Locating Cache Performance Bottlenecks Using
Data Profiling

Aleksey Pesterev Nickolai Zeldovich Robert T. Morris

Computer Science and Artificial Intelligence Lab
Massachusetts Institute of Technology

EuroSys 2010

1/11

DProf

Classical profilers attribute time to source lines.
DProf attributes (cache miss) time to data.

2/11

Sampling

Access Samples IBS/PEBS gather IP, cache level, and latency for
random instructions; type deduced from address

Access Histories Debug registers gather all accesses to some
memory.

3/11

What does DProf give you? (Middle layer)

Address Set Set of all addresses (and thus cache sets) used for
objects of some type.

4/11

What does DProf give you? (Middle layer)

Address Set Set of all addresses (and thus cache sets) used for
objects of some type.

Path Traces Graph that shows all possible flows of accesses to
objects of some type, each with access latency, cache
hit rate, etc.

4/11

DProf profiles

For each data type DProf can collect

Data Profile Cache miss rates (and bounce flag),

5/11

DProf profiles

For each data type DProf can collect
Data Profile Cache miss rates (and bounce flag),

Working Set Total size and count of objects in working set,

5/11

DProf profiles

For each data type DProf can collect

Data Profile Cache miss rates (and bounce flag),

Working Set Total size and count of objects in working set,
Miss Classification SREASON cache miss rates,

5/11

DProf profiles

For each data type DProf can collect

Data Profile Cache miss rates (and bounce flag),

Working Set Total size and count of objects in working set,
Miss Classification SREASON cache miss rates,

Data Flow Common sequences of functions that reference
objects of that type.

5/11

Working Set Example

250 T T T T T

200 |+

150 |Ir

100 |

Unique Cache Lines

50 F

0 100 200 300 400 500
Associtivity Set

6/11

Data Flow Example

[ock_alloc_send pskb] [_netdev_alloc_sKb|

| fixgbe_alloc_rx_buffers]

Tocal_out] [xgbe_clean_rx_irq]

| [netif_receive_skb]

7/11

Evaluation

8/11

Evaluation

16 core AMD with 10GB Ethernet + 16 load generating machines

8/11

Evaluation

16 core AMD with 10GB Ethernet + 16 load generating machines

Case Study 1 Fixing unintended data sharing between cores (true
sharing cache miss) improved Memcached
performance by 57%

8/11

Evaluation
16 core AMD with 10GB Ethernet + 16 load generating machines

Case Study 1 Fixing unintended data sharing between cores (true
sharing cache miss) improved Memcached

performance by 57%

Case Study 2 Apache request serve rate dropped at high request
generation rate. Limiting request queue fixed that

(16% speedup).

Type Name % of all L1 misses | % of all L1 misses
tcp_sock 11.0% 21.5%
task_struct 21.4% 10.7%
net_device 3.4% 12.0%
size—-1024 5.2% 4.1%
skbuff 3.3% 3.7%

8/11

Evaluation — IBS overhead

Throughput Overhead (%)

14
12
10

S DB~ O ®

T T T
Apache ——
Memcached --%--

4 6 8 10 12 14
Samples (thousands samples/s/core)

16

18

9/11

Evaluation — Access history collection overhead

Data e . . Histories | Collection | Overhead
Benchmark Data Type Size (l;[)‘f);le)s) Histories Sets Time (s) (%)
memcached size-1024 1024 8128 32 170 13
skbuff 256 5120 80 95 0.8
size-1024 1024 20320 80 34 2.9
Apache skbuff 256 2048 32 24 1.6
skbuff_fclone 512 10240 80 2.5 16
tep-sock 1600 32000 80 32 4.9

Table 10. Object access history collection times and overhead for different data types and applications

Elements per | Histories per | Elements per

Benchmark | - Data Type History Second Second
memcached size-1024 0.3 53 120
skbuff 4.2 56 350
size-1024 0.5 660 1660
Apache skbuff 4.8 110 770

skbuff _fclone 4.0 4600 27500

tep-_sock 8.3 1030 10600

Table 11. Average obiect access history collection rates for different data types and applications.

10/11

Change in Linux kernel for benchmarking?
Why use Linux in the first place?

Time for post-processing?

Are the case studies realistic?

11/11

