Impossibility Results for Distributed Transactional
Memory
Paper Reading Group

Costas Bunsch
Maurice Herlihy
Miroslav Popovic
Gokarna Sharma

Presents: Maksym Planeta

12.11.2015



Table of Contents

Introduction



Table of Contents

Introduction



Distributed transctional memory

» Distributed system
» Set of objects
» Gather all objects



Types of transactional memory

» Data-flow
» Control-flow
» Hybrid-flow



System model

» Data-flow based implementation
» Network graph

» Instantaneous transaction

» Atomic receive-compute-send

> All delays are equal

» Single copies

» One transaction per node



Transactions and objects

Y

()
lo /
N @



Several transactions on the same objects

f@\ C



Evaluated network

B, B, B; B,

By Bis Big Big

a
i T3 LETH LIE
| W
| I
VQ > « ><4>4I|>
d d d d,
- C

Figure 1: The graph G for the time-communication impossibility result, with a = ¢ =16, b =64, d = 4, and v = § = 4.



Transaction scheduling

In this schedule the transactions in G execute
sequentially, one after another, in a column by column
way starting from the leftmost column of G up to the
rightmost column. All transactions in column j finish
execution before the transactions in column j + 1 start
execution.



Communication costs

For a set of transactions T in graph G, the
communication cost of an execution £ is the sum of the
traversed path lengths of all messages sent during £. The
communication cost of scheduling algorithm A is the
maximum communication cost over all possible
executions for T



Execution time

For a set of transactions 7 in graph G, the time of an execution &
is the time elapsed until the last transaction finishes its execution
in £. The execution time of scheduling algorithm A is the
maximum time over all possible executions for 7T .



Impossibility Result

in this instance it is impossible to simultaneously
optimize execution time and communication cost

If one optimizes for lower communication costs, one pays with
higher execution time. And vice versa.



Positive result

We give algorithms which minimize independently the
communication cost or execution time in an arbitrary
graph G.



Small communication costs

The problem of minimizing the communication cost is
NP-hard, by a reduction from graph TSP.

Given a graph G, we can approximate the optimal
communication cost using a universal TSP tour.



Small execution time

We will reduce the vertex coloring problem to this
problem. The coloring problem aims at finding the
chromatic number x(H) of a graph H, and it is an
NP-hard problem.



Small execution time algorithm

We construct G to be isomorphic with H such that each
edge in G has weight 1.



Small execution time algorithm

We construct G to be isomorphic with H such that each
edge in G has weight 1. Each node in G holds a
transaction.



Small execution time algorithm

We construct G to be isomorphic with H such that each
edge in G has weight 1. Each node in G holds a
transaction. For each edge e = (u, v) in H we create a
new object in G to be used only by the respective
transactions in the adjacent nodes in G.



Small execution time algorithm

We construct G to be isomorphic with H such that each
edge in G has weight 1. Each node in G holds a
transaction. For each edge e = (u, v) in H we create a
new object in G to be used only by the respective
transactions in the adjacent nodes in G. Objects can be
initially placed in any of the nodes with transactions that
request them.



Small execution time algorithm

We construct G to be isomorphic with H such that each
edge in G has weight 1. Each node in G holds a
transaction. For each edge e = (u, v) in H we create a
new object in G to be used only by the respective
transactions in the adjacent nodes in G. Objects can be
initially placed in any of the nodes with transactions that
request them. Given a transaction execution schedule in
G, we can find a valid vertex coloring in H by simply
converting the time step that each transaction executes
to a color.



Small execution time algorithm

We construct G to be isomorphic with H such that each
edge in G has weight 1. Each node in G holds a
transaction. For each edge e = (u, v) in H we create a
new object in G to be used only by the respective
transactions in the adjacent nodes in G. Objects can be
initially placed in any of the nodes with transactions that
request them. Given a transaction execution schedule in
G, we can find a valid vertex coloring in H by simply
converting the time step that each transaction executes
to a color. Therefore, an execution schedule in G has
duration x time steps if and only if H has a valid coloring
with x colors.



	Introduction

