
A Case for Application-Oblivious Energy-Efficient
MPI Runtime

Paper Reading Group

Akshay Venkatesh
Abhinav Vishnu

Khaled Hamidouche
Nathan Tallent

Dhabaleswar (DK) Panda
Darren Kerbyson

Adolfy Hoisie
Presents: Maksym Planeta

12.11.2015

Table of Contents

Introduction

Spin-off

Details

Evaluation

Conclusion

Table of Contents

Introduction

Spin-off

Details

Evaluation

Conclusion

Where do the joules go?

I Computations (we want it)

I Communication (we can’t avoid this)

I MPI library (here is the target)

MPI energy consumption

What is slack?
Compute Slack

P0

P1

P2

P3

Compute Slack
P0

P1

P2

P3

(a) (b)

Figure 2: (a) Iterative/Temporal Pattern and (b) Iterative/Non-
temporal Pattern

2.1 Iterative/Temporal
Several scientific applications are iterative in nature and

perform similar computation and exhibit repetitive commu-
nication pattern across iterations [6, 5, 18, 19, 4]. Fig-
ure 2(a) shows temporal communication behavior of appli-
cations in this category. The majority of research on energy-
efficient runtime/applications has focused on this category,
e.g. [11, 14].

2.2 Iterative/Non-Temporal
Many scientific applications exhibit a non-temporal com-

munication pattern across iterations [20, 12, 8]. Figure 2(b)
shows an example, where different processes observe differ-
ent values of slack across iterations. Algebraic Multi-Grid
(AMG) [20] is an example of an iterative/non-temporal ap-
plication. AMG exhibits load-imbalance at each iteration
due to the V-cycle. The degree of load-imbalance across
consecutive iterations is dependent upon the workload —
making AMG an iterative/non-temporal application.

2.3 Non-Iterative
Several important applications/application-kernels are non-

iterative in nature. An example is Graph500 [7], which is
used to measure the performance of extreme scale systems
on the breadth-first search/single-source shortest path algo-
rithm.

2.4 System Effects and Lessons Learned
Researchers have demonstrated the impact of system is-

sues (such as OS noise, network contention/congestion, job
interference, and presence of heterogeneous architectures on
application performance) that can shift a workload into a
more irregular category.

Energy Aware MPI (EAM) — the energy efficient run-
time proposed in this paper intends to address a variety of
application patterns and system effects. EAM requires no
application specific knowledge for exploiting slack available
during MPI calls. It does not rely on historical information
of slack, generated either offline/online. Instead, EAM uses
extensive communication models for common MPI primi-
tives (point-to-point, blocking/non-blocking, collective, and
progress) and their protocols/algorithms to predict the min-
imum communication time. In addition, it leverages on devi-
ations (caused by application skew, network and OS factors)
from the predicted communication time to use appropriate
power levers in a timely manner. The following section de-
scribes a solution space for designing EAM.

3. SOLUTION SPACE

3.1 Preliminaries and Definitions
Table 1 shows the symbols which are used for communi-

cation modeling of EAM runtime. Let P represent the set of

Definition Symbol
1 Process Set P
2 Power/Energy Lever Set L
3 Network Latency l
4 Message Size m
5 Network Bandwidth 1

G
6 Overhead term in LogGP o
7 Copy overhead for m cm
8 Registration overhead for m rm
9 Slack s
10 Expected Communication Time w
11 Overhead of Li γi
12 Power improvement of Li ψi

13 Time Threshold for using Li δi
14 Degradation permitted ρi

Table 1: Symbols used for communication and energy mod-
eling of proposed MPI runtime

MPI processes, where pi ∈ P, 0 ≤ i < |P|. Let L represent a
set of power/energy levers such that each Li ∈ L is a triple
{δi, γi, ψi} | 0 ≤ i < |L|, where δi is the time threshold after
at which power lever i is used; γi is the overhead of using
the lever and ψi is the power improvement. The levers are
sorted in non-decreasing value of δ.

We define slack (s) to be the actual time spent by an
MPI process in a single MPI call such as send, receive, wait
or collective communication operation. A repeated execu-
tion of the same MPI primitive can potentially generate
a different value of slack. We use LogGP model [13] to
predict the expected communication time (w) of an MPI
primitive. LogGP model makes the following assumptions:
1) tightly connected sender/receiver and 2) silent/dedicated
network. When either of these conditions are invalid, slack
deviates (and increases) from expected communication time.
Since expected communication time as per LogGP is a lower
bound on slack (due to constants based on hardware limits),
in each case: w ≤ s.

Each power lever incurs a time overhead, γi, when used.
Examples of power levers are DVFS and core-idling. Hence,
a power lever should be used only when the γi can be amor-
tized over slack. We use a user-acceptable overhead (ρi) to
calculate the time threshold (δi) at which a lever may be
used. Essentially, δi = γi

ρi
. As an example, for core-idling

with γ = 5μs, if ρ = 0.05 then δ = 100μs. When s ≥ δi,
then each Lj | j ≤ i can be used for saving power.

Since the expected communication time is calculated an-
alytically and slack is measured empirically (when an MPI
call returns), in EAM, a lever is applied after its threshold
(δi) has been crossed (Figure 3:left). For several MPI primi-
tives, expected communication time itself may be larger than
(δi) of a power lever, in which case the lever(s) are applied
at the start of the MPI call (Figure 3:right).

3.2 Baseline Setup
A performance-only optimization — de facto in most MPI

libraries — represents an optimistic execution. Essentially
∀Li ∈ L, δi ← ∞. The primary assumption in optimistic
execution is that MPI calls do not present enough oppor-
tunity for applying a power/energy lever. When slack is
large, optimistic execution can waste energy. Alternatively,
an energy-only optimization implies that power levers can

We define slack to be the actual time spent by an MPI
process in a single MPI call. . .

Idea

I User specifies accepted overhead ρ

I Set of power levers: L = (δ, γ, ψ)

I Overhead of a lever: γ

I Time threshold for a lever: δ = γ
ρ

I Power improvement: ψ

Lever types

1. Polling (ψ = 0, δ = 0)

2. Blocking

3. DVFS (not evaluated)

Table of Contents

Introduction

Spin-off

Details

Evaluation

Conclusion

LogP

How to model communication

L an upper bound on the latency between messages

o the overhead, CPU time required to process a
message of each message

g is a gap, interval between messages

P number of processors

LogP broadcast

0

22181410

2420

P0

P5 P3 P2 P1

P7 P6

P0

P1

P2

P3

P5

P6
P7

Time0 5 10 15 20

g g g

g

L

L
L

L

L

L

P4
L

o o o o
o

o

o

o
o o

o

o

o
o

24

P4

Figure 3: Optimal broadcast tree for
� � 8 � � � 6 � � � 4 � � � 2 (left) and the activity of each processor

over time (right). The number shown for each node is the time at which it has received the datum and can
begin sending it on. The last value is received at time 24.

schedule for the summation problem. The pattern of communication among the processors again forms a
tree; in fact, the tree has the same shape as an optimal broadcast tree[20]. Each processor has the task of
summing a set of the elements and then (except for the root processor) transmitting the result to its parent.
The elements to be summed by a processor consist of original inputs stored in its memory, together with
partial results received from its children in the communication tree. To specify the algorithm, we first
determine the optimal schedule of communication events and then determine the distribution of the initial
inputs.

If � � � 2 � , the optimal solution is to sum � 1 values on a single processor, since there is not sufficient
time to receive data from another processor. Otherwise, the last step performed by the root processor (at time
 � 1) is to add a value it has computed locally to a value it just received from another processor. The remote
processor must have sent the value at time � 1

� � �
2 � , and we assume recursively that it forms the root of

an optimal summation tree with this time bound. The local value must have been produced at time � 1
� � .

Since the root can receive a message every � cycles, its children in the communication tree should complete
their summations at times ��� 2 � � � �

1 � � ��� 2 � � � �
1
� ��� � ��� 2 � � � �

1
�

2 ��� � � ��� . The root
performs � � � � 1 additions of local input values between messages, as well as the local additions before it
receives its first message. This communication schedule must be modified by the following consideration:
since a processor invests � cycles in receiving a partial sum from a child, all transmitted partial sums must
represent at least � additions. Based on this schedule, it is straight-forward to determine the set of input
values initially assigned to each processor and the computation schedule. Notice that the inputs are not
equally distributed over processors. (The algorithm is easily extended to handle the limitationof � processors
by pruning the communication tree.)

The computation schedule for our summation algorithm can also be represented as a tree with a
node for each computation step. Figure 4 shows the communication schedule for the processors and the
computational schedule for a processor and two of its children. Each node is labeled with the time at which
the step completes, the wavy edges represent partial results transmitted between processors, and the square
boxes represent original inputs. The initial work for each processor is represented by a linear chain of
input-summing nodes. Unless the processor is a leaf of the communication tree, it then repeatedly receives
a value, adds it to its partial sum and performs a chain of � � � � 1 input-summing nodes. Observe that
local computations overlap the delivery of incoming messages and the processor reception overhead begins
as soon as the message arrives.

7

LogGP

Messages can be big or small

g is a gap between small messages

G the Gap per byte for long messages,

A lot of them. . .

I LogGOP

I LogGPS

I MLogP

I others

Table of Contents

Introduction

Spin-off

Details

Evaluation

Conclusion

Challange

Decide to use a method before the slack is known

Be communication aware

Message size

I Eager

I Randezvous

Synchonization

I Blocking

I Non-blocking

Participants

I Point-to-point

I Collective

Lever example

Return
From
MPI Call

Start of
MPI Call

Υ0

δ0

Υ1

δ1
δδ0 δ10

w

s

δ

Current
value of
Slack

rent Current
value of
Slack

t

Υ0 Υ1

Final
value of
Slack

l

Return
From
MPI Call

Start of
MPI Call

Υ1

MPI CCw

s

Υ1

Final
value of
Slack

l

Υ1ΥΥΥ0

(a) (b)

Figure 3: An example of using two power levers in EAM. Left:
expected communication time is much lesser than slack, levers are
applied as their thresholds are crossed. Right: Expected commu-
nication time exceeds the thresholds for each lever. The power
levers are applied at the start of the MPI call, maximizing the
energy efficiency

be applied at the start of each MPI call. This approach is
referred as pessimistic execution. Specifically, for pessimistic
execution, ∀Li ∈ L, δi ← 0. This approach has the potential
to reduce energy consumption, especially when s ≥ δ|L|−1 ,
in which case all power levers can be applied. In many other
cases, when slack is small, pessimistic execution can severely
degrade performance and increase energy consumption.

The objective of proposed Energy Aware MPI (EAM) run-
time is to find an optimal point, where appropriate power
levers can be applied without degrading performance. EAM
achieves this objective by using a combination of in-depth
analytical modeling of communication primitives and em-
pirically observed slack to apply power levers during appro-
priate points in an MPI call. The next section is concerned
with taking common point-to-point communication primi-
tives and their protocols to achieve this objective.

4. POINT-TO-POINT PRIMITIVES
Point-to-point communication primitives (send and receive)

can be classified as blocking/non-blocking. A return from
a blocking point-to-point communication primitive implies
that the buffer may be re-used. MPI semantics do not pro-
vide any other guarantees for blocking call. Non-blocking
communication primitives only provide a request object in
return, and buffer cannot be re-used unless progress made
on the request handle indicates otherwise.

An in-depth look into MPI primitives and protocols is nec-
essary to calculate the expected communication time. MPI
runtime typically use eager protocol for small messages and
rendezvous protocols for large messages [2, 3]. The section
below describes the calculation of expected communication
time for send and receive with the eager and rendezvous
communication protocols. Using the estimated communi-
cation time, each section also discusses the selection of ap-
propriate power levers and their effects on performance and
energy savings.

4.1 Send - Eager
Using LogGP model, the expected communication time

(w) for small messages is (l + o + m · G) ≈ l, since m is
small. Recall that, MPI completion semantics only guaran-
tee that a buffer may be re-used at the return of a block-
ing MPI send call. Several MPI runtimes, including EAM,
indicate early send completion by simply copying the user-
buffer to an intermediate communication buffer, resulting in
an expected time w = cm + o (cm is the time to perform an

intra-process memory copy). Typically, cm+o � l. In prac-
tice, γ > l. As an example, γ for core-idling (also referred
to as interrupt-driven execution for the rest of the paper) is
5μs, while latency is ≈ 1μs for several modern interconnects.
As a result, in the general case the Send - Eager becomes a
likely false positive for applying a power lever (Figure 5a).

However, early send completion is not always possible,
specifically when a spare intermediate communication buffer
is not available. In this case, EAM uses alternative proto-
cols. In one case, EAM registers the user-buffer and initiates
the communication resulting in an expected communication
time of rm + l ≈ rm, since rm � l. In practice [21], rm � γ
for a power lever such as interrupt-driven execution. This
case becomes a true positive when ∃Li ∈ L | δi ≤ rm.

4.2 Receive - Eager
As presented in Send - Eager design above, point-to-point

communication using eager protocol does not synchronize
the sender and receiver. A send may arrive before a match-
ing receive is posted — an unexpected message – in which
case, EAM enqueues the message in an unexpected queue.
When matching send is absent in the unexpected queue, a
blocking receive waits for a matching send to arrive. The ex-
pected time in receive processing is dependent upon whether
the peer send is in the unexpected queue.

To calculate expected communication time in EAM, the
unexpected queue is searched for a possible matching send.
If a matching send is present in the unexpected queue, the
payload can be directly copied to user-buffer (w = cm). As-
suming a small queue search time, this is a false positive
case, since the copy cost of an eager message is small.

However, when a matching send is not present in the unex-
pected queue, it is intricate to calculate the expected arrival
time. MPI semantics allow an application to post larger re-
ceive buffer than matching send [2, 3]. A communication
model, which uses the size of posted receive would overesti-
mate the communication time — a potential for false pos-
itives. EAM addresses this limitation by using empirically
observed slack in this case, and applying the power levers as
their corresponding threshold (δ) is crossed. A detailed state
transition is presented in Figure 5b. Note that the reception
of an eager-send message at the receiver is effectively a FIN
message (Section 4.3.1). This approach minimizes pertur-
bation of application’s execution time, albeit at loss of some
energy savings.

4.3 Send - Rendezvous
Rendezvous communication protocol is used for large mes-

sages. It implicitly synchronizes the sender and receiver. To
accelerate large message communication, modern intercon-
nects use Remote Direct Memory Access (RDMA), which
allows a process to read/write memory of another process
without its involvement. RDMA may be initiated from
sender-to-receiver (write) or receiver-to-sender (read) result-
ing in RDMA-Write and RDMA-Read based rendezvous pro-
tocols, respectively.

4.3.1 RDMA-Write Based Rendezvous Protocol
RDMA-Write based rendezvous protocol (shown in Fig-

ure 4(a)) uses a combination of control messages and a pay-
load message to complete the data transfer. The expected
communication time is:

Expected comunication time

RTS

CTS

Data

FIN

CTS

l

l +m.G

l

l

MPI_Send

MPI_Recv

Sender Receiver

skew

Sender Latency: 4.l + m.G + skew
Receiver Latency: 4.l + m.G

RTS

CT
S
Data

FIN

CT

l +m.G

l

l

MPI_Send

MPI_Recv

Sender Receiver

_Reecv

skew

Sender Latency: 3.l + m.G
Receiver Latency: 3.l + m.G + skew

S
Data
S S
C

m.G

l
FIN

l
FIN

RTS

FIN

(a) (b)

RDMA-Write Rendezvous Protocol RDMA-Read Rendezvous Protocol

Figure 4: RDMA-Write and RDMA-Read based rendezvous pro-
tocols. Figure (a) shows delayed receiver, and Figure (b) shows
delayed sender. The delay is referred as skew.

l + o+mRTS ·G| {z }
RTS

+ l + o+mCTS ·G| {z }
CTS

+ l + o+m ·G| {z }
payload

+

l + o+mFIN ·G| {z }
FIN

. Since control messages are small, w =

(4·l+m·G) (o � l). However, this time is a lower bound for
several reasons: The expected time derived above assumes
that the sender and receiver are well synchronized, which
may not be the case depending upon the application charac-
teristics. In addition, EAM uses a lazy de-registration tech-
nique which stores buffer information and its registration
data structure in a small cache. When cache miss occurs, the
buffer needs to be registered on-the-fly, resulting in expected
communication time w = 4 · l +m ·G + rm|{z}

sender

+ rm|{z}
receiver

.

As presented earlier, this becomes a likely case for applying
power lever.

Once sender and receiver have arrived in the protocol, the
expected communication time is Ω(2 · l + m · G) for both
sender and receiver. Hence, all Li ∈ L | δi ≤ 2 · l + m · G
can be used as the appropriate lever for energy efficiency.
Since control messages (RTS, CTS and FIN) are small, the
sender uses the Send-Eager design for sending RTS and FIN
messages and Receive-Eager design for receiving CTS mes-
sage. Figure 5a shows the state transitions for a sender in
RDMA-Write based protocol.

4.3.2 RDMA-Read Based Rendezvous Protocol
Figure 4(b) shows the processing steps in RDMA-Read

Based Rendezvous Protocol. When sender and receiver are
well synchronized, expected communication time is 3·l+m·G
(Without loss of generality, G for RDMA-Read and RDMA-
Write is considered equal). In EAM, the sender uses Send-
Eager design for sending RTS and Receive-Eager design for
receiving the FIN message. Hence, when the sender is de-
layed, Receive-Eager used for FIN message automatically
selects the power levers for energy efficiency. State transi-
tions for a sender in RDMA-Read based protocol is shown
in Figure 5c.

4.4 Receive - Rendezvous

4.4.1 RDMA-Write Based Rendezvous Protocol
A receiver in this protocol receives RTS and FIN control

messages (Fig 4(a)). For receiving the RTS message, EAM

uses the Receive-Eager design. Similarly, Send-Eager design
is used for sending the CTS message.

Once RTS is received, expected communication time for
FIN message can be calculated w = l|{z}

CTS

+ l +m ·G| {z }
payload

+ l|{z}
FIN

.

When the sender uses blocking communication, w ≈ s. How-
ever, slack can deviate significantly, if sender uses non-blocking
communication, in which case it would be able to send the
payload and FIN message, when it makes the MPI progress
call. The precise state transitions are presented in Figure 5b.

4.4.2 RDMA-Read Based Rendezvous Protocol
In this protocol, the receiver expects an RTS message,

which is handled by Receive-Eager design in EAM. The re-
ceiver sends the FIN message, which is handled using the
Send-Eager design. Once RTS is received, the receiver can
make independent progress on reading the payload from
sender’s memory by using RDMA. The expected commu-
nication time can be calculated as: w = l +m ·G| {z }

payload

+ l|{z}
FIN

. Hence Li ∈ L | δi ≥ 2 · l +m ·G, Li can be used as

the power lever for saving energy.

4.5 Non-Blocking Messages
MPI applications use non-blocking messages to facilitate

overlap of communication with computation — by just ini-
tiating the request, but not necessarily completing it. Non-
blocking calls return a request handle to the user. EAM op-
timizes non-blocking messages by performing minimal proto-
col processing — deferring the protocol processing to progress
primitives. For eager protocol, EAM uses aggressive tech-
niques such as simply copying (w = cm) or enqueuing the
message in a queue. Non-blocking messages which use ren-
dezvous protocol in EAM, only initiate a control message.
The receiver (upon calling non-blocking recv— irecv) searches
the unexpected queue and only initiates either the CTS (for
RDMA-Write) or the data read (for RDMA-Read). In all
cases, the expectation is that the time spent in protocol pro-
cessing does not warrant using a power lever. Hence, non-
blocking messages are considered a false positive for power
efficiency.

4.6 Progress Primitives
MPI provides several progress primitives, which can be

classified in blocking (such as Wait, Waitall, Probe, etc) and
non-blocking (such as Iprobe, Test, Testall, etc) categories.
Non-blocking progress primitives typically look at the inter-
nal data structures corresponding to request handle, and re-
turn appropriate status — a false positive for using a power
lever.

Blocking progress primitives require that at least one re-
quest handle must complete before the control returns to
the caller (For Waitall, all request handles must complete).
EAM maintains a queue of request handles — composed
of non-blocking send and receive calls — which have not
completed yet. To conserve power during progress primi-
tives, EAM uses a timer based approach. At the start of
an MPI progress primitive, EAM starts a timer and makes
progress on the request handle(s). If a request completes, the
timer is reset. Otherwise, as the time spent in the primitive
increases — without a successful completion — additional
power levers are used as their corresponding thresholds are

RTS

CTS

Data

FIN

CTS

l

l +m.G

l

l

MPI_Send

MPI_Recv

Sender Receiver

skew

Sender Latency: 4.l + m.G + skew
Receiver Latency: 4.l + m.G

RTS

CT
S
Data

FIN

CT

l +m.G

l

l

MPI_Send

MPI_Recv

Sender Receiver

_Reecv

skew

Sender Latency: 3.l + m.G
Receiver Latency: 3.l + m.G + skew

S
Data
S S
C

m.G

l
FIN

l
FIN

RTS

FIN

(a) (b)

RDMA-Write Rendezvous Protocol RDMA-Read Rendezvous Protocol

Figure 4: RDMA-Write and RDMA-Read based rendezvous pro-
tocols. Figure (a) shows delayed receiver, and Figure (b) shows
delayed sender. The delay is referred as skew.

l + o+mRTS ·G| {z }
RTS

+ l + o+mCTS ·G| {z }
CTS

+ l + o+m ·G| {z }
payload

+

l + o+mFIN ·G| {z }
FIN

. Since control messages are small, w =

(4·l+m·G) (o � l). However, this time is a lower bound for
several reasons: The expected time derived above assumes
that the sender and receiver are well synchronized, which
may not be the case depending upon the application charac-
teristics. In addition, EAM uses a lazy de-registration tech-
nique which stores buffer information and its registration
data structure in a small cache. When cache miss occurs, the
buffer needs to be registered on-the-fly, resulting in expected
communication time w = 4 · l +m ·G + rm|{z}

sender

+ rm|{z}
receiver

.

As presented earlier, this becomes a likely case for applying
power lever.
Once sender and receiver have arrived in the protocol, the

expected communication time is Ω(2 · l + m · G) for both
sender and receiver. Hence, all Li ∈ L | δi ≤ 2 · l + m · G
can be used as the appropriate lever for energy efficiency.
Since control messages (RTS, CTS and FIN) are small, the
sender uses the Send-Eager design for sending RTS and FIN
messages and Receive-Eager design for receiving CTS mes-
sage. Figure 5a shows the state transitions for a sender in
RDMA-Write based protocol.

4.3.2 RDMA-Read Based Rendezvous Protocol
Figure 4(b) shows the processing steps in RDMA-Read

Based Rendezvous Protocol. When sender and receiver are
well synchronized, expected communication time is 3·l+m·G
(Without loss of generality, G for RDMA-Read and RDMA-
Write is considered equal). In EAM, the sender uses Send-
Eager design for sending RTS and Receive-Eager design for
receiving the FIN message. Hence, when the sender is de-
layed, Receive-Eager used for FIN message automatically
selects the power levers for energy efficiency. State transi-
tions for a sender in RDMA-Read based protocol is shown
in Figure 5c.

4.4 Receive - Rendezvous

4.4.1 RDMA-Write Based Rendezvous Protocol
A receiver in this protocol receives RTS and FIN control

messages (Fig 4(a)). For receiving the RTS message, EAM

uses the Receive-Eager design. Similarly, Send-Eager design
is used for sending the CTS message.
Once RTS is received, expected communication time for

FIN message can be calculated w = l|{z}
CTS

+ l +m ·G| {z }
payload

+ l|{z}
FIN

.

When the sender uses blocking communication, w ≈ s. How-
ever, slack can deviate significantly, if sender uses non-blocking
communication, in which case it would be able to send the
payload and FIN message, when it makes the MPI progress
call. The precise state transitions are presented in Figure 5b.

4.4.2 RDMA-Read Based Rendezvous Protocol
In this protocol, the receiver expects an RTS message,

which is handled by Receive-Eager design in EAM. The re-
ceiver sends the FIN message, which is handled using the
Send-Eager design. Once RTS is received, the receiver can
make independent progress on reading the payload from
sender’s memory by using RDMA. The expected commu-
nication time can be calculated as: w = l +m ·G| {z }

payload

+ l|{z}
FIN

. Hence Li ∈ L | δi ≥ 2 · l +m ·G, Li can be used as

the power lever for saving energy.

4.5 Non-Blocking Messages
MPI applications use non-blocking messages to facilitate

overlap of communication with computation — by just ini-
tiating the request, but not necessarily completing it. Non-
blocking calls return a request handle to the user. EAM op-
timizes non-blocking messages by performing minimal proto-
col processing — deferring the protocol processing to progress
primitives. For eager protocol, EAM uses aggressive tech-
niques such as simply copying (w = cm) or enqueuing the
message in a queue. Non-blocking messages which use ren-
dezvous protocol in EAM, only initiate a control message.
The receiver (upon calling non-blocking recv— irecv) searches
the unexpected queue and only initiates either the CTS (for
RDMA-Write) or the data read (for RDMA-Read). In all
cases, the expectation is that the time spent in protocol pro-
cessing does not warrant using a power lever. Hence, non-
blocking messages are considered a false positive for power
efficiency.

4.6 Progress Primitives
MPI provides several progress primitives, which can be

classified in blocking (such as Wait, Waitall, Probe, etc) and
non-blocking (such as Iprobe, Test, Testall, etc) categories.
Non-blocking progress primitives typically look at the inter-
nal data structures corresponding to request handle, and re-
turn appropriate status — a false positive for using a power
lever.
Blocking progress primitives require that at least one re-

quest handle must complete before the control returns to
the caller (For Waitall, all request handles must complete).
EAM maintains a queue of request handles — composed
of non-blocking send and receive calls — which have not
completed yet. To conserve power during progress primi-
tives, EAM uses a timer based approach. At the start of
an MPI progress primitive, EAM starts a timer and makes
progress on the request handle(s). If a request completes, the
timer is reset. Otherwise, as the time spent in the primitive
increases — without a successful completion — additional
power levers are used as their corresponding thresholds are

State transitions

(a) RDMA-Write: Sender’s Eager and Ren-
dezvous transition rules

(b) RDMA-Write: Receiver’s Eager and Ren-
dezvous transition rules

(c) RDMA-Read: Sender’s Eager and Ren-
dezvous transition rules

Figure 5: At each state transition slack (s) and expected communication time (w) are used as input to select one or more
power levers (L). Receiver’s transition rules for RDMA-Read protocol are not shown for brevity.

No. Application Objective Major MPI calls Class Benefits(%) Loss(%)
1 miniFE Unstructured Allreduce Iterative/Temporal 25% 1%
2 miniMD Molecular dynamics Create cart, Barrier Iterative/Temporal 26% 2%
3 miniGhost FDM/FVM Waitany, Allreduce Iterative/Temporal 23% 0%
4 CloverLeaf Euler equations on grids Allreduce Iterative/Temporal 12% 3%
5 CoMD Molecular Dynamics SendRecv, Barrier Iterative/Temporal* 4% 4%
6 Hoomd-Blue Many-particle dynamics Allreduce, Bcast Iterative/Temporal 5% 0%
7 AMG Parallel AMG Allreduce, Allgather Iterative/Non-Temporal 10% 1.15%
8 Sweep3D Parallel Neutron Transport Recv Iterative/Non-Temporal 12% 1%
9 LULESH hydrodynamic equations Allreduce Iterative/Non-Temporal 18% 0.5%
10 Graph500 Breadth-first search Alltoall Non-Iterative 41% 4%

Table 2: Summary of energy efficiency results with EAM runtime. Performance degradation and energy improvements are
calculated using optimistic execution as baseline. * - Application classified as Iterative/ Temporal, but manifests itself as
Iterative/Non-temporal during empirical evaluation

Interface (ADI), channel and device layers of MVAPICH2.
In addition, several changes are required at deepest layers
of MVAPICH2 runtime — specific to the device — for state
transitions in rendezvous protocols. Similarly, the proposed
design for collective algorithms are implemented inside the
collectives layer of MVAPICH2, such that the existing per-
formance optimizations are used automatically. Hence, us-
ing PMPI alone is insufficient in implementing EAM. While
this implementation choice reduces portability, the lessons
learned in implementing EAM can be directly used for other
MPI implementations, especially where ADI layer is used.

7.2 Power Levers
An important consideration for EAM is the power levers.

For completeness, we consider polling to be the baseline
power lever (δpolling = 0, ψpolling = 0). In this lever, EAM
runtime polls on completion queue(s), where send and re-
ceive completions are placed. MVAPICH2-2.0 provides this
power lever by default, also referred to as optimistic execu-
tion in Section 8.

Another possible power lever available on InfiniBand and
other high speed networks is interrupt-driven execution. This
lever achieves core-idling by relinquishing the CPU and block-
ing on a network event. When a send/receive completion
occurs, the process is re-scheduled for computation. This
power lever is effective, if the overhead can be amortized
over slack. Specifically, for the testbed (TACC Stampede)

used in this paper, we observed that γ is ≈ 5μs resulting in δ
to be 100μs (with an acceptable degradation of 5%). We also
observed that interrupt-driven execution reduces the power
consumption (ψ) by a maximum of 66% in comparison to
the polling mode.

Another power lever which can be used is DVFS. In prac-
tice, this lever requires super-user access, which makes it
difficult (if not impossible) to be deployed/used on produc-
tion systems, such as the one used in this paper. While
several home grown clusters have reported success on small-
medium scale with DVFS, the super-user restriction makes
it difficult to use DVFS on every cluster, unlike interrupt-
driven execution which is available on all InfiniBand clusters.
We considered several large scale production systems such
as TACC Stampede, and PNNL Cascade. However, none of
them provided DVFS support. Due to the unavailability on
production system(s), we used interrupt-driven execution as
the primary power lever. Nevertheless, if DVFS becomes
available in user-space with reasonable overhead, it can be
used with minimal changes in the EAM design.

7.3 Power Measurement
The aggregate power consumption of EAM, optimistic and

pessimistic execution is measured using Intel Running Av-
erage Power Library (RAPL) interface [22]. RAPL provides
fine grained measurement of the CPU socket and memory
power consumption. We build a thin measurement layer to

Table of Contents

Introduction

Spin-off

Details

Evaluation

Conclusion

Types of setup

1. Pessimistic

2. Optimistic

3. EAM

Small

0

0.2

0.4

0.6

0.8

1

1.2

1.4

comd
minighost

cloverleaf

minife
amg-27pt

amg-pde

amg-7pt

graph500

hoomd
lj-minimd

c omd

eam-minimd

lj-minimd

eam-minimd
c omd

E
ne

rg
y

Pessimistic
EAM

0

0.5

1

1.5

2

comd
minighost

cloverleaf

minife
amg-27pt

amg-pde

amg-7pt

graph500

hoomd
lj-minimd

c omd

eam-minimd

lj-minimd

eam-minimd
c omd

S
pe

ed
up

Pessimistic
EAM

(a) 512 Processes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

comd
sweep

minighost

cloverleaf

minife
amg-27pt

amg-pde

amg-7pt

graph500

lj-minimd

lj-minimd
c omd

eam-minimd

eam-minimd
c omd

E
ne

rg
y

Pessimistic
EAM

0

0.5

1

1.5

2

comd
sweep

minighost

cloverleaf

minife
amg-27pt

amg-pde

amg-7pt

graph500

lj-minimd

lj-minimd
c omd

eam-minimd

eam-minimd
c omd

S
pe

ed
up

Pessimistic
EAM

(b) 1,024 Processes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

comd
sweep

minighost

cloverleaf

minife
amg-27pt

amg-pde

amg-7pt

graph500

lj-minimd
c omd

lj-minimd

eam-minimd

eam-minimd
c omd

E
ne

rg
y

Pessimistic
EAM

0

0.5

1

1.5

2

comd
sweep

minighost

cloverleaf

minife
amg-27pt

amg-pde

amg-7pt

graph500

lj-minimd
c omd

lj-minimd

eam-minimd

eam-minimd
c omd

S
pe

ed
up

Pessimistic
EAM

(c) 2,048 Processes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

lulesh
minighost

sweep3D
E
ne

rg
y

Pessimistic
EAM

0

0.5

1

1.5

2

lulesh
minighost

sweep3d

S
pe

ed
up

Pessimistic
EAM

(d) 4,096 Processes

Figure 6: Speedup and Energy Consumption of Pessimistic and EAM relative to Optimistic (Default) approach for different
job sizes

EAM shows a maximum of 6% savings with 1,024 processes
as shown in Figure 6b.
miniFE: We used a problem size of 1024x1024x1024 with

‘-load imbalance 20’ option. This allows us to study the
skew effect in the application using 20% load imbalance,
while testing the efficacy of EAM. MPI takes up 16% (of
56s), 15.6% (of 28s) and 18% (of 14s) of the total execu-
tion time for 512, 1,024 and 2,048 processes, respectively.
Figure 7 shows the variation of Allreduce time spent by pro-
cesses for different job sizes. As evident from Figure 7a, a
larger fraction of processes spend more time in MPI than
other fraction — primarily due to load imbalance. This pro-
vides a greater energy saving opportunity in comparison to
Figure 7b and 7c where this fraction is considerably smaller.
For this reason, EAM provides diminishing energy savings
of 24%, 7% and 6% for the different jobs with nearly zero
performance degradation (Figures 6a, 6b and 6c).
miniGhost: Experiments are run with global grid size of

size of 1024X1024X1024 with MPI time as 11% (of 31s), 16%
(of 17s), 29% (of 10s) and 33%(of 5.3s) of execution time of
512, 1,024, 2,048 and 4,096 processes, respectively. The ap-
plication is dominated by large message Isends (5.5MB -
1.4MB) with 8-byte Allreduces (19% for 4k-job) and Wait-
Alls (11% for 4k-job) consuming the most time. Despite
good load balance (maximum MPI-time = 36.28%, mini-
mum = 31.64%, average = 33.63%), the exclusive large mes-
sages exchange provides an opportunity for 5%, 7%, 11%,
21% savings with EAM for different job sizes as shown in
Figures 6a, 6b, 6c and 6d respectively.

8.3 Iterative/Non-Temporal Applications
Sweep3D: It is a neutron-transport application, which ex-

hibits a wavefront communication pattern. Most MPI send
and receive use eager protocol. As a result, pessimistic ex-
ecution shows a major performance degradation by using
power/energy lever on each MPI call. EAM eliminates the
false positives, and triggers the use of power/energy lever
only when the delay in receiving the message on the wave-
front exceeds lever threshold. The overall energy savings
using 4,096 processes are 12% with a negligible performance
loss - a clear case which demonstrates the need for EAM.
LULESH: This solves the sedov equation by using a 3-

dimensional block decomposition of the data. The solution
begins by initiating a force on the origin, and the impact
on material is studied using time-steps. Processes which
are further away from origin, receive the impact of blast
much later in comparison to other processes. This hypothe-
sis is validated by the fact that during synchronization (using
Allreduce) processes spend 4% (minimum), 50% (maximum)
and 6% (average) time — a significant variance. Allreduce
takes ≈ 27% of execution time and EAM can achieve 20%
energy efficiency (recall interrupt-driven execution provides
66% power savings). Pessimistic performs similarly, since
the time spent is Allreduce is significant, the overhead of
pessimistic execution is not observed on relative speedup.
AMG: This application uses repeated coarsening and smoothen-

ing steps (V-cycle) during the iterative procedure. While
iterative, the steps result in non-temporal communication
pattern across processes. AMG is executed in strong scaling

Medium

0

0.2

0.4

0.6

0.8

1

1.2

1.4

comd
minighost

cloverleaf

minife
amg-27pt

amg-pde

amg-7pt

graph500

hoomd
lj-minimd

c omd

eam-minimd

lj-minimd

eam-minimd
c omd

E
ne

rg
y

Pessimistic
EAM

0

0.5

1

1.5

2

comd
minighost

cloverleaf

minife
amg-27pt

amg-pde

amg-7pt

graph500

hoomd
lj-minimd

c omd

eam-minimd

lj-minimd

eam-minimd
c omd

S
pe

ed
up

Pessimistic
EAM

(a) 512 Processes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

comd
sweep

minighost

cloverleaf

minife
amg-27pt

amg-pde

amg-7pt

graph500

lj-minimd

lj-minimd
c omd

eam-minimd

eam-minimd
c omd

E
ne

rg
y

Pessimistic
EAM

0

0.5

1

1.5

2

comd
sweep

minighost

cloverleaf

minife
amg-27pt

amg-pde

amg-7pt

graph500

lj-minimd

lj-minimd
c omd

eam-minimd

eam-minimd
c omd

S
pe

ed
up

Pessimistic
EAM

(b) 1,024 Processes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

comd
sweep

minighost

cloverleaf

minife
amg-27pt

amg-pde

amg-7pt

graph500

lj-minimd
c omd

lj-minimd

eam-minimd

eam-minimd
c omd

E
ne

rg
y

Pessimistic
EAM

0

0.5

1

1.5

2

comd
sweep

minighost

cloverleaf

minife
amg-27pt

amg-pde

amg-7pt

graph500

lj-minimd
c omd

lj-minimd

eam-minimd

eam-minimd
c omd

S
pe

ed
up

Pessimistic
EAM

(c) 2,048 Processes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

lulesh
minighost

sweep3D

E
ne

rg
y

Pessimistic
EAM

0

0.5

1

1.5

2

lulesh
minighost

sweep3d

S
pe

ed
up

Pessimistic
EAM

(d) 4,096 Processes

Figure 6: Speedup and Energy Consumption of Pessimistic and EAM relative to Optimistic (Default) approach for different
job sizes

EAM shows a maximum of 6% savings with 1,024 processes
as shown in Figure 6b.
miniFE: We used a problem size of 1024x1024x1024 with

‘-load imbalance 20’ option. This allows us to study the
skew effect in the application using 20% load imbalance,
while testing the efficacy of EAM. MPI takes up 16% (of
56s), 15.6% (of 28s) and 18% (of 14s) of the total execu-
tion time for 512, 1,024 and 2,048 processes, respectively.
Figure 7 shows the variation of Allreduce time spent by pro-
cesses for different job sizes. As evident from Figure 7a, a
larger fraction of processes spend more time in MPI than
other fraction — primarily due to load imbalance. This pro-
vides a greater energy saving opportunity in comparison to
Figure 7b and 7c where this fraction is considerably smaller.
For this reason, EAM provides diminishing energy savings
of 24%, 7% and 6% for the different jobs with nearly zero
performance degradation (Figures 6a, 6b and 6c).
miniGhost: Experiments are run with global grid size of

size of 1024X1024X1024 with MPI time as 11% (of 31s), 16%
(of 17s), 29% (of 10s) and 33%(of 5.3s) of execution time of
512, 1,024, 2,048 and 4,096 processes, respectively. The ap-
plication is dominated by large message Isends (5.5MB -
1.4MB) with 8-byte Allreduces (19% for 4k-job) and Wait-
Alls (11% for 4k-job) consuming the most time. Despite
good load balance (maximum MPI-time = 36.28%, mini-
mum = 31.64%, average = 33.63%), the exclusive large mes-
sages exchange provides an opportunity for 5%, 7%, 11%,
21% savings with EAM for different job sizes as shown in
Figures 6a, 6b, 6c and 6d respectively.

8.3 Iterative/Non-Temporal Applications
Sweep3D: It is a neutron-transport application, which ex-

hibits a wavefront communication pattern. Most MPI send
and receive use eager protocol. As a result, pessimistic ex-
ecution shows a major performance degradation by using
power/energy lever on each MPI call. EAM eliminates the
false positives, and triggers the use of power/energy lever
only when the delay in receiving the message on the wave-
front exceeds lever threshold. The overall energy savings
using 4,096 processes are 12% with a negligible performance
loss - a clear case which demonstrates the need for EAM.
LULESH: This solves the sedov equation by using a 3-

dimensional block decomposition of the data. The solution
begins by initiating a force on the origin, and the impact
on material is studied using time-steps. Processes which
are further away from origin, receive the impact of blast
much later in comparison to other processes. This hypothe-
sis is validated by the fact that during synchronization (using
Allreduce) processes spend 4% (minimum), 50% (maximum)
and 6% (average) time — a significant variance. Allreduce
takes ≈ 27% of execution time and EAM can achieve 20%
energy efficiency (recall interrupt-driven execution provides
66% power savings). Pessimistic performs similarly, since
the time spent is Allreduce is significant, the overhead of
pessimistic execution is not observed on relative speedup.
AMG: This application uses repeated coarsening and smoothen-

ing steps (V-cycle) during the iterative procedure. While
iterative, the steps result in non-temporal communication
pattern across processes. AMG is executed in strong scaling

Large

0

0.2

0.4

0.6

0.8

1

1.2

1.4

comd
minighost

cloverleaf

minife
amg-27pt

amg-pde

amg-7pt

graph500

hoomd
lj-minimd

c omd

eam-minimd

lj-minimd

eam-minimd
c omd

E
ne

rg
y

Pessimistic
EAM

0

0.5

1

1.5

2

comd
minighost

cloverleaf

minife
amg-27pt

amg-pde

amg-7pt

graph500

hoomd
lj-minimd

c omd

eam-minimd

lj-minimd

eam-minimd
c omd

S
pe

ed
up

Pessimistic
EAM

(a) 512 Processes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

comd
sweep

minighost

cloverleaf

minife
amg-27pt

amg-pde

amg-7pt

graph500

lj-minimd

lj-minimd
c omd

eam-minimd

eam-minimd
c omd

E
ne

rg
y

Pessimistic
EAM

0

0.5

1

1.5

2

comd
sweep

minighost

cloverleaf

minife
amg-27pt

amg-pde

amg-7pt

graph500

lj-minimd

lj-minimd
c omd

eam-minimd

eam-minimd
c omd

S
pe

ed
up

Pessimistic
EAM

(b) 1,024 Processes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

comd
sweep

minighost

cloverleaf

minife
amg-27pt

amg-pde

amg-7pt

graph500

lj-minimd
c omd

lj-minimd

eam-minimd

eam-minimd
c omd

E
ne

rg
y

Pessimistic
EAM

0

0.5

1

1.5

2

comd
sweep

minighost

cloverleaf

minife
amg-27pt

amg-pde

amg-7pt

graph500

lj-minimd
c omd

lj-minimd

eam-minimd

eam-minimd
c omd

S
pe

ed
up

Pessimistic
EAM

(c) 2,048 Processes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

lulesh
minighost

sweep3D

E
ne

rg
y

Pessimistic
EAM

0

0.5

1

1.5

2

lulesh
minighost

sweep3d

S
pe

ed
up

Pessimistic
EAM

(d) 4,096 Processes

Figure 6: Speedup and Energy Consumption of Pessimistic and EAM relative to Optimistic (Default) approach for different
job sizes

EAM shows a maximum of 6% savings with 1,024 processes
as shown in Figure 6b.
miniFE: We used a problem size of 1024x1024x1024 with

‘-load imbalance 20’ option. This allows us to study the
skew effect in the application using 20% load imbalance,
while testing the efficacy of EAM. MPI takes up 16% (of
56s), 15.6% (of 28s) and 18% (of 14s) of the total execu-
tion time for 512, 1,024 and 2,048 processes, respectively.
Figure 7 shows the variation of Allreduce time spent by pro-
cesses for different job sizes. As evident from Figure 7a, a
larger fraction of processes spend more time in MPI than
other fraction — primarily due to load imbalance. This pro-
vides a greater energy saving opportunity in comparison to
Figure 7b and 7c where this fraction is considerably smaller.
For this reason, EAM provides diminishing energy savings
of 24%, 7% and 6% for the different jobs with nearly zero
performance degradation (Figures 6a, 6b and 6c).
miniGhost: Experiments are run with global grid size of

size of 1024X1024X1024 with MPI time as 11% (of 31s), 16%
(of 17s), 29% (of 10s) and 33%(of 5.3s) of execution time of
512, 1,024, 2,048 and 4,096 processes, respectively. The ap-
plication is dominated by large message Isends (5.5MB -
1.4MB) with 8-byte Allreduces (19% for 4k-job) and Wait-
Alls (11% for 4k-job) consuming the most time. Despite
good load balance (maximum MPI-time = 36.28%, mini-
mum = 31.64%, average = 33.63%), the exclusive large mes-
sages exchange provides an opportunity for 5%, 7%, 11%,
21% savings with EAM for different job sizes as shown in
Figures 6a, 6b, 6c and 6d respectively.

8.3 Iterative/Non-Temporal Applications
Sweep3D: It is a neutron-transport application, which ex-

hibits a wavefront communication pattern. Most MPI send
and receive use eager protocol. As a result, pessimistic ex-
ecution shows a major performance degradation by using
power/energy lever on each MPI call. EAM eliminates the
false positives, and triggers the use of power/energy lever
only when the delay in receiving the message on the wave-
front exceeds lever threshold. The overall energy savings
using 4,096 processes are 12% with a negligible performance
loss - a clear case which demonstrates the need for EAM.
LULESH: This solves the sedov equation by using a 3-

dimensional block decomposition of the data. The solution
begins by initiating a force on the origin, and the impact
on material is studied using time-steps. Processes which
are further away from origin, receive the impact of blast
much later in comparison to other processes. This hypothe-
sis is validated by the fact that during synchronization (using
Allreduce) processes spend 4% (minimum), 50% (maximum)
and 6% (average) time — a significant variance. Allreduce
takes ≈ 27% of execution time and EAM can achieve 20%
energy efficiency (recall interrupt-driven execution provides
66% power savings). Pessimistic performs similarly, since
the time spent is Allreduce is significant, the overhead of
pessimistic execution is not observed on relative speedup.
AMG: This application uses repeated coarsening and smoothen-

ing steps (V-cycle) during the iterative procedure. While
iterative, the steps result in non-temporal communication
pattern across processes. AMG is executed in strong scaling

Extra Large

0

0.2

0.4

0.6

0.8

1

1.2

1.4

comd
minighost

cloverleaf

minife
amg-27pt

amg-pde

amg-7pt

graph500

hoomd
lj-minimd

c omd

eam-minimd

lj-minimd

eam-minimd
c omd

E
ne

rg
y

Pessimistic
EAM

0

0.5

1

1.5

2

comd
minighost

cloverleaf

minife
amg-27pt

amg-pde

amg-7pt

graph500

hoomd
lj-minimd

c omd

eam-minimd

lj-minimd

eam-minimd
c omd

S
pe

ed
up

Pessimistic
EAM

(a) 512 Processes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

comd
sweep

minighost

cloverleaf

minife
amg-27pt

amg-pde

amg-7pt

graph500

lj-minimd

lj-minimd
c omd

eam-minimd

eam-minimd
c omd

E
ne

rg
y

Pessimistic
EAM

0

0.5

1

1.5

2

comd
sweep

minighost

cloverleaf

minife
amg-27pt

amg-pde

amg-7pt

graph500

lj-minimd

lj-minimd
c omd

eam-minimd

eam-minimd
c omd

S
pe

ed
up

Pessimistic
EAM

(b) 1,024 Processes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

comd
sweep

minighost

cloverleaf

minife
amg-27pt

amg-pde

amg-7pt

graph500

lj-minimd
c omd

lj-minimd

eam-minimd

eam-minimd
c omd

E
ne

rg
y

Pessimistic
EAM

0

0.5

1

1.5

2

comd
sweep

minighost

cloverleaf

minife
amg-27pt

amg-pde

amg-7pt

graph500

lj-minimd
c omd

lj-minimd

eam-minimd

eam-minimd
c omd

S
pe

ed
up

Pessimistic
EAM

(c) 2,048 Processes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

lulesh
minighost

sweep3D

E
ne

rg
y

Pessimistic
EAM

0

0.5

1

1.5

2

lulesh
minighost

sweep3d

S
pe

ed
up

Pessimistic
EAM

(d) 4,096 Processes

Figure 6: Speedup and Energy Consumption of Pessimistic and EAM relative to Optimistic (Default) approach for different
job sizes

EAM shows a maximum of 6% savings with 1,024 processes
as shown in Figure 6b.
miniFE: We used a problem size of 1024x1024x1024 with

‘-load imbalance 20’ option. This allows us to study the
skew effect in the application using 20% load imbalance,
while testing the efficacy of EAM. MPI takes up 16% (of
56s), 15.6% (of 28s) and 18% (of 14s) of the total execu-
tion time for 512, 1,024 and 2,048 processes, respectively.
Figure 7 shows the variation of Allreduce time spent by pro-
cesses for different job sizes. As evident from Figure 7a, a
larger fraction of processes spend more time in MPI than
other fraction — primarily due to load imbalance. This pro-
vides a greater energy saving opportunity in comparison to
Figure 7b and 7c where this fraction is considerably smaller.
For this reason, EAM provides diminishing energy savings
of 24%, 7% and 6% for the different jobs with nearly zero
performance degradation (Figures 6a, 6b and 6c).
miniGhost: Experiments are run with global grid size of

size of 1024X1024X1024 with MPI time as 11% (of 31s), 16%
(of 17s), 29% (of 10s) and 33%(of 5.3s) of execution time of
512, 1,024, 2,048 and 4,096 processes, respectively. The ap-
plication is dominated by large message Isends (5.5MB -
1.4MB) with 8-byte Allreduces (19% for 4k-job) and Wait-
Alls (11% for 4k-job) consuming the most time. Despite
good load balance (maximum MPI-time = 36.28%, mini-
mum = 31.64%, average = 33.63%), the exclusive large mes-
sages exchange provides an opportunity for 5%, 7%, 11%,
21% savings with EAM for different job sizes as shown in
Figures 6a, 6b, 6c and 6d respectively.

8.3 Iterative/Non-Temporal Applications
Sweep3D: It is a neutron-transport application, which ex-

hibits a wavefront communication pattern. Most MPI send
and receive use eager protocol. As a result, pessimistic ex-
ecution shows a major performance degradation by using
power/energy lever on each MPI call. EAM eliminates the
false positives, and triggers the use of power/energy lever
only when the delay in receiving the message on the wave-
front exceeds lever threshold. The overall energy savings
using 4,096 processes are 12% with a negligible performance
loss - a clear case which demonstrates the need for EAM.
LULESH: This solves the sedov equation by using a 3-

dimensional block decomposition of the data. The solution
begins by initiating a force on the origin, and the impact
on material is studied using time-steps. Processes which
are further away from origin, receive the impact of blast
much later in comparison to other processes. This hypothe-
sis is validated by the fact that during synchronization (using
Allreduce) processes spend 4% (minimum), 50% (maximum)
and 6% (average) time — a significant variance. Allreduce
takes ≈ 27% of execution time and EAM can achieve 20%
energy efficiency (recall interrupt-driven execution provides
66% power savings). Pessimistic performs similarly, since
the time spent is Allreduce is significant, the overhead of
pessimistic execution is not observed on relative speedup.
AMG: This application uses repeated coarsening and smoothen-

ing steps (V-cycle) during the iterative procedure. While
iterative, the steps result in non-temporal communication
pattern across processes. AMG is executed in strong scaling

von Parteimueller would fit here

0

1000

2000

3000

4000

5000

6000

-100 0 100 200 300 400 500 600

Ti
m

e
sp

en
t i

n
al

lre
du

ce
 (

m
s)

MPI Rank

MPI usage histogram with 512 MPI process (miniFE)

(a) 512 Processes

0

500

1000

1500

2000

2500

3000

-200 0 200 400 600 800 1000 1200

Ti
m

e
sp

en
t i

n
al

lre
du

ce
 (

m
s)

MPI Rank

MPI usage histogram with 1024 MPI process (miniFE)

(b) 1,024 Processes

0

200

400

600

800

1000

1200

1400

-500 0 500 1000 1500 2000 2500

Ti
m

e
sp

en
t i

n
al

lre
du

ce
 (

m
s)

MPI Rank

MPI usage histogram with 2048 MPI process (miniFE)

(c) 2,048 Processes

Figure 7: miniFE Allreduce duration

mode (total grid size = 256M elements). MPI takes up a
maximum 45% (most in Waitall and Allreduce) for the de-
fault 7-point stencil with good scaling for 512 (13s), 1,024
(7s) and 2,048 (3.5s) processes. Due to the V-cycle, there
significant load-imbalance is observed at scale, which allows
for savings of up 25% (at 2% degradation) even when there
are mostly short message (less than 4KB) transfers.

8.4 Non-Iterative Applications
Graph500: This benchmark uses an MPI implementation

of the parallel Breadth-First-Search algorithm. The prop-
erty of the algorithm results in dearth of available paral-
lelism across processes. A majority of processes spend time
waiting for work with dominant primitives as Alltoall and
Alltoallv. Roughly 75% of the time is spent in MPI, since
less than 10% of the processes have useful work. The large
value slack in the collective operation implies that EAM
and Pessimistic are both capable for providing energy ef-
ficiency with insignificant performance loss, as indicated in
the charts. EAM reduces the energy consumption by 50%
(extracting maximum power savings possible with interrupt-
driven execution) with 4% performance loss.

9. RELATED WORK
Several methods to conserve energy in scientific appli-

cations have been proposed in the literature. In addition
to [11], [23] and [24], Kappiah et al. use micro-operations-
per-memory-load (UPM) to assign suitable frequencies for
energy conservation [14]. This technique requires the use
of code instrumentation, which can be difficult to repeat
for large codes. Lim et al. proposed application-transparent
methods of identifying regions and assigning appropriate fre-
quencies within MPI programs to conserve energy [16]. The
work requires empirical calculation of ‘closeness’ and ‘long
enough’ parameters in addition to formulating a function
that maps micro-ops-retired to suitable p-state(s). For many
applications, this empirical calculation is difficult. Kappiah
et al. target MPI processes that are not in the critical path
for frequency scaling in order to arrive at an MPI call ‘just
in time’ and hence conserve energy in programs that suf-
fer from load imbalance [11]. Rong et. al proposed meth-
ods of utilizing temporal patterns at the coarse granulity
of application while looking at the workload characteristics
using counters to conserve energy using CPUMISER [15].
This work also proposed use of API to demarcate regions
of code with power throttling instructions. Green Queue —
a framework for implementing application aware DVFS —
which also leverages on workload imbalance among tasks to

reduce the power consumption of MPI ranks with lighter
workloads as well as reducing power consumption of spe-
cific phases within a single MPI process [25]. Hoefler et al.
have recently proposed implementing energy efficient collec-
tives by examining the different memory, runtime and energy
tradeoffs [26]. Kandalla et. al [23] and Sundriyal et. al [24]
have both proposed ad hoc methods of conserving energy
in specific regions within Alltoall collective by identifying
idle phases. Similarly, Vishnu et al. have proposed auto-
matically saving energy for bulk one-sided communication
subsystems [27, 28], however, the benefits are demonstrated
only for bulk communication transfer.

10. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed an MPI runtime — En-

ergy Aware MPI (EAM) — which provides energy efficiency
without perturbing application’s execution time. EAM is
motivated by two notable trends in extreme scale systems:
1) Large number of workloads with vastly distinct commu-
nication characteristics (iterative/temporal, iterative/non-
temporal, non-iterative) 2) System effects such as OS noise,
and congestion/contention, due to which an application be-
havior becomes unpredictable.
EAM addresses these challenges by using a combination

of communication models and empirical observations: 1) It
uses application-oblivious communication modeling of MPI
point-to-point (blocking/non-blocking), their protocols (ea-
ger/rendezvous), progress primitives and collective commu-
nication primitives to predict the expected communication
time. When it is long enough, appropriate power lever(s) are
used at the start of an MPI call, maximizing possible energy
efficiency. 2) When communication model under-predicts
the actual time (slack) in the MPI calls (dilated due to al-
gorithmic/system issues) additional power levers are auto-
matically applied to save energy as slack increases. EAM is
implemented using MVAPICH2, a high performance MPI on
InfiniBand. We have evaluated EAM using ten MPI appli-
cations, dominated by different MPI primitives (such Recv,
Allreduce, Waitany, Alltoall). The performance evaluation
using up to 4,096 processes shows 5–41% improvement in en-
ergy efficiency with minimal (less than 5% in all cases) per-
formance degradation. Our immediate future goals include
studying applications that use MPI-3.0 RMA semantics and
deriving energy saving rules for one-sided primitives under
different circumstances.

11. REFERENCES

but they didn’t know about it

0

1000

2000

3000

4000

5000

6000

-100 0 100 200 300 400 500 600

Ti
m

e
sp

en
t i

n
al

lre
du

ce
 (

m
s)

MPI Rank

MPI usage histogram with 512 MPI process (miniFE)

(a) 512 Processes

0

500

1000

1500

2000

2500

3000

-200 0 200 400 600 800 1000 1200

Ti
m

e
sp

en
t i

n
al

lre
du

ce
 (

m
s)

MPI Rank

MPI usage histogram with 1024 MPI process (miniFE)

(b) 1,024 Processes

0

200

400

600

800

1000

1200

1400

-500 0 500 1000 1500 2000 2500

Ti
m

e
sp

en
t i

n
al

lre
du

ce
 (

m
s)

MPI Rank

MPI usage histogram with 2048 MPI process (miniFE)

(c) 2,048 Processes

Figure 7: miniFE Allreduce duration

mode (total grid size = 256M elements). MPI takes up a
maximum 45% (most in Waitall and Allreduce) for the de-
fault 7-point stencil with good scaling for 512 (13s), 1,024
(7s) and 2,048 (3.5s) processes. Due to the V-cycle, there
significant load-imbalance is observed at scale, which allows
for savings of up 25% (at 2% degradation) even when there
are mostly short message (less than 4KB) transfers.

8.4 Non-Iterative Applications
Graph500: This benchmark uses an MPI implementation

of the parallel Breadth-First-Search algorithm. The prop-
erty of the algorithm results in dearth of available paral-
lelism across processes. A majority of processes spend time
waiting for work with dominant primitives as Alltoall and
Alltoallv. Roughly 75% of the time is spent in MPI, since
less than 10% of the processes have useful work. The large
value slack in the collective operation implies that EAM
and Pessimistic are both capable for providing energy ef-
ficiency with insignificant performance loss, as indicated in
the charts. EAM reduces the energy consumption by 50%
(extracting maximum power savings possible with interrupt-
driven execution) with 4% performance loss.

9. RELATED WORK
Several methods to conserve energy in scientific appli-

cations have been proposed in the literature. In addition
to [11], [23] and [24], Kappiah et al. use micro-operations-
per-memory-load (UPM) to assign suitable frequencies for
energy conservation [14]. This technique requires the use
of code instrumentation, which can be difficult to repeat
for large codes. Lim et al. proposed application-transparent
methods of identifying regions and assigning appropriate fre-
quencies within MPI programs to conserve energy [16]. The
work requires empirical calculation of ‘closeness’ and ‘long
enough’ parameters in addition to formulating a function
that maps micro-ops-retired to suitable p-state(s). For many
applications, this empirical calculation is difficult. Kappiah
et al. target MPI processes that are not in the critical path
for frequency scaling in order to arrive at an MPI call ‘just
in time’ and hence conserve energy in programs that suf-
fer from load imbalance [11]. Rong et. al proposed meth-
ods of utilizing temporal patterns at the coarse granulity
of application while looking at the workload characteristics
using counters to conserve energy using CPUMISER [15].
This work also proposed use of API to demarcate regions
of code with power throttling instructions. Green Queue —
a framework for implementing application aware DVFS —
which also leverages on workload imbalance among tasks to

reduce the power consumption of MPI ranks with lighter
workloads as well as reducing power consumption of spe-
cific phases within a single MPI process [25]. Hoefler et al.
have recently proposed implementing energy efficient collec-
tives by examining the different memory, runtime and energy
tradeoffs [26]. Kandalla et. al [23] and Sundriyal et. al [24]
have both proposed ad hoc methods of conserving energy
in specific regions within Alltoall collective by identifying
idle phases. Similarly, Vishnu et al. have proposed auto-
matically saving energy for bulk one-sided communication
subsystems [27, 28], however, the benefits are demonstrated
only for bulk communication transfer.

10. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed an MPI runtime — En-

ergy Aware MPI (EAM) — which provides energy efficiency
without perturbing application’s execution time. EAM is
motivated by two notable trends in extreme scale systems:
1) Large number of workloads with vastly distinct commu-
nication characteristics (iterative/temporal, iterative/non-
temporal, non-iterative) 2) System effects such as OS noise,
and congestion/contention, due to which an application be-
havior becomes unpredictable.
EAM addresses these challenges by using a combination

of communication models and empirical observations: 1) It
uses application-oblivious communication modeling of MPI
point-to-point (blocking/non-blocking), their protocols (ea-
ger/rendezvous), progress primitives and collective commu-
nication primitives to predict the expected communication
time. When it is long enough, appropriate power lever(s) are
used at the start of an MPI call, maximizing possible energy
efficiency. 2) When communication model under-predicts
the actual time (slack) in the MPI calls (dilated due to al-
gorithmic/system issues) additional power levers are auto-
matically applied to save energy as slack increases. EAM is
implemented using MVAPICH2, a high performance MPI on
InfiniBand. We have evaluated EAM using ten MPI appli-
cations, dominated by different MPI primitives (such Recv,
Allreduce, Waitany, Alltoall). The performance evaluation
using up to 4,096 processes shows 5–41% improvement in en-
ergy efficiency with minimal (less than 5% in all cases) per-
formance degradation. Our immediate future goals include
studying applications that use MPI-3.0 RMA semantics and
deriving energy saving rules for one-sided primitives under
different circumstances.

11. REFERENCES

although even boxplot would be nicer

0

1000

2000

3000

4000

5000

6000

-100 0 100 200 300 400 500 600

Ti
m

e
sp

en
t i

n
al

lre
du

ce
 (

m
s)

MPI Rank

MPI usage histogram with 512 MPI process (miniFE)

(a) 512 Processes

0

500

1000

1500

2000

2500

3000

-200 0 200 400 600 800 1000 1200

Ti
m

e
sp

en
t i

n
al

lre
du

ce
 (

m
s)

MPI Rank

MPI usage histogram with 1024 MPI process (miniFE)

(b) 1,024 Processes

0

200

400

600

800

1000

1200

1400

-500 0 500 1000 1500 2000 2500

Ti
m

e
sp

en
t i

n
al

lre
du

ce
 (

m
s)

MPI Rank

MPI usage histogram with 2048 MPI process (miniFE)

(c) 2,048 Processes

Figure 7: miniFE Allreduce duration

mode (total grid size = 256M elements). MPI takes up a
maximum 45% (most in Waitall and Allreduce) for the de-
fault 7-point stencil with good scaling for 512 (13s), 1,024
(7s) and 2,048 (3.5s) processes. Due to the V-cycle, there
significant load-imbalance is observed at scale, which allows
for savings of up 25% (at 2% degradation) even when there
are mostly short message (less than 4KB) transfers.

8.4 Non-Iterative Applications
Graph500: This benchmark uses an MPI implementation

of the parallel Breadth-First-Search algorithm. The prop-
erty of the algorithm results in dearth of available paral-
lelism across processes. A majority of processes spend time
waiting for work with dominant primitives as Alltoall and
Alltoallv. Roughly 75% of the time is spent in MPI, since
less than 10% of the processes have useful work. The large
value slack in the collective operation implies that EAM
and Pessimistic are both capable for providing energy ef-
ficiency with insignificant performance loss, as indicated in
the charts. EAM reduces the energy consumption by 50%
(extracting maximum power savings possible with interrupt-
driven execution) with 4% performance loss.

9. RELATED WORK
Several methods to conserve energy in scientific appli-

cations have been proposed in the literature. In addition
to [11], [23] and [24], Kappiah et al. use micro-operations-
per-memory-load (UPM) to assign suitable frequencies for
energy conservation [14]. This technique requires the use
of code instrumentation, which can be difficult to repeat
for large codes. Lim et al. proposed application-transparent
methods of identifying regions and assigning appropriate fre-
quencies within MPI programs to conserve energy [16]. The
work requires empirical calculation of ‘closeness’ and ‘long
enough’ parameters in addition to formulating a function
that maps micro-ops-retired to suitable p-state(s). For many
applications, this empirical calculation is difficult. Kappiah
et al. target MPI processes that are not in the critical path
for frequency scaling in order to arrive at an MPI call ‘just
in time’ and hence conserve energy in programs that suf-
fer from load imbalance [11]. Rong et. al proposed meth-
ods of utilizing temporal patterns at the coarse granulity
of application while looking at the workload characteristics
using counters to conserve energy using CPUMISER [15].
This work also proposed use of API to demarcate regions
of code with power throttling instructions. Green Queue —
a framework for implementing application aware DVFS —
which also leverages on workload imbalance among tasks to

reduce the power consumption of MPI ranks with lighter
workloads as well as reducing power consumption of spe-
cific phases within a single MPI process [25]. Hoefler et al.
have recently proposed implementing energy efficient collec-
tives by examining the different memory, runtime and energy
tradeoffs [26]. Kandalla et. al [23] and Sundriyal et. al [24]
have both proposed ad hoc methods of conserving energy
in specific regions within Alltoall collective by identifying
idle phases. Similarly, Vishnu et al. have proposed auto-
matically saving energy for bulk one-sided communication
subsystems [27, 28], however, the benefits are demonstrated
only for bulk communication transfer.

10. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed an MPI runtime — En-

ergy Aware MPI (EAM) — which provides energy efficiency
without perturbing application’s execution time. EAM is
motivated by two notable trends in extreme scale systems:
1) Large number of workloads with vastly distinct commu-
nication characteristics (iterative/temporal, iterative/non-
temporal, non-iterative) 2) System effects such as OS noise,
and congestion/contention, due to which an application be-
havior becomes unpredictable.
EAM addresses these challenges by using a combination

of communication models and empirical observations: 1) It
uses application-oblivious communication modeling of MPI
point-to-point (blocking/non-blocking), their protocols (ea-
ger/rendezvous), progress primitives and collective commu-
nication primitives to predict the expected communication
time. When it is long enough, appropriate power lever(s) are
used at the start of an MPI call, maximizing possible energy
efficiency. 2) When communication model under-predicts
the actual time (slack) in the MPI calls (dilated due to al-
gorithmic/system issues) additional power levers are auto-
matically applied to save energy as slack increases. EAM is
implemented using MVAPICH2, a high performance MPI on
InfiniBand. We have evaluated EAM using ten MPI appli-
cations, dominated by different MPI primitives (such Recv,
Allreduce, Waitany, Alltoall). The performance evaluation
using up to 4,096 processes shows 5–41% improvement in en-
ergy efficiency with minimal (less than 5% in all cases) per-
formance degradation. Our immediate future goals include
studying applications that use MPI-3.0 RMA semantics and
deriving energy saving rules for one-sided primitives under
different circumstances.

11. REFERENCES

Table of Contents

Introduction

Spin-off

Details

Evaluation

Conclusion

Conclusion

I Obvious goal

I Simple idea

I Good formalization

I Good results

	Introduction
	Spin-off
	Details
	Evaluation
	Conclusion

