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Reproducibility

I machines are unique

I machines age quick

I relevant configuration is volatile



Interpretability

I Weaker than reproducibility

I Describe an experiment in an understandable way

I Allow to draw own conclusions and generalize results



Frequently wrong answered questions

I How many iterations do I have to run per measurement?

I How many measurements should I run?

I Once I have all data, how do I summarize it into a single
number?

I How do I measure time in a parallel system?



Performance report

High-Performance Linpack (HPL)

run on 64 nodes (N=314k) of the Piz Daint system
during normal operation achieved 77.38 Tflops/s.

Theoretical peak is 94.5 Tflops/s . . . the benchmark
achieves 81.8% of peak performance

Problems

1. What was the influence of OS noise?

2. How typical this run is?

3. How to compare with other systems?
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ABSTRACT
Measuring and reporting performance of parallel computers con-
stitutes the basis for scientific advancement of high-performance
computing (HPC). Most scientific reports show performance im-
provements of new techniques and are thus obliged to ensure repro-
ducibility or at least interpretability. Our investigation of a strati-
fied sample of 120 papers across three top conferences in the field
shows that the state of the practice is lacking. For example, it is of-
ten unclear if reported improvements are deterministic or observed
by chance. In addition to distilling best practices from existing
work, we propose statistically sound analysis and reporting tech-
niques and simple guidelines for experimental design in parallel
computing and codify them in a portable benchmarking library. We
aim to improve the standards of reporting research results and initi-
ate a discussion in the HPC field. A wide adoption of our minimal
set of rules will lead to better interpretability of performance results
and improve the scientific culture in HPC.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity measures, per-
formance measures

Keywords
Benchmarking, parallel computing, statistics, data analysis

1. INTRODUCTION
Correctly designing insightful experiments to measure and report

performance numbers is a challenging task. Yet, there is surpris-
ingly little agreement on standard techniques for measuring, report-
ing, and interpreting computer performance. For example, com-
mon questions such as “How many iterations do I have to run per
measurement?”, “How many measurements should I run?”, “Once
I have all data, how do I summarize it into a single number?”, or
“How do I measure time in a parallel system?” are usually an-
swered based on intuition. While we believe that an expert’s intu-
ition is most often correct, there are cases where it fails and invali-
dates expensive experiments or even misleads us. Bailey [3] illus-
trates this in several common but misleading data reporting patterns
that he and his colleagues have observed in practice.
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Reproducing experiments is one of the main principles of the sci-
entific method. It is well known that the performance of a computer
program depends on the application, the input, the compiler, the
runtime environment, the machine, and the measurement method-
ology [20, 43]. If a single one of these aspects of experimental de-
sign is not appropriately motivated and described, presented results
can hardly be reproduced and may even be misleading or incorrect.

The complexity and uniqueness of many supercomputers makes
reproducibility a hard task. For example, it is practically impossi-
ble to recreate most hero-runs that utilize the world’s largest ma-
chines because these machines are often unique and their software
configurations changes regularly. We introduce the notion of in-
terpretability, which is weaker than reproducibility. We call an ex-
periment interpretable if it provides enough information to allow
scientists to understand the experiment, draw own conclusions, as-
sess their certainty, and possibly generalize results. In other words,
interpretable experiments support sound conclusions and convey
precise information among scientists. Obviously, every scientific
paper should be interpretable; unfortunately, many are not.

For example, reporting that an High-Performance Linpack
(HPL) run on 64 nodes (N=314k) of the Piz Daint system during
normal operation (cf. Section 4.1.2) achieved 77.38 Tflop/s is hard
to interpret. If we add that the theoretical peak is 94.5 Tflop/s, it
becomes clearer, the benchmark achieves 81.8% of peak perfor-
mance. But is this true for every run or a typical run? Figure 1
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Figure 1: Distribution of completion times for 50 HPL runs.

provides a much more interpretable and informative representation
of the collected runtimes of 50 executions. It shows that the varia-
tion is up to 20% and the slowest run was only 61.2 Tflop/s.

Our HPL example demonstrates that one of the most important
aspects of ensuring interpretability is the sound analysis of the mea-
surement data. Furthermore, the hardness of reproducing experi-
ments makes an informative presentation of the collected data es-
sential, especially if the performance results were nondeterminis-
tic. Potential sources of nondeterminism, or noise, can be the sys-
tem (e.g., network background traffic, task scheduling, interrupts,
job placement in the batch system), the application (e.g., load bal-
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The survey

I Pick papers from SC, PPoPP, HPDC

I Evaluate result reports from different aspects

I Categorize aspects as covered, not applicable, missed



Experiment report

Experimental design

1. Hardware

1.1 Processor Model / Accelerator (79/95)
1.2 RAM Size / Type / Bus Infos (26/95)
1.3 NIC Model / Network Infos (60/95)

2. Software

2.1 Compiler Version / Flags (35/95)
2.2 Kernel / Libraries Version (20/95)
2.3 Filesystem / Storage (12/95)

3. Configuration

3.1 Software and Input (48/95)
3.2 Measurement Setup (50/95)
3.3 Code Available Online (7/95)

Data Analysis

1. Results



Experiment report

Experimental design

1. Hardware

2. Software

3. Configuration

Data Analysis

1. Results

1.1 Mean (51/95)
1.2 Best / Worst Performance (13/95)
1.3 Rank Based Statistics (9/95)
1.4 Measure of Variation (17/95)



Outcome

I Benchmarking is important

I Study 120 papers from three conferences (25 were not
applicable)

I Benchmarking usually done wrong

I Advice researchers how to do better job

If supercomputing benchmarking and performance
analysis is to be taken seriously, the community needs to
agree on a common set of standards for measuring,
reporting, and interpreting performance results.
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Use speedup with Care

When publishing parallel speedup, report if the base
case is a single parallel process or best serial execution, as
well as the absolute execution performance of the base
case.



because speedup may be ambigious

I Is it against best possible serial implementation?

I Or is it just parallel implementation on single processor?



because speedup may be misleading

I Higher on slow processors

I Lower on fast processors

Thus,

I Speedup on one computer can’t be compared with speedup on
another computer.

I Better avoid speedup
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Do not cherry-pick

Specify the reason for only reporting subsets of
standard benchmarks or applications or not using all
system resources.

I Use the whole node
to utilize all available resources

I Use the whole benchmark/application
not only kernels
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Summarize cata with Care

Use the arithmetic mean only for summarizing costs.
Use the harmonic mean for summarizing rates.

Avoid summarizing ratios; summarize the costs or
rates that the ratios base on instead. Only if these are not
available use the geometric mean for summarizing ratios.



Mean

1. if all measurements are weighted equally use the arithmetic
mean (absolute values):

x =
1

n

n∑
i=1

xi

2. if the denominator has the primary semantic meaning use
harmonic mean (rates):

x (h) =
n∑n
i=1

1
xi

3. ratios may be summarized by using geometric mean:

x (g) = n

√√√√ n∏
i=1

xi



do not use geometric mean

the geometric mean has no simple interpretation and
should thus be used with greatest care

It can be interpreted as a log-normalized average
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and tell what you use

51 papers use summarizing. . .

four of these specify the
exact averaging method. . . one paper correctly specifies
the use of the harmonic mean. . . Two papers report that
they use geometric mean, both without a good reason.
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Report variability of measurements

Report if the measurement values are deterministic.
For nondeterministic data, report confidence intervals of
the measurement.



Dangerous variations

Measurements may be very unpredictable on HPC systems.

In fact, this problem is so severe that several large
procurements specified upper bounds on performance
variations as part of the vendor’s deliverables.



Report distribution of measurements

Do not assume normality of collected data (e.g.,
based on the number of samples) without diagnostic
checking.



Q-Q plot



Parametric measurements

Parametric Non-parametric

Assumed distribution Normal Any
Assumed variance Homogeneous Any

Usual central measure Mean Any
Data set relationships Independent Any1

Type of data Interval or Ratio Ordinal, Nominal,
Interval, Ratio

Conclusion More powerful Conservative

1Paper says opposite



Compare data with Care

Compare nondeterministic data in a statistically
sound way, e. g., using non-overlapping confidence
intervals or ANOVA.

None of the 95 analyzed papers compared medians in a
statistically sound way.



Mean vs. Median

variance (ANOVA) which generalizes the t-test to k experiments.
Both require iid data from normal distributions with similar stan-
dard deviations. ANOVA can also be used to compare multiple
factors but this is rare in performance measurements: typically, one
compares the effect of an optimization or system on various appli-
cations. The default null hypothesis assumes equality of all means
and must be rejected to show statistical significance.

ANOVA considers k groups of n measurements each and com-
putes the F test statistic as F = egv/igv where egv =

∑n
i=1 n(x̄i −

x̄)2/(k − 1) represents the inter-group variability and igv =∑k
i=1

∑n
j=1(xi j − x̄i)2/(nk − k) represents the intra-group variability.

The value x̄ represents the overall sample mean of the measure-
ments and x̄i the sample mean of the ith group. The computed F
ratio needs to exceed Fcrit(k− 1, nk− k, α) to reject the null hypoth-
esis. None of our investigated papers uses statistical arguments to
compare results.

3.2.2 Comparing the Median
The nonparametric Kruskal-Wallis one-way ANOVA test [35]

can be used to test if the medians of experiments following non-
normal distributions with one varying factor differ significantly.
The null hypothesis is that all medians are the same. If no two
measurements have exactly the same value, we can compute H =

12/(kn(kn+1))
∑k

i=1 nr̄i−3(kn+1) with r̄i =
∑n

i=0 ri j/n and ri j being
the rank of observation j from group i among all observations. For
large n, the significance can be assessed by comparing with a tab-
ulated χ2(k − 1, α) distribution. Kruskal and Wallis provide tables
for n < 5 [35]. None of the 95 analyzed papers compared medi-
ans in a statistically sound way. Figure 3 shows two distributions
with significantly different medians at a 95% confidence level even
though many of the 1M measurements overlap.
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Figure 3: Significance of latency results on two systems.

Effect Size It has been shown that the tests described above can
provide incorrect results for small effects [29,37,55]. Thus, we rec-
ommend using the effect size instead. The effect size expresses the
differences between estimated means in two experiments relative to
the standard deviation of the measurements: E = (X̄i − X̄ j)/

√
igv.

We refer to Coe [13] for a more extensive treatment.
Rule 7: Compare nondeterministic data in a statistically sound
way, e.g., using non-overlapping confidence intervals or ANOVA.

3.2.3 Quantile Regression
Quantile regression [33] is a powerful method for modeling the

effect of varying a factor on arbitrary quantiles (which includes the
median). It is a nonparametric measure that can be used to look
at extrema. For example, for latency-critical applications, the 99th

percentile is often more important than the mean. Oliveira et al.
show that quantile regression can lead to deep insights into mea-
surement data [16]. Quantile regression (QR) allows us to compare
the effect across various ranks and is thus most useful if the effect
appears at a certain percentile. Typically, quantile regression re-
sults are plotted with the quantiles on the x-axis, while the mean
would present a single value with a confidence interval.

Quantile regression can be efficiently computed using linear pro-
gramming [33], which is supported by many statistics tools. Fig-
ure 4 shows how the different quantiles of the latency of the Pilatus
and Piz Dora systems. Piz Dora is used as the base for compari-
son and the “Intercept” shows latency as function of the percentiles
(dots with 95% confidence level) and the mean with a 95% confi-
dence interval (straight and dotted lines). The lower part shows a
similar quantile plot with the difference to the Dora system. The
difference of the means is 0.108µs. The interesting observation in
the QR plot is that low percentiles are significantly slower on Piz
Dora than on Pilatus while high percentiles are faster. So for bad-
case latency-critical applications Pilatus would win even though
median and mean indicate the opposite (statistically significant).
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Figure 4: Quantile regression comparison of the latencies com-
paring Pilatus (base case or intercept) with Piz Dora.

Rule 8: Carefully investigate if measures of central tendency
such as mean or median are useful to report. Some problems,
such as worst-case latency, may require other percentiles.

4. EXPERIMENTAL DESIGN
Good experimental design is imperative for empirical sciences.

Thus, several books describe general techniques to design repro-
ducible (and thus interpretable) experiments. We recommend fac-
torial design to compare the influence of multiple factors, each at
various different levels, on the measured performance. This allows
experimenters to study the effect of each factor as well as interac-
tions between factors. We refer to standard textbooks [6,10,42] for
a description of such basic experimental design techniques.

Here, we describe specifics of benchmarking on parallel systems
that are not covered in the general techniques. Specifically, we dis-
cuss how to ensure interpretability, measure and collect data, con-
trolling the experimental setup, and rules for data analysis. We
focus on measuring intervals (e.g., time, energy, cost, or vari-
ous counts) of applications or microbenchmarks. Other techniques
such as tracing or profiling are outside the scope of this paper.

4.1 Designing Interpretable Measurements
The major goal of experimental design for scientific work is to

ensure reproducibility or at least interpretability. This requires that



Choose percentiles with Care

Carefully investigate if measures of central tendency
such as mean or median are useful to report. Some
problems, such as worst-case latency, may require other
percentiles.



Piz Dora vs Pilatus

variance (ANOVA) which generalizes the t-test to k experiments.
Both require iid data from normal distributions with similar stan-
dard deviations. ANOVA can also be used to compare multiple
factors but this is rare in performance measurements: typically, one
compares the effect of an optimization or system on various appli-
cations. The default null hypothesis assumes equality of all means
and must be rejected to show statistical significance.

ANOVA considers k groups of n measurements each and com-
putes the F test statistic as F = egv/igv where egv =

∑n
i=1 n(x̄i −

x̄)2/(k − 1) represents the inter-group variability and igv =∑k
i=1

∑n
j=1(xi j − x̄i)2/(nk − k) represents the intra-group variability.

The value x̄ represents the overall sample mean of the measure-
ments and x̄i the sample mean of the ith group. The computed F
ratio needs to exceed Fcrit(k− 1, nk− k, α) to reject the null hypoth-
esis. None of our investigated papers uses statistical arguments to
compare results.

3.2.2 Comparing the Median
The nonparametric Kruskal-Wallis one-way ANOVA test [35]

can be used to test if the medians of experiments following non-
normal distributions with one varying factor differ significantly.
The null hypothesis is that all medians are the same. If no two
measurements have exactly the same value, we can compute H =
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i=0 ri j/n and ri j being
the rank of observation j from group i among all observations. For
large n, the significance can be assessed by comparing with a tab-
ulated χ2(k − 1, α) distribution. Kruskal and Wallis provide tables
for n < 5 [35]. None of the 95 analyzed papers compared medi-
ans in a statistically sound way. Figure 3 shows two distributions
with significantly different medians at a 95% confidence level even
though many of the 1M measurements overlap.
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Effect Size It has been shown that the tests described above can
provide incorrect results for small effects [29,37,55]. Thus, we rec-
ommend using the effect size instead. The effect size expresses the
differences between estimated means in two experiments relative to
the standard deviation of the measurements: E = (X̄i − X̄ j)/

√
igv.

We refer to Coe [13] for a more extensive treatment.
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3.2.3 Quantile Regression
Quantile regression [33] is a powerful method for modeling the

effect of varying a factor on arbitrary quantiles (which includes the
median). It is a nonparametric measure that can be used to look
at extrema. For example, for latency-critical applications, the 99th

percentile is often more important than the mean. Oliveira et al.
show that quantile regression can lead to deep insights into mea-
surement data [16]. Quantile regression (QR) allows us to compare
the effect across various ranks and is thus most useful if the effect
appears at a certain percentile. Typically, quantile regression re-
sults are plotted with the quantiles on the x-axis, while the mean
would present a single value with a confidence interval.

Quantile regression can be efficiently computed using linear pro-
gramming [33], which is supported by many statistics tools. Fig-
ure 4 shows how the different quantiles of the latency of the Pilatus
and Piz Dora systems. Piz Dora is used as the base for compari-
son and the “Intercept” shows latency as function of the percentiles
(dots with 95% confidence level) and the mean with a 95% confi-
dence interval (straight and dotted lines). The lower part shows a
similar quantile plot with the difference to the Dora system. The
difference of the means is 0.108µs. The interesting observation in
the QR plot is that low percentiles are significantly slower on Piz
Dora than on Pilatus while high percentiles are faster. So for bad-
case latency-critical applications Pilatus would win even though
median and mean indicate the opposite (statistically significant).
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Figure 4: Quantile regression comparison of the latencies com-
paring Pilatus (base case or intercept) with Piz Dora.

Rule 8: Carefully investigate if measures of central tendency
such as mean or median are useful to report. Some problems,
such as worst-case latency, may require other percentiles.

4. EXPERIMENTAL DESIGN
Good experimental design is imperative for empirical sciences.

Thus, several books describe general techniques to design repro-
ducible (and thus interpretable) experiments. We recommend fac-
torial design to compare the influence of multiple factors, each at
various different levels, on the measured performance. This allows
experimenters to study the effect of each factor as well as interac-
tions between factors. We refer to standard textbooks [6,10,42] for
a description of such basic experimental design techniques.

Here, we describe specifics of benchmarking on parallel systems
that are not covered in the general techniques. Specifically, we dis-
cuss how to ensure interpretability, measure and collect data, con-
trolling the experimental setup, and rules for data analysis. We
focus on measuring intervals (e.g., time, energy, cost, or vari-
ous counts) of applications or microbenchmarks. Other techniques
such as tracing or profiling are outside the scope of this paper.

4.1 Designing Interpretable Measurements
The major goal of experimental design for scientific work is to

ensure reproducibility or at least interpretability. This requires that



Design interpretable measurements

Document all varying factors and their levels as well
as the complete experimental setup (e. g., software,
hardware, techniques) to facilitate reproducibility and
provide interpretability.



Fix environments

1. Fix environment parameters

If controlling a certain parameter is not possible
then we suggest randomization following standard
textbook procedures.

2. Document setup

For parallel time measurements, report all
measurement, (optional) synchronization, and
summarization techniques.



Particular parameters may be very important

all significant setup parameters are carefully selected and clearly
documented. The setup determines the elements that are varying
experimental factors and the fixed environment. The evaluate col-
laboratory [7] collects common patterns of non-reproducibility in
computer science research. We believe that it is impossible to de-
sign a complete set of rules because these will always be limited
to the particular research context; here, we discuss common issues
specific to parallel computing.

4.1.1 Measurement Environment
It is often desired to set up a fixed environment with as little

variation as possible in order to focus on a specific factor. For ex-
ample, when conducting scalability experiments, one would like
to only vary the number of CPUs while keeping other parameters
constant. In general, the experimenter needs to consider parameters
such as the allocation of nodes, process-to-node mappings, network
or on-node interference, and other system effects that can possibly
influence the outcome of the experiment. Fixing each of these pa-
rameters may or may not be possible, depending on the setup of the
experimental system. If controlling a certain parameter is not pos-
sible then we suggest randomization following standard textbook
procedures. For example, Hunold et al. [27] randomly change the
execution order within a call to the job launcher. Such random
experiments require to model the randomized parameter as a non-
deterministic element.

4.1.2 Documenting the Setup
Reproducing experiments in HPC is notoriously hard because

hardware is often specialized and impossible to access for the ma-
jority of scientists. Most fixed parameters, such as software, oper-
ating system versions, and compiler flags, that need to be reported
are obvious. However, others, such as exact specifications of ran-
domized inputs or even sharing complete random datasets may be
forgotten easily. The common lack of system access makes it im-
portant that the hardware is described in a way that allows scientists
to draw conclusions about the setting. For example, details of the
network (topology, latency, and bandwidth), the connection bus of
accelerators (e.g., PCIe), or the main memory bandwidth need to be
specified. This enables simple but insightful back of the envelope
comparisons even if the exact setting cannot be reproduced. Fur-
thermore, batch system allocation policies (e.g., packed or scattered
node layout) can play an important role for performance and need
to be mentioned. These are just some examples and good reporting
needs to be designed on a case-by-case basis.

We observed how several authors assumed that mentioning a
well-known system such as NERSC’s Hopper or ORNL’s Titan is
sufficient to describe the experimental setup. This is bad practice
for several reasons: (1) regular software upgrades on these sys-
tems likely change performance observations, (2) it may be impos-
sible for other scientists to determine the exact system parameters,
and (3) implicit assumptions (e.g., that IBM Blue Gene systems are
noise-free) are not always understood by all readers.

Warmup Some programs (especially communication systems)
establish their working state on demand. Thus, to measure the
expected time, the first measurement iteration should be excluded
from the average computation. It will not affect the median or other
ranks if enough measurements are taken to reach a tight CI.

Warm vs. cold cache It is important to consider the state of the
system when the measurement is performed. One of the most criti-
cal states regarding performance is the cache. If small benchmarks
are performed repeatedly, then their data may be in cache and thus
accelerate computations. This may or may not be representative
for the intended use of the code. Whaley and Castaldo [59] show

the impact of cache on measurements of linear algebra codes and
discuss how to flush caches.

Our experimental setup Each node of Piz Daint (Cray XC30)
has an 8-core Intel Xeon E5-2670 CPU with 32 GiB DDR3-1600
RAM, an NVIDIA Tesla K20X with 6 GiB GDDR5 RAM, and uses
Cray’s Programming Environment version 5.1.29. Each node of Piz
Dora (Cray XC40) has two 12-core Intel Xeon E5-2690 v3 CPUs
with 64 GiB DDR4-1600 RAM and uses Cray’s Programming En-
vironment version 5.2.40. Both systems are interconnected by
Cray’s Aries interconnect in a Dragonfly topology. Pilatus has two
8-core Intel Xeon 5-2670 CPUs with 64 GiB DDR3-1600 RAM
per node, is connected with an InfiniBand FDR fat tree topology,
and runs MVAPICH2 version 1.9. All ping-pong results use two
processes on different compute nodes. For HPL we chose differ-
ent allocations for each experiment; all other experiments were re-
peated in the same allocation. Allocated nodes were chosen by the
batch system (slurm 14.03.7). The filesystem configuration does
not influence our results. All codes are compiled with gcc version
4.8.2 using -O3.

4.2 How to Measure
After deciding on the factor(s) to investigate and fixing the envi-

ronment parameters, researchers need to determine the levels (val-
ues) of each factor. For example, for a scalability study, they need
to choose the numbers of processes to run the experiment with.
This again depends on the desired use of the results. It is well
known that several implementations perform better with 2k, k ∈ N
processes than with 2k + 1 processes, cf. Figure 5. It needs to be
determined if the experiment should only show performance for
powers-of-two process counts or the general case. This also ap-
plies to other special cases for arbitrary application inputs.
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Figure 5: 1,000 MPI_Reduce runs for different process counts.

Weak and Strong Scaling Papers should always indicate if ex-
periments are using strong scaling (constant problem size) or weak
scaling (problem size grows with the number of processes). Fur-
thermore, the function for weak scaling should be specified. Most
commonly, the input size is scaled linearly with the number of
processes. However, for non-work conserving algorithms, linear
scaling can be misleading and more appropriate functions should
be used. Also, when scaling multi-dimensional domains, papers
need to document which dimensions are scaled because, depending
on the domain decomposition, this could cause significant perfor-
mance differences (e.g., if not all dimensions are distributed).

Adaptive Level Refinement Our example demonstrates that the
levels of each factor must be selected carefully. With certain as-
sumptions on the parameters, one could use adaptive refinement to
measure levels where the uncertainty is highest, similar to active
learning [50]. SKaMPI [49] uses this approach assuming parame-
ters are linear.



Use performance modeling

If possible, show upper performance bounds to
facilitate interpretability of the measured results.
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Figure 7: Time and speedup bounds models for parallel scaling and different plot types. Experiments for (a) and (b) were repeated
ten times each and the 95% CI was within 5% of the mean. Plot (c) shows the latency of 106 64B ping-pong experiments on Piz Dora.

general case. Conversely, analytic performance models are most
general but maybe inaccurate because they have to ignore many de-
tails of the system. We suggest to combine simple analytic or semi-
analytic modeling with rigorous measurements in order to put the
results into perspective [24]. For example, a simple but powerful
form of modeling is to consider the achieved performance relative
to an upper bound. Historically, this is done relative to the achiev-
able peak floating point performance [23]. Recently, floating point
performance has become less important and other system parame-
ters, such as memory or network bandwidth limit performance.

In general, we can model any computer system’s capabilities
as a k-dimensional space where each dimensions represents one
particular functionality or feature of the machine. We denote a
specific machine model by Γ = (p1, p2, . . . , pk). Features are
typically expressed as rates and each pi represents the maximum
achievable performance of that feature on the machine. We as-
sume that achieved performance of each feature can be measured,
for example, an application’s floating point rate or memory band-
width. Thus, an application measurement can be represented as
τ = (r1, r2, . . . , rk) and ri ≤ pi. An application’s performance can
now be expressed in terms of the peak rates as a dimensionless
metric P = (r1/p1, r2/p2, . . . , rk/pk).

Such a normalized view has several advantages, for example, it
is easy to determine which (set of) feature(s) is a likely bottleneck.
The application’s requirements vector can be used to determine the
balancedness of a machine for a specific program or a set of pro-
grams. It can even be employed to proof optimality of a given
implementation if (1) r j/p j is close to one and (2) one can show
that the application cannot be solved with less operations of the
jth feature. It is advisable to limit the set of features to the most
significant ones, typical features are memory bandwidth and float-
ing point rates as popularized by the roofline model (k = 2) [60].
Sometimes, analytical upper bounds for Γ are far from reality (the
vendor-specified numbers are only guarantees to not be exceeded).
In these cases, one can parametrize the pi using carefully crafted
and statistically sound microbenchmarks.

For parallel codes, one could model the scalability as a feature,
however, this requires special care. We distinguish three cases of
bounds models with growing complexity:

Ideal linear speedup The simplest upper performance bound
is that p processes cannot speed up calculations more than p times
(ideal scaling). Super-linear scaling which has been observed in
practice is an indication of suboptimal resource use for small p.

Serial overheads (Amdahl’s law) If the fraction of parallelized
code b is known, then one can show a tighter upper bound based on
Amdahl’s law. Here, the speedup is limited to (b + (1 − b)/p)−1.

Parallel overheads Some parallel operations cause overheads
that grow with the number of processes, for example, a reduction

operation cannot execute faster than Ω(log p). If the parallelization
overheads are known, then one can specify a tighter upper bound
which can be combined with Amdahl’s law. Figure 7 shows scal-
ing results from calculating digits of Pi on Piz Daint. The code
is fully parallel until the execution of a single reduction; the base
case takes 20ms of which 0.2ms is caused by a serial initializa-
tion (b=0.01). The three lines show the bounds for ideal speedup,
serial overheads, and parallel overheads. The parallel overheads
assume the following (empirical) piecewise model for the final re-
duction: f (p ≤ 8) = 10ns, f (8 < p ≤ 16) = 0.1ms · log2(p),
f (p > 16) = 0.17ms · log2(p) (the three pieces can be explained by
Piz Daint’s architecture). The parallel overhead bounds model ex-
plains nearly all the scaling observed and provides highest insight.
Rule 11: If possible, show upper performance bounds to facili-
tate interpretability of the measured results.

5.2 Graphing Results
“Use a picture. It’s worth a thousand words.” (1911). Indeed,

there are many guidelines and textbooks for graphing information
exist [18, 56]. Here, we focus on graphing techniques that we find
useful to communicate measurement results in parallel comput-
ing. Producing interpretable and informative graphics is an art that
needs to be adapted to each specific case. For example, the choice
between line-plots, histograms, boxplots, and violin plots depends
on the number of levels and factors to show. Here, we show some
general guidelines for advanced plotting techniques.

Box plots An example box plot is shown in the left side of Fig-
ure 7(c). Box plots [40] offer a rich set of statistical information for
arbitrary distributions: the box indicates the 25% (lower border)
and the 75% (upper border) percentile. The middle bar denotes the
median (50% percentile). The optional whiskers can plot differ-
ent metrics such as min and max observations, various percentiles
(90%, 99%), or the lowest observation in the 1.5 inter-quartile-
range (IQR) (cf. outliers). Thus, the semantics of the whiskers must
be specified. Furthermore, notched boxplots indicate a range of
statistical significance, similar to a confidence interval around the
median (typically 95%). Thus, non-overlapping notches indicate
significant differences.

Histograms and violin plots Histograms show the complete
distribution of data. Similarly, violin plots, as shown in the middle
of Figure 7(c), depict the density distribution for all observations.
They also typically show the median as well as the quartiles, similar
to the boxplot. Violin plots contain thus more information than
box plots but require more horizontal space to enable interpretation.
Box plots and violin plots can also be combined in a single plot as
shown in the right part of Figure 7(c).

Plotting summary statistics Summary statistics such as mean
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Figure 7: Time and speedup bounds models for parallel scaling and different plot types. Experiments for (a) and (b) were repeated
ten times each and the 95% CI was within 5% of the mean. Plot (c) shows the latency of 106 64B ping-pong experiments on Piz Dora.

general case. Conversely, analytic performance models are most
general but maybe inaccurate because they have to ignore many de-
tails of the system. We suggest to combine simple analytic or semi-
analytic modeling with rigorous measurements in order to put the
results into perspective [24]. For example, a simple but powerful
form of modeling is to consider the achieved performance relative
to an upper bound. Historically, this is done relative to the achiev-
able peak floating point performance [23]. Recently, floating point
performance has become less important and other system parame-
ters, such as memory or network bandwidth limit performance.

In general, we can model any computer system’s capabilities
as a k-dimensional space where each dimensions represents one
particular functionality or feature of the machine. We denote a
specific machine model by Γ = (p1, p2, . . . , pk). Features are
typically expressed as rates and each pi represents the maximum
achievable performance of that feature on the machine. We as-
sume that achieved performance of each feature can be measured,
for example, an application’s floating point rate or memory band-
width. Thus, an application measurement can be represented as
τ = (r1, r2, . . . , rk) and ri ≤ pi. An application’s performance can
now be expressed in terms of the peak rates as a dimensionless
metric P = (r1/p1, r2/p2, . . . , rk/pk).

Such a normalized view has several advantages, for example, it
is easy to determine which (set of) feature(s) is a likely bottleneck.
The application’s requirements vector can be used to determine the
balancedness of a machine for a specific program or a set of pro-
grams. It can even be employed to proof optimality of a given
implementation if (1) r j/p j is close to one and (2) one can show
that the application cannot be solved with less operations of the
jth feature. It is advisable to limit the set of features to the most
significant ones, typical features are memory bandwidth and float-
ing point rates as popularized by the roofline model (k = 2) [60].
Sometimes, analytical upper bounds for Γ are far from reality (the
vendor-specified numbers are only guarantees to not be exceeded).
In these cases, one can parametrize the pi using carefully crafted
and statistically sound microbenchmarks.

For parallel codes, one could model the scalability as a feature,
however, this requires special care. We distinguish three cases of
bounds models with growing complexity:

Ideal linear speedup The simplest upper performance bound
is that p processes cannot speed up calculations more than p times
(ideal scaling). Super-linear scaling which has been observed in
practice is an indication of suboptimal resource use for small p.

Serial overheads (Amdahl’s law) If the fraction of parallelized
code b is known, then one can show a tighter upper bound based on
Amdahl’s law. Here, the speedup is limited to (b + (1 − b)/p)−1.

Parallel overheads Some parallel operations cause overheads
that grow with the number of processes, for example, a reduction

operation cannot execute faster than Ω(log p). If the parallelization
overheads are known, then one can specify a tighter upper bound
which can be combined with Amdahl’s law. Figure 7 shows scal-
ing results from calculating digits of Pi on Piz Daint. The code
is fully parallel until the execution of a single reduction; the base
case takes 20ms of which 0.2ms is caused by a serial initializa-
tion (b=0.01). The three lines show the bounds for ideal speedup,
serial overheads, and parallel overheads. The parallel overheads
assume the following (empirical) piecewise model for the final re-
duction: f (p ≤ 8) = 10ns, f (8 < p ≤ 16) = 0.1ms · log2(p),
f (p > 16) = 0.17ms · log2(p) (the three pieces can be explained by
Piz Daint’s architecture). The parallel overhead bounds model ex-
plains nearly all the scaling observed and provides highest insight.
Rule 11: If possible, show upper performance bounds to facili-
tate interpretability of the measured results.

5.2 Graphing Results
“Use a picture. It’s worth a thousand words.” (1911). Indeed,

there are many guidelines and textbooks for graphing information
exist [18, 56]. Here, we focus on graphing techniques that we find
useful to communicate measurement results in parallel comput-
ing. Producing interpretable and informative graphics is an art that
needs to be adapted to each specific case. For example, the choice
between line-plots, histograms, boxplots, and violin plots depends
on the number of levels and factors to show. Here, we show some
general guidelines for advanced plotting techniques.

Box plots An example box plot is shown in the left side of Fig-
ure 7(c). Box plots [40] offer a rich set of statistical information for
arbitrary distributions: the box indicates the 25% (lower border)
and the 75% (upper border) percentile. The middle bar denotes the
median (50% percentile). The optional whiskers can plot differ-
ent metrics such as min and max observations, various percentiles
(90%, 99%), or the lowest observation in the 1.5 inter-quartile-
range (IQR) (cf. outliers). Thus, the semantics of the whiskers must
be specified. Furthermore, notched boxplots indicate a range of
statistical significance, similar to a confidence interval around the
median (typically 95%). Thus, non-overlapping notches indicate
significant differences.

Histograms and violin plots Histograms show the complete
distribution of data. Similarly, violin plots, as shown in the middle
of Figure 7(c), depict the density distribution for all observations.
They also typically show the median as well as the quartiles, similar
to the boxplot. Violin plots contain thus more information than
box plots but require more horizontal space to enable interpretation.
Box plots and violin plots can also be combined in a single plot as
shown in the right part of Figure 7(c).

Plotting summary statistics Summary statistics such as mean

Parallel overheads bound (based on Amdahl’s law)

t =


10ns , if p ≤ 8

0.1ms · log2p , if 8 < p ≤ 16

0.17ms · log2p , if 16 < p



Graph the results

Plot as much information as needed to interpret the
experimental results. Only connect measurements by
lines if they indicate trends and the interpolation is valid.



Use appropriate tool

I Box plots

I Histograms

I Violin plots

I Plot summary
statistics

I Plot CIs

I Combinations of all
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Figure 7: Time and speedup bounds models for parallel scaling and different plot types. Experiments for (a) and (b) were repeated
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general case. Conversely, analytic performance models are most
general but maybe inaccurate because they have to ignore many de-
tails of the system. We suggest to combine simple analytic or semi-
analytic modeling with rigorous measurements in order to put the
results into perspective [24]. For example, a simple but powerful
form of modeling is to consider the achieved performance relative
to an upper bound. Historically, this is done relative to the achiev-
able peak floating point performance [23]. Recently, floating point
performance has become less important and other system parame-
ters, such as memory or network bandwidth limit performance.

In general, we can model any computer system’s capabilities
as a k-dimensional space where each dimensions represents one
particular functionality or feature of the machine. We denote a
specific machine model by Γ = (p1, p2, . . . , pk). Features are
typically expressed as rates and each pi represents the maximum
achievable performance of that feature on the machine. We as-
sume that achieved performance of each feature can be measured,
for example, an application’s floating point rate or memory band-
width. Thus, an application measurement can be represented as
τ = (r1, r2, . . . , rk) and ri ≤ pi. An application’s performance can
now be expressed in terms of the peak rates as a dimensionless
metric P = (r1/p1, r2/p2, . . . , rk/pk).

Such a normalized view has several advantages, for example, it
is easy to determine which (set of) feature(s) is a likely bottleneck.
The application’s requirements vector can be used to determine the
balancedness of a machine for a specific program or a set of pro-
grams. It can even be employed to proof optimality of a given
implementation if (1) r j/p j is close to one and (2) one can show
that the application cannot be solved with less operations of the
jth feature. It is advisable to limit the set of features to the most
significant ones, typical features are memory bandwidth and float-
ing point rates as popularized by the roofline model (k = 2) [60].
Sometimes, analytical upper bounds for Γ are far from reality (the
vendor-specified numbers are only guarantees to not be exceeded).
In these cases, one can parametrize the pi using carefully crafted
and statistically sound microbenchmarks.

For parallel codes, one could model the scalability as a feature,
however, this requires special care. We distinguish three cases of
bounds models with growing complexity:

Ideal linear speedup The simplest upper performance bound
is that p processes cannot speed up calculations more than p times
(ideal scaling). Super-linear scaling which has been observed in
practice is an indication of suboptimal resource use for small p.

Serial overheads (Amdahl’s law) If the fraction of parallelized
code b is known, then one can show a tighter upper bound based on
Amdahl’s law. Here, the speedup is limited to (b + (1 − b)/p)−1.

Parallel overheads Some parallel operations cause overheads
that grow with the number of processes, for example, a reduction

operation cannot execute faster than Ω(log p). If the parallelization
overheads are known, then one can specify a tighter upper bound
which can be combined with Amdahl’s law. Figure 7 shows scal-
ing results from calculating digits of Pi on Piz Daint. The code
is fully parallel until the execution of a single reduction; the base
case takes 20ms of which 0.2ms is caused by a serial initializa-
tion (b=0.01). The three lines show the bounds for ideal speedup,
serial overheads, and parallel overheads. The parallel overheads
assume the following (empirical) piecewise model for the final re-
duction: f (p ≤ 8) = 10ns, f (8 < p ≤ 16) = 0.1ms · log2(p),
f (p > 16) = 0.17ms · log2(p) (the three pieces can be explained by
Piz Daint’s architecture). The parallel overhead bounds model ex-
plains nearly all the scaling observed and provides highest insight.
Rule 11: If possible, show upper performance bounds to facili-
tate interpretability of the measured results.

5.2 Graphing Results
“Use a picture. It’s worth a thousand words.” (1911). Indeed,

there are many guidelines and textbooks for graphing information
exist [18, 56]. Here, we focus on graphing techniques that we find
useful to communicate measurement results in parallel comput-
ing. Producing interpretable and informative graphics is an art that
needs to be adapted to each specific case. For example, the choice
between line-plots, histograms, boxplots, and violin plots depends
on the number of levels and factors to show. Here, we show some
general guidelines for advanced plotting techniques.

Box plots An example box plot is shown in the left side of Fig-
ure 7(c). Box plots [40] offer a rich set of statistical information for
arbitrary distributions: the box indicates the 25% (lower border)
and the 75% (upper border) percentile. The middle bar denotes the
median (50% percentile). The optional whiskers can plot differ-
ent metrics such as min and max observations, various percentiles
(90%, 99%), or the lowest observation in the 1.5 inter-quartile-
range (IQR) (cf. outliers). Thus, the semantics of the whiskers must
be specified. Furthermore, notched boxplots indicate a range of
statistical significance, similar to a confidence interval around the
median (typically 95%). Thus, non-overlapping notches indicate
significant differences.

Histograms and violin plots Histograms show the complete
distribution of data. Similarly, violin plots, as shown in the middle
of Figure 7(c), depict the density distribution for all observations.
They also typically show the median as well as the quartiles, similar
to the boxplot. Violin plots contain thus more information than
box plots but require more horizontal space to enable interpretation.
Box plots and violin plots can also be combined in a single plot as
shown in the right part of Figure 7(c).

Plotting summary statistics Summary statistics such as mean
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