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Transactions and objects
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Several transactions on the same objects
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Evaluated network
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Figure 1: The graph G for the time-communication impossibility result, with a = c = 16, b = 64, d = 4, and γ = δ = 4.

tion cost can be estimated as the sum of the communication
costs of the objects within the blocks, plus the cost to trans-
fer the global objects from one block to the next.

Within a block Bi, each global object incurs communica-
tion cost at most c, since it traverses at most c edges on its
own row, counting also the edge to move to the next block.
Thus, the cost from the a global objects is at most ac. In Bi
the cost of the internal object pi that is used at every node is
also at most ac, since there are c columns, and it traverses
at most a − 1 edges within each column, and then it can
traverse one more edge to transfer to the next column, giv-
ing a cost of a per column. To minimize the communication
cost due to the transfer of object pi from column to column,
we can execute the transactions in the columns alternatively
from top to bottom and bottom to top as pi moves from one
column to the next.

Consider now the internal objects Qi = {qi,1, . . . , qi,d}
in Bi. The communication cost due to the transfer of an
internal object qi,j within Bi is at most 2aδ + c, since it
takes a time steps to transfer the object within the a nodes
of the jth column in each of the δ sub-blocks, and it takes
additional aδ + c total steps to transfer the object between
the sub-blocks of Bi. Since |Qi| = d and δ = c/d, the
total cost due to these internal objects in Bi is at most
2adδ + cd = O(ac+ cd).

Adding all the above costs we have O(ac+ cd) total cost
per block, and since there are γ = b/c blocks, the total
communication cost is bounded by O(γ(ac+ cd)) = O(ab+
bd) = O(n + bd). This bound is optimal within a constant
factor, since the combined path of each object is optimal
within a constant factor.

Lemma 3.1. The sequential schedule achieves asymptoti-
cally optimal communication cost Θ(n+ bd).

Due to the sequential nature of the schedule, the total time
to execute the transactions is proportional to total number
of transactions ab = n, which is also the number of nodes in
G.

Lemma 3.2. The sequential schedule executes the trans-
actions within time Θ(n).

3.3 An Execution Time Efficient Schedule
Here we give a schedule with optimal execution time

and suboptimal communication cost. In this schedule, we
pipeline the requests of the global objects in each block.
Time is divided into periods of length 2c such that at each
period each global object is in a different block. Global
object o1 starts at block B1 at the first period where all
transactions in the first row of that block execute. Then at
the second period, object o1 continues to block B2 and visits
all the transactions of the first row in that block. This re-
peats until global object o1 reaches in the γth period block
Bγ . Object o2 starts in B1 in the second period where all
transactions in the second row execute, and then in the third
period o2 moves in B2 for execution of the second row trans-
actions, and so on until the (γ+1)th period where it executes
in Bγ . A similar schedule repeats for the remaining global
objects, such that object oi starts in the ith period at B1

and at the (i + γ − 1)th period at block Bγ , executing the
transactions in the ith row in each block.

The time length 2c of a period is long enough to guarantee
that within each block there is enough time for the internal
objects to reposition for the next global object that will enter
in the next period in the immediately next row (at most c
steps are needed to move objects from the end of the current
row to the beginning of the next row). The total time that
is required for the schedule is the total number of periods
until object oa reaches block Bγ , which is a+ γ− 1 periods,
or equivalently (a+ γ − 1)2c = O(ac+ b) time steps.

Note that ac is a lower bound for the execution time, since
within each block Bi (of size a × c) the internal object pi
requires time at least ac steps to traverse all the transactions.
Further, b is also a lower bound for the execution time, since
the path of each global object consists of b transactions in its
respective row in G. Thus, a lower bound for execution time
is Ω(ac+ b). Consequently, we have the following result:

Lemma 3.3. The pipelined schedule has asymptotically
optimal execution time Θ(ac+ b).

For the communication cost, each global object follows
an optimal path with b nodes and therefore incurs commu-
nication cost Θ(b), and therefore the a global objects con-
tribute cost Θ(ab). Each internal object pi incurs communi-
cation cost Θ(ac), since it has to traverse each node within
its block Bi, giving total cost Θ(acγ) = Θ(ab) considering
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Transaction scheduling

In this schedule the transactions in G execute
sequentially, one after another, in a column by column
way starting from the leftmost column of G up to the
rightmost column. All transactions in column j finish
execution before the transactions in column j + 1 start
execution.



Communication costs

For a set of transactions T in graph G, the
communication cost of an execution E is the sum of the
traversed path lengths of all messages sent during E . The
communication cost of scheduling algorithm A is the
maximum communication cost over all possible
executions for T



Execution time

For a set of transactions T in graph G , the time of an execution E
is the time elapsed until the last transaction finishes its execution
in E . The execution time of scheduling algorithm A is the
maximum time over all possible executions for T .



Impossibility Result

in this instance it is impossible to simultaneously
optimize execution time and communication cost

If one optimizes for lower communication costs, one pays with
higher execution time. And vice versa.



Positive result

We give algorithms which minimize independently the
communication cost or execution time in an arbitrary
graph G.



Small communication costs

The problem of minimizing the communication cost is
NP-hard, by a reduction from graph TSP.

Given a graph G, we can approximate the optimal
communication cost using a universal TSP tour.



Small execution time

We will reduce the vertex coloring problem to this
problem. The coloring problem aims at finding the
chromatic number χ(H) of a graph H, and it is an
NP-hard problem.



Small execution time algorithm

We construct G to be isomorphic with H such that each
edge in G has weight 1.

Each node in G holds a
transaction. For each edge ε = (u, v) in H we create a
new object in G to be used only by the respective
transactions in the adjacent nodes in G. Objects can be
initially placed in any of the nodes with transactions that
request them. Given a transaction execution schedule in
G, we can find a valid vertex coloring in H by simply
converting the time step that each transaction executes
to a color. Therefore, an execution schedule in G has
duration χ time steps if and only if H has a valid coloring
with χ colors.
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