
OProfile tracks events like context switches and thus does
more work than DProf when collecting samples regardless
of the sampling rate. We were not able to collect reliable
data with OProfile because any major perturbation to the test
machine caused the machine to go from the peak state straight
into the drop off state.

5.3 Access Sample Overhead
The overhead of data access profiling comes from taking
an interrupt to save an access sample. The overhead is
proportional to the IBS sampling rate; Figure 3 shows the
overhead of profiling for different IBS sampling rates for the
Apache and memcached applications. The sampling rate is
chosen based on the overhead tolerance. With lower sampling
rates it is critical to sample long enough to capture enough
access samples of data types in interest.

The cost of an IBS interrupt is about 2,000 cycles on the
test machine. Half of the cycles are spent reading IBS data
out of a core’s IBS registers, the rest is spent entering and
exiting the interrupt and resolving the data’s address to its
type.

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14 16 18

T
h
ro

u
g
h
p
u
t

O
v
er

h
ea

d
 (

%
)

Samples (thousands samples/s/core)

Apache
Memcached

Figure 3. DProf overhead for different IBS sampling rates.
The overhead is measured in percent connection throughput
reduction for the Apache and memcached applications.

Just like CPU cycle overhead, the memory overhead of
data access profiling is proportional to the number of samples
collected. Each access sample is 88 bytes. For example, a
sixty second profile of memcached generated 7.4 million
samples and took up 654MB of space; off-line aggregation
brought space use below 20MB.

10

8 / 11

Evaluation

16 core AMD with 10GB Ethernet + 16 load generating machines
Case Study 1 Fixing unintended data sharing between cores (true

sharing cache miss) improved Memcached
performance by 57%

Case Study 2 Apache request serve rate dropped at high request
generation rate. Limiting request queue fixed that
(16% speedup).

Type Name Description Working Set View Data Profile View
Size % of all L1 misses Bounce

tcp sock TCP socket structure 1.1MB 11.0% no
task struct task structure 1.2MB 21.4% no
net device network device structure 128B 3.4% yes
size-1024 packet payload 4.2MB 5.2% no
skbuff packet bookkeeping structure 4.3MB 3.3% no

Total 10.8MB 44.2% —

Table 7. Working set and data profile views for the top data types in Apache at peak performance as reported by DProf.

Type Name Description Working Set View Data Profile View
Size % of all L1 misses Bounce

tcp sock TCP socket structure 11.6MB 21.5% no
task struct task structure 1.3MB 10.7% no
net device network device structure 128B 12.0% yes
size-1024 packet payload 6.3MB 4.1% no
skbuff packet bookkeeping structure 7.2MB 3.7% no

Total 26.3MB 52.1% —

Table 8. Working set and data profile views for the top data types in Apache at drop off as reported by DProf.

Lock Name Wait Time Overhead Functions
futex lock 1.98 0.4% do futex, futex wait, futex wake

Table 9. Lock statistics acquired by lock stats during a 30 second run of Apache. The wait time is a sum over all 16 cores.

case because Apache threads communicate with each other
using queues that implement thread wake up by using futexes.
This analysis does not reveal anything about the problem.

5.2.3 Profiling with OProfile
OProfile tracks events like context switches and thus does
more work than DProf when collecting samples regardless
of the sampling rate. We were not able to collect reliable
data with OProfile because any major perturbation to the test
machine caused the machine to go from the peak state straight
into the drop off state.

5.3 Access Sample Overhead
The overhead of data access profiling comes from taking
an interrupt to save an access sample. The overhead is
proportional to the IBS sampling rate; Figure 3 shows the
overhead of profiling for different IBS sampling rates for the
Apache and memcached applications. The sampling rate is
chosen based on the overhead tolerance. With lower sampling
rates it is critical to sample long enough to capture enough
access samples of data types in interest.

The cost of an IBS interrupt is about 2,000 cycles on the
test machine. Half of the cycles are spent reading IBS data
out of a core’s IBS registers, the rest is spent entering and
exiting the interrupt and resolving the data’s address to its
type.

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14 16 18

T
h

ro
u

g
h

p
u

t
O

v
er

h
ea

d
 (

%
)

Samples (thousands samples/s/core)

Apache
Memcached

Figure 3. DProf overhead for different IBS sampling rates.
The overhead is measured in percent connection throughput
reduction for the Apache and memcached applications.

Just like CPU cycle overhead, the memory overhead of
data access profiling is proportional to the number of samples
collected. Each access sample is 88 bytes. For example, a
sixty second profile of memcached generated 7.4 million
samples and took up 654MB of space; off-line aggregation
brought space use below 20MB.

10

Type Name Description Working Set View Data Profile View
Size % of all L1 misses Bounce

tcp sock TCP socket structure 1.1MB 11.0% no
task struct task structure 1.2MB 21.4% no
net device network device structure 128B 3.4% yes
size-1024 packet payload 4.2MB 5.2% no
skbuff packet bookkeeping structure 4.3MB 3.3% no

Total 10.8MB 44.2% —

Table 7. Working set and data profile views for the top data types in Apache at peak performance as reported by DProf.

Type Name Description Working Set View Data Profile View
Size % of all L1 misses Bounce

tcp sock TCP socket structure 11.6MB 21.5% no
task struct task structure 1.3MB 10.7% no
net device network device structure 128B 12.0% yes
size-1024 packet payload 6.3MB 4.1% no
skbuff packet bookkeeping structure 7.2MB 3.7% no

Total 26.3MB 52.1% —

Table 8. Working set and data profile views for the top data types in Apache at drop off as reported by DProf.

Lock Name Wait Time Overhead Functions
futex lock 1.98 0.4% do futex, futex wait, futex wake

Table 9. Lock statistics acquired by lock stats during a 30 second run of Apache. The wait time is a sum over all 16 cores.

case because Apache threads communicate with each other
using queues that implement thread wake up by using futexes.
This analysis does not reveal anything about the problem.

5.2.3 Profiling with OProfile
OProfile tracks events like context switches and thus does
more work than DProf when collecting samples regardless
of the sampling rate. We were not able to collect reliable
data with OProfile because any major perturbation to the test
machine caused the machine to go from the peak state straight
into the drop off state.

5.3 Access Sample Overhead
The overhead of data access profiling comes from taking
an interrupt to save an access sample. The overhead is
proportional to the IBS sampling rate; Figure 3 shows the
overhead of profiling for different IBS sampling rates for the
Apache and memcached applications. The sampling rate is
chosen based on the overhead tolerance. With lower sampling
rates it is critical to sample long enough to capture enough
access samples of data types in interest.

The cost of an IBS interrupt is about 2,000 cycles on the
test machine. Half of the cycles are spent reading IBS data
out of a core’s IBS registers, the rest is spent entering and
exiting the interrupt and resolving the data’s address to its
type.

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14 16 18

T
h
ro

u
g
h
p
u
t

O
v
er

h
ea

d
 (

%
)

Samples (thousands samples/s/core)

Apache
Memcached

Figure 3. DProf overhead for different IBS sampling rates.
The overhead is measured in percent connection throughput
reduction for the Apache and memcached applications.

Just like CPU cycle overhead, the memory overhead of
data access profiling is proportional to the number of samples
collected. Each access sample is 88 bytes. For example, a
sixty second profile of memcached generated 7.4 million
samples and took up 654MB of space; off-line aggregation
brought space use below 20MB.

10

Type Name Description Working Set View Data Profile View
Size % of all L1 misses Bounce

tcp sock TCP socket structure 1.1MB 11.0% no
task struct task structure 1.2MB 21.4% no
net device network device structure 128B 3.4% yes
size-1024 packet payload 4.2MB 5.2% no
skbuff packet bookkeeping structure 4.3MB 3.3% no

Total 10.8MB 44.2% —

Table 7. Working set and data profile views for the top data types in Apache at peak performance as reported by DProf.

Type Name Description Working Set View Data Profile View
Size % of all L1 misses Bounce

tcp sock TCP socket structure 11.6MB 21.5% no
task struct task structure 1.3MB 10.7% no
net device network device structure 128B 12.0% yes
size-1024 packet payload 6.3MB 4.1% no
skbuff packet bookkeeping structure 7.2MB 3.7% no

Total 26.3MB 52.1% —

Table 8. Working set and data profile views for the top data types in Apache at drop off as reported by DProf.

Lock Name Wait Time Overhead Functions
futex lock 1.98 0.4% do futex, futex wait, futex wake

Table 9. Lock statistics acquired by lock stats during a 30 second run of Apache. The wait time is a sum over all 16 cores.

case because Apache threads communicate with each other
using queues that implement thread wake up by using futexes.
This analysis does not reveal anything about the problem.

5.2.3 Profiling with OProfile
OProfile tracks events like context switches and thus does
more work than DProf when collecting samples regardless
of the sampling rate. We were not able to collect reliable
data with OProfile because any major perturbation to the test
machine caused the machine to go from the peak state straight
into the drop off state.

5.3 Access Sample Overhead
The overhead of data access profiling comes from taking
an interrupt to save an access sample. The overhead is
proportional to the IBS sampling rate; Figure 3 shows the
overhead of profiling for different IBS sampling rates for the
Apache and memcached applications. The sampling rate is
chosen based on the overhead tolerance. With lower sampling
rates it is critical to sample long enough to capture enough
access samples of data types in interest.

The cost of an IBS interrupt is about 2,000 cycles on the
test machine. Half of the cycles are spent reading IBS data
out of a core’s IBS registers, the rest is spent entering and
exiting the interrupt and resolving the data’s address to its
type.

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14 16 18

T
h
ro

u
g
h
p
u
t

O
v
er

h
ea

d
 (

%
)

Samples (thousands samples/s/core)

Apache
Memcached

Figure 3. DProf overhead for different IBS sampling rates.
The overhead is measured in percent connection throughput
reduction for the Apache and memcached applications.

Just like CPU cycle overhead, the memory overhead of
data access profiling is proportional to the number of samples
collected. Each access sample is 88 bytes. For example, a
sixty second profile of memcached generated 7.4 million
samples and took up 654MB of space; off-line aggregation
brought space use below 20MB.

10

8 / 11

Evaluation – IBS overhead

Type Name Description Working Set View Data Profile View
Size % of all L1 misses Bounce

tcp sock TCP socket structure 1.1MB 11.0% no
task struct task structure 1.2MB 21.4% no
net device network device structure 128B 3.4% yes
size-1024 packet payload 4.2MB 5.2% no
skbuff packet bookkeeping structure 4.3MB 3.3% no

Total 10.8MB 44.2% —

Table 7. Working set and data profile views for the top data types in Apache at peak performance as reported by DProf.

Type Name Description Working Set View Data Profile View
Size % of all L1 misses Bounce

tcp sock TCP socket structure 11.6MB 21.5% no
task struct task structure 1.3MB 10.7% no
net device network device structure 128B 12.0% yes
size-1024 packet payload 6.3MB 4.1% no
skbuff packet bookkeeping structure 7.2MB 3.7% no

Total 26.3MB 52.1% —

Table 8. Working set and data profile views for the top data types in Apache at drop off as reported by DProf.

Lock Name Wait Time Overhead Functions
futex lock 1.98 0.4% do futex, futex wait, futex wake

Table 9. Lock statistics acquired by lock stats during a 30 second run of Apache. The wait time is a sum over all 16 cores.

case because Apache threads communicate with each other
using queues that implement thread wake up by using futexes.
This analysis does not reveal anything about the problem.

5.2.3 Profiling with OProfile
OProfile tracks events like context switches and thus does
more work than DProf when collecting samples regardless
of the sampling rate. We were not able to collect reliable
data with OProfile because any major perturbation to the test
machine caused the machine to go from the peak state straight
into the drop off state.

5.3 Access Sample Overhead
The overhead of data access profiling comes from taking
an interrupt to save an access sample. The overhead is
proportional to the IBS sampling rate; Figure 3 shows the
overhead of profiling for different IBS sampling rates for the
Apache and memcached applications. The sampling rate is
chosen based on the overhead tolerance. With lower sampling
rates it is critical to sample long enough to capture enough
access samples of data types in interest.

The cost of an IBS interrupt is about 2,000 cycles on the
test machine. Half of the cycles are spent reading IBS data
out of a core’s IBS registers, the rest is spent entering and
exiting the interrupt and resolving the data’s address to its
type.

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14 16 18

T
h

ro
u

g
h

p
u

t
O

v
er

h
ea

d
 (

%
)

Samples (thousands samples/s/core)

Apache
Memcached

Figure 3. DProf overhead for different IBS sampling rates.
The overhead is measured in percent connection throughput
reduction for the Apache and memcached applications.

Just like CPU cycle overhead, the memory overhead of
data access profiling is proportional to the number of samples
collected. Each access sample is 88 bytes. For example, a
sixty second profile of memcached generated 7.4 million
samples and took up 654MB of space; off-line aggregation
brought space use below 20MB.

10

9 / 11

Evaluation – Access history collection overhead

Benchmark Data Type Data Type
Size (bytes) Histories Histories

Sets
Collection
Time (s)

Overhead
(%)

memcached size-1024 1024 8128 32 170 1.3
skbuff 256 5120 80 95 0.8

Apache

size-1024 1024 20320 80 34 2.9
skbuff 256 2048 32 24 1.6

skbuff fclone 512 10240 80 2.5 16
tcp sock 1600 32000 80 32 4.9

Table 10. Object access history collection times and overhead for different data types and applications.

Benchmark Data Type Elements per
History

Histories per
Second

Elements per
Second

memcached size-1024 0.3 53 120
skbuff 4.2 56 350

Apache

size-1024 0.5 660 1660
skbuff 4.8 110 770

skbuff fclone 4.0 4600 27500
tcp sock 8.3 1030 10600

Table 11. Average object access history collection rates for different data types and applications.

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120 140 160

P
er

ce
n
t

o
f

U
n
iq

u
e

P
at

h
s

History Sets

memcached size−1024
memcached skbuff
Apache size−1024

Apache skbuff
Apache skbuff_fclone

Apache TCP

Figure 4. Percent of unique paths captured as a function
of history sets collected. For all data types, the maximum
number of unique paths is based on a profile with 720 history
set. Only results for profiles with less than 160 sets are shown.

5.4 Object Access History Overhead
The overhead of capturing object access histories depends on
the number of debug register interrupts triggered per second—
which DProf has no control over—and the number of histories
collected per second—which DProf can modulate. For the
Apache and memcached applications Table 10 shows the
range of overheads when profiling different data types. A
history set is a collection of object access histories that cover
every offset in a data type. For example, a skbuff is 256
bytes long and its history set is composed of 64 histories with
debug register configured to monitor length of 4 bytes.

The overhead for capturing Apache skbuff fclone
access histories is 16% because the lifetime of this data type
is short and DProf can collect many access histories per
second. The collection rates are shown in Table 10. To reduce
the overhead, DProf can collect less histories per second.

Table 13 shows a breakdown of the profiling overhead.
The first component is the cost to take an interrupt and save
an element. This interrupt is triggered every time the profiled
object is accessed and costs the test machine 1,000 cycles.

There are two setup overheads: the cost to reserve an
object for profiling with the memory subsystem and the cost
to setup debug registers on all cores. At high histories per
second rates, the dominating factor is the debug registers
setup overhead. The core responsible for setting up debug
registers incurs a cost of 130,000 cycles. The high cost is due
to interrupts sent to all other cores to notify them to set their
debug registers.

In addition to cycle overhead, history collection incurs a
memory overhead of 32 bytes per element in an object access
history.

The time to collect all histories depends on the size and
lifetime of an object. Table 10 shows collection times for
a number of data types. Table 11 shows the rates at which
histories are collected. Since DProf profiles only a few bytes
of an object at a time, the bigger the object the more runs are
needed. Also because DProf can profile only a few objects at
a time, the longer an object remains in use, the longer it takes
to capture its history.

The time to setup an object to be monitored also adds to
the profiling time. It costs about 220,000 cycles to setup an

11

Benchmark Data Type Data Type
Size (bytes) Histories Histories

Sets
Collection
Time (s)

Overhead
(%)

memcached size-1024 1024 8128 32 170 1.3
skbuff 256 5120 80 95 0.8

Apache

size-1024 1024 20320 80 34 2.9
skbuff 256 2048 32 24 1.6

skbuff fclone 512 10240 80 2.5 16
tcp sock 1600 32000 80 32 4.9

Table 10. Object access history collection times and overhead for different data types and applications.

Benchmark Data Type Elements per
History

Histories per
Second

Elements per
Second

memcached size-1024 0.3 53 120
skbuff 4.2 56 350

Apache

size-1024 0.5 660 1660
skbuff 4.8 110 770

skbuff fclone 4.0 4600 27500
tcp sock 8.3 1030 10600

Table 11. Average object access history collection rates for different data types and applications.

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120 140 160

P
er

ce
n
t

o
f

U
n
iq

u
e

P
at

h
s

History Sets

memcached size−1024
memcached skbuff
Apache size−1024

Apache skbuff
Apache skbuff_fclone

Apache TCP

Figure 4. Percent of unique paths captured as a function
of history sets collected. For all data types, the maximum
number of unique paths is based on a profile with 720 history
set. Only results for profiles with less than 160 sets are shown.

5.4 Object Access History Overhead
The overhead of capturing object access histories depends on
the number of debug register interrupts triggered per second—
which DProf has no control over—and the number of histories
collected per second—which DProf can modulate. For the
Apache and memcached applications Table 10 shows the
range of overheads when profiling different data types. A
history set is a collection of object access histories that cover
every offset in a data type. For example, a skbuff is 256
bytes long and its history set is composed of 64 histories with
debug register configured to monitor length of 4 bytes.

The overhead for capturing Apache skbuff fclone
access histories is 16% because the lifetime of this data type
is short and DProf can collect many access histories per
second. The collection rates are shown in Table 10. To reduce
the overhead, DProf can collect less histories per second.

Table 13 shows a breakdown of the profiling overhead.
The first component is the cost to take an interrupt and save
an element. This interrupt is triggered every time the profiled
object is accessed and costs the test machine 1,000 cycles.

There are two setup overheads: the cost to reserve an
object for profiling with the memory subsystem and the cost
to setup debug registers on all cores. At high histories per
second rates, the dominating factor is the debug registers
setup overhead. The core responsible for setting up debug
registers incurs a cost of 130,000 cycles. The high cost is due
to interrupts sent to all other cores to notify them to set their
debug registers.

In addition to cycle overhead, history collection incurs a
memory overhead of 32 bytes per element in an object access
history.

The time to collect all histories depends on the size and
lifetime of an object. Table 10 shows collection times for
a number of data types. Table 11 shows the rates at which
histories are collected. Since DProf profiles only a few bytes
of an object at a time, the bigger the object the more runs are
needed. Also because DProf can profile only a few objects at
a time, the longer an object remains in use, the longer it takes
to capture its history.

The time to setup an object to be monitored also adds to
the profiling time. It costs about 220,000 cycles to setup an

11

10 / 11

Change in Linux kernel for benchmarking?
Why use Linux in the first place?
Time for post-processing?
Are the case studies realistic?

11 / 11

