
Cache Contention and Application Performance Prediction
for Multi-Core Systems

Chi Xu∗, Xi Chen, Robert P. Dick, Zhuoqing Morley Mao

∗University of Minnesota, University of Michigan

IEEE International Symposium on Performance Analysis
of Systems & Software (ISPASS), March 2010

1 / 13

Motivation

Multiprocessor architectures (CMP)
with shared last-level caches

+ Inter-process communication
+ Heterogeneous cache

allocation
− Contention

The rest of this paper is organized as follows. Section II
presents related work. Sections III and IV motivate and
describe CAMP. Section V introduces an automated way
to characterize process memory access behavior to permit
later prediction of cache contention. Section VI presents and
discusses the experimental validation process and results.
Finally, Section VII summarizes our work.

II. RELATED WORK

Past work [6], [7], [8], [9] has considered the problem
of adjusting cache partitioning during run time after process
assignment decisions have already been made. In contrast,
the goal of our work is to predict the performance impli-
cations of process assignment decisions before execution.
Other researchers have developed performance prediction
models to guide process assignment. However, most [10],
[11] addressed cache contention only for uniprocessors on
which only a single process may run at a time. The move
to CMPs will aggravate the cache contention problem since
multiple processes can run on different cores simultaneously.

Resource contention models for simultaneous multithread-
ing (SMT) uniprocessors should be applicable to CMP sys-
tems due to the similarity in inter-process resource con-
tention. However, existing work on resource contention mod-
eling for SMT processors either suffers from large perfor-
mance prediction error (20% of the predicted instruction
throughput deviates by more than 20% from the actual
instruction throughput) [12] or requires modifications to the
underlying hardware [13]. To the best of our knowledge,
existing performance models for SMT processors do not
support accurate runtime performance prediction. Although
the similarity of cache effects for CMPs and SMT processors
suggests that the modeling technique described in this paper
might also be accurate for SMT processors, we have not yet
experimentally tested this hypothesis.

Researchers have also considered addressing the perfor-
mance prediction problem using offline simulation [14] or
modifications to the existing hardware or operating sys-
tem [15]. For example, Suh et al. [8] proposed to add
a hardware counter to each cache way and use them to
determine the reuse distance histogram. Our goal in this work
is runtime prediction of the performance of a process con-
currently running on a shared-cache CMP, without requiring
prior characterization.

Tam et al. [16] previously developed a technique to pre-
dict miss rate as a function of cache size by using built-
in hardware performance counters, with a primary goal of
supporting on-line optimization of cache partitioning among
processes. They do not explain how to use miss rate curves
to predict instruction throughputs for processes sharing cache
space. Their approach relies on performance counters peculiar
to the POWER5 architecture.

Chandra et al. [5] proposed three analytical models to
predict miss rates for processes sharing the same cache. Their

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d
 E

x
e

c
u
ti
o
n
 T

im
e

Cache Misses per L2 Access

art
mcf

bzip2
swim

equake
mesa

vpr
ammp
mgrid
applu

Figure 1. Impact of stressmark on performance of processes sharing case
with it.

models use the reuse distances and/or circular sequence pro-
files for each thread to predict inter-thread cache contention.
These models require knowledge of the steady-state L2 cache
access frequency of a process when concurrently running
with other processes. In reality, obtaining this information
without running or simulating all potential combinations of
concurrent cache-sharing processes is impractical.

Chen et al. [4] proposed a two-phase approach for perfor-
mance prediction. In the first phase, the access frequency of a
process running alone is used to estimate performance. In the
second phase, the performance estimates from the first phase
are refined to consider the implications of cache contention.
The models proposed in each paper require processing cir-
cular memory access sequences, which must be obtained by
tracing execution with an instruction-set simulator or non-
standard detailed access tracing hardware.

III. MOTIVATION

Cache sharing among processes running on different cores
of a CMP can hide inter-process communication latency and
improve cache utilization. This improvement is undermined
by cache contention among concurrently running processes.
To illustrate this effect, we wrote a synthetic stressmark that
accesses the last-level cache very frequently. The stressmark
is intentionally designed to exhibit extreme memory access
behavior, for use in characterization. The stressmark is run
concurrently with the process under evaluation, on another
core sharing the same cache. By varying the memory access
behavior of the stressmark, we can change the number of last-
level cache misses per cache access (MPA) for the stressmark,
thereby controlling and measuring the performance impact on
the other concurrently running process.

Figure 1 illustrates the relationship between the execution
time, normalized to that when running the process alone,
and MPA of the stressmark when it is run concurrently with
each of 10 SPEC CPU2000 benchmarks. The relationship
between MPA and execution time depends on the application.
For example, with an MPA value of 0.35, the normalized

77

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 26,2010 at 02:49:23 UTC from IEEE Xplore. Restrictions apply.

⇒ Performance implications of core assignment

2 / 13

Motivation

Multiprocessor architectures (CMP)
with shared last-level caches

+ Inter-process communication
+ Heterogeneous cache

allocation
− Contention

The rest of this paper is organized as follows. Section II
presents related work. Sections III and IV motivate and
describe CAMP. Section V introduces an automated way
to characterize process memory access behavior to permit
later prediction of cache contention. Section VI presents and
discusses the experimental validation process and results.
Finally, Section VII summarizes our work.

II. RELATED WORK

Past work [6], [7], [8], [9] has considered the problem
of adjusting cache partitioning during run time after process
assignment decisions have already been made. In contrast,
the goal of our work is to predict the performance impli-
cations of process assignment decisions before execution.
Other researchers have developed performance prediction
models to guide process assignment. However, most [10],
[11] addressed cache contention only for uniprocessors on
which only a single process may run at a time. The move
to CMPs will aggravate the cache contention problem since
multiple processes can run on different cores simultaneously.

Resource contention models for simultaneous multithread-
ing (SMT) uniprocessors should be applicable to CMP sys-
tems due to the similarity in inter-process resource con-
tention. However, existing work on resource contention mod-
eling for SMT processors either suffers from large perfor-
mance prediction error (20% of the predicted instruction
throughput deviates by more than 20% from the actual
instruction throughput) [12] or requires modifications to the
underlying hardware [13]. To the best of our knowledge,
existing performance models for SMT processors do not
support accurate runtime performance prediction. Although
the similarity of cache effects for CMPs and SMT processors
suggests that the modeling technique described in this paper
might also be accurate for SMT processors, we have not yet
experimentally tested this hypothesis.

Researchers have also considered addressing the perfor-
mance prediction problem using offline simulation [14] or
modifications to the existing hardware or operating sys-
tem [15]. For example, Suh et al. [8] proposed to add
a hardware counter to each cache way and use them to
determine the reuse distance histogram. Our goal in this work
is runtime prediction of the performance of a process con-
currently running on a shared-cache CMP, without requiring
prior characterization.

Tam et al. [16] previously developed a technique to pre-
dict miss rate as a function of cache size by using built-
in hardware performance counters, with a primary goal of
supporting on-line optimization of cache partitioning among
processes. They do not explain how to use miss rate curves
to predict instruction throughputs for processes sharing cache
space. Their approach relies on performance counters peculiar
to the POWER5 architecture.

Chandra et al. [5] proposed three analytical models to
predict miss rates for processes sharing the same cache. Their

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

Cache Misses per L2 Access

art
mcf

bzip2
swim

equake
mesa

vpr
ammp
mgrid
applu

Figure 1. Impact of stressmark on performance of processes sharing case
with it.

models use the reuse distances and/or circular sequence pro-
files for each thread to predict inter-thread cache contention.
These models require knowledge of the steady-state L2 cache
access frequency of a process when concurrently running
with other processes. In reality, obtaining this information
without running or simulating all potential combinations of
concurrent cache-sharing processes is impractical.

Chen et al. [4] proposed a two-phase approach for perfor-
mance prediction. In the first phase, the access frequency of a
process running alone is used to estimate performance. In the
second phase, the performance estimates from the first phase
are refined to consider the implications of cache contention.
The models proposed in each paper require processing cir-
cular memory access sequences, which must be obtained by
tracing execution with an instruction-set simulator or non-
standard detailed access tracing hardware.

III. MOTIVATION

Cache sharing among processes running on different cores
of a CMP can hide inter-process communication latency and
improve cache utilization. This improvement is undermined
by cache contention among concurrently running processes.
To illustrate this effect, we wrote a synthetic stressmark that
accesses the last-level cache very frequently. The stressmark
is intentionally designed to exhibit extreme memory access
behavior, for use in characterization. The stressmark is run
concurrently with the process under evaluation, on another
core sharing the same cache. By varying the memory access
behavior of the stressmark, we can change the number of last-
level cache misses per cache access (MPA) for the stressmark,
thereby controlling and measuring the performance impact on
the other concurrently running process.

Figure 1 illustrates the relationship between the execution
time, normalized to that when running the process alone,
and MPA of the stressmark when it is run concurrently with
each of 10 SPEC CPU2000 benchmarks. The relationship
between MPA and execution time depends on the application.
For example, with an MPA value of 0.35, the normalized

77

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 26,2010 at 02:49:23 UTC from IEEE Xplore. Restrictions apply.

⇒ Performance implications of core assignment

2 / 13

Goal

Model cache contention
Easy and automatic
No modifications to existing hardware or operating system
No exhaustive offline simulation
Complementary to existing work

3 / 13

Analytical Model—System

N-core processor
On-chip last-level L2 Cache

Set-associative (ways = lines per set)
LRU replacement policy
Shared among cores
No Prefetching

Applications in steady state

4 / 13

Analytical Model—Applications I

Effective Cache Size

N∑
i=1

Si = A

N Total number of processes
Si Effective cache size of process i (ways occupied by i)
A Associativity of cache

Reuse Distance

 0

 5

 10

 15

 20

 25

 30

1 2 3 4 5 6 7 8 9 10 11 12 13+

P
ro

b
a

b
ili

ty
 (

%
)

Reuse distance

Figure 2. Cache line reuse distance histogram for mcf application.

execution time of art increased by 120% while that of
mesa only increased by 1.5%. This demonstrates that the
impact of cache contention on performance is application-
dependent. Accurately predicting the performance and power
consumption implications of assigning a particular set of
processes to a CMP therefore requires a model that captures
the variation in cache access and contention behavior among
processes.

IV. ANALYTICAL MODEL

This section describes the main components in CAMP,
namely its performance model, effective cache size estimation
technique, and steady-state condition estimator.

IV.A. Background
In this section, we define some basic terms that will be

used throughout this paper. Our study will consider a N -
core processor with an L2 last-level on-chip cache. In the
rest of paper, we refer to “L2 cache” as “cache”. An set-
associate cache is broken into sets, each of which has space
for multiple lines, i.e., the minimal unit of data fetched by
or evicted from a cache. The number of lines per set is the
caches associativity, i.e., its number of ways. A line at a
particular location in memory is associated with a set, and
may be fetched into any line in the set.

Effective Cache Size: When multiple processes share
a cache, they compete for limited space. The division of
cache space among processes is influenced by characteristics
of the concurrently running processes such as cache access
frequency and sequential data access patterns. We define
effective cache size of process i to be the average number
of ways occupied by the process in a set, denoted as Si.
Therefore,

N∑

i=1

Si = A, (1)

where N is the total number of processes sharing the cache
and A is the number of ways in the cache. Note that Si is
a real value in our model because it represents the average
number of ways process i occupies in a set during prolonged
execution. If the cache access behavior of all processes is
static, then Si will be stable. We define this as the steady-
state condition.

Reuse Distance: We define the reuse distance, Rj , of
cache line j to be the number of distinct cache lines within
the same set accessed between two consecutive accesses to
line j. A reuse distance histogram represents the distribution
of cache line reuse distances for an entire shared cache.
Given an A-way set-associative cache, Figure 2 shows a reuse
distance histogram for the mcf application (see Section VI).
The x-axis shows the reuse distance and the y-axis shows
the normalized frequencies of the associated reuse distances.
The first bar in the histogram, i.e., hist1, gives the probability
that a most-recently-used line will be accessed again, while
the last bar, i.e., hist13+, gives the probability that the data
for the next cache access does not exist in the most-recently-
used 12 lines, which can be denoted as

∑∞
k=13 histk. Hist∞

is the probability that the data in the line is never accessed
again. Note that hist∞ can be very large for some streaming
applications. For process i with an effective cache size of Si,
all accesses to the cache lines with a reuse distance larger
than Si result in cache misses. Hence, the probability of a
cache access resulting in a miss for process i with an effective
cache size of Si, can be expressed as follows.

MPAi(Si) =

∫ ∞

Si

histi(x) dx. (2)

Note that histi(x) is a continuous function derived using
linear interpolation of the discrete histogram to support
estimation for non-integer average reuse distances.

IV.B. Problem Formulation and Assumptions
The cache contention prediction problem can be formu-

lated as follows: given N processes assigned to cores sharing
the same A-way set-associative last-level cache, predict the
steady-state cache size occupied by each process during
concurrent execution. Note that the steady-state cache size
can be directly translated to performance, as illustrated by
Equation 2. Solving this problem is helpful for process
assignment and migration in a CMP environment because
it allows one to predict the consequences of tentative process
assignment and migration decisions. However, accurate pre-
diction of process performance is challenging because there
are many combinations of processes that may share the same
cache.

We make the following assumptions.
1) For each process, we assume that data accesses are

uniformly distributed across all cache sets. The tempo-
ral cache access behaviors such as number of cache
accesses per second (APS) and the reuse distance
histogram (see Section IV-A) are assumed to be station-
ary. In the case of multiple non-repeating phases with
distinct memory access patterns [17], non-repeating
phases should be modeled separately.

2) We assume no hardware prefetching. Hardware
prefetching complicates the model by predictively
fetching cache lines based on access patterns. The
model might therefore be inaccurate for systems using

78

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 26,2010 at 02:49:23 UTC from IEEE Xplore. Restrictions apply.

MPAi(Si) =
∫ ∞
Si

histi(x) dx

MPA Probability of cache miss for
process i

hist Linear interpolation of reuse
distance histgram

5 / 13

Analytical Model—Applications I

Effective Cache Size

N∑
i=1

Si = A

N Total number of processes
Si Effective cache size of process i (ways occupied by i)
A Associativity of cache

Reuse Distance

 0

 5

 10

 15

 20

 25

 30

1 2 3 4 5 6 7 8 9 10 11 12 13+

P
ro

b
a

b
ili

ty
 (

%
)

Reuse distance

Figure 2. Cache line reuse distance histogram for mcf application.

execution time of art increased by 120% while that of
mesa only increased by 1.5%. This demonstrates that the
impact of cache contention on performance is application-
dependent. Accurately predicting the performance and power
consumption implications of assigning a particular set of
processes to a CMP therefore requires a model that captures
the variation in cache access and contention behavior among
processes.

IV. ANALYTICAL MODEL

This section describes the main components in CAMP,
namely its performance model, effective cache size estimation
technique, and steady-state condition estimator.

IV.A. Background
In this section, we define some basic terms that will be

used throughout this paper. Our study will consider a N -
core processor with an L2 last-level on-chip cache. In the
rest of paper, we refer to “L2 cache” as “cache”. An set-
associate cache is broken into sets, each of which has space
for multiple lines, i.e., the minimal unit of data fetched by
or evicted from a cache. The number of lines per set is the
caches associativity, i.e., its number of ways. A line at a
particular location in memory is associated with a set, and
may be fetched into any line in the set.

Effective Cache Size: When multiple processes share
a cache, they compete for limited space. The division of
cache space among processes is influenced by characteristics
of the concurrently running processes such as cache access
frequency and sequential data access patterns. We define
effective cache size of process i to be the average number
of ways occupied by the process in a set, denoted as Si.
Therefore,

N∑

i=1

Si = A, (1)

where N is the total number of processes sharing the cache
and A is the number of ways in the cache. Note that Si is
a real value in our model because it represents the average
number of ways process i occupies in a set during prolonged
execution. If the cache access behavior of all processes is
static, then Si will be stable. We define this as the steady-
state condition.

Reuse Distance: We define the reuse distance, Rj , of
cache line j to be the number of distinct cache lines within
the same set accessed between two consecutive accesses to
line j. A reuse distance histogram represents the distribution
of cache line reuse distances for an entire shared cache.
Given an A-way set-associative cache, Figure 2 shows a reuse
distance histogram for the mcf application (see Section VI).
The x-axis shows the reuse distance and the y-axis shows
the normalized frequencies of the associated reuse distances.
The first bar in the histogram, i.e., hist1, gives the probability
that a most-recently-used line will be accessed again, while
the last bar, i.e., hist13+, gives the probability that the data
for the next cache access does not exist in the most-recently-
used 12 lines, which can be denoted as

∑∞
k=13 histk. Hist∞

is the probability that the data in the line is never accessed
again. Note that hist∞ can be very large for some streaming
applications. For process i with an effective cache size of Si,
all accesses to the cache lines with a reuse distance larger
than Si result in cache misses. Hence, the probability of a
cache access resulting in a miss for process i with an effective
cache size of Si, can be expressed as follows.

MPAi(Si) =

∫ ∞

Si

histi(x) dx. (2)

Note that histi(x) is a continuous function derived using
linear interpolation of the discrete histogram to support
estimation for non-integer average reuse distances.

IV.B. Problem Formulation and Assumptions
The cache contention prediction problem can be formu-

lated as follows: given N processes assigned to cores sharing
the same A-way set-associative last-level cache, predict the
steady-state cache size occupied by each process during
concurrent execution. Note that the steady-state cache size
can be directly translated to performance, as illustrated by
Equation 2. Solving this problem is helpful for process
assignment and migration in a CMP environment because
it allows one to predict the consequences of tentative process
assignment and migration decisions. However, accurate pre-
diction of process performance is challenging because there
are many combinations of processes that may share the same
cache.

We make the following assumptions.
1) For each process, we assume that data accesses are

uniformly distributed across all cache sets. The tempo-
ral cache access behaviors such as number of cache
accesses per second (APS) and the reuse distance
histogram (see Section IV-A) are assumed to be station-
ary. In the case of multiple non-repeating phases with
distinct memory access patterns [17], non-repeating
phases should be modeled separately.

2) We assume no hardware prefetching. Hardware
prefetching complicates the model by predictively
fetching cache lines based on access patterns. The
model might therefore be inaccurate for systems using

78

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 26,2010 at 02:49:23 UTC from IEEE Xplore. Restrictions apply.

MPAi(Si) =
∫ ∞
Si

histi(x) dx

MPA Probability of cache miss for
process i

hist Linear interpolation of reuse
distance histgram

5 / 13

Analytical Model—Applications I

Effective Cache Size

N∑
i=1

Si = A

N Total number of processes
Si Effective cache size of process i (ways occupied by i)
A Associativity of cache

Reuse Distance

 0

 5

 10

 15

 20

 25

 30

1 2 3 4 5 6 7 8 9 10 11 12 13+

P
ro

b
a

b
ili

ty
 (

%
)

Reuse distance

Figure 2. Cache line reuse distance histogram for mcf application.

execution time of art increased by 120% while that of
mesa only increased by 1.5%. This demonstrates that the
impact of cache contention on performance is application-
dependent. Accurately predicting the performance and power
consumption implications of assigning a particular set of
processes to a CMP therefore requires a model that captures
the variation in cache access and contention behavior among
processes.

IV. ANALYTICAL MODEL

This section describes the main components in CAMP,
namely its performance model, effective cache size estimation
technique, and steady-state condition estimator.

IV.A. Background
In this section, we define some basic terms that will be

used throughout this paper. Our study will consider a N -
core processor with an L2 last-level on-chip cache. In the
rest of paper, we refer to “L2 cache” as “cache”. An set-
associate cache is broken into sets, each of which has space
for multiple lines, i.e., the minimal unit of data fetched by
or evicted from a cache. The number of lines per set is the
caches associativity, i.e., its number of ways. A line at a
particular location in memory is associated with a set, and
may be fetched into any line in the set.

Effective Cache Size: When multiple processes share
a cache, they compete for limited space. The division of
cache space among processes is influenced by characteristics
of the concurrently running processes such as cache access
frequency and sequential data access patterns. We define
effective cache size of process i to be the average number
of ways occupied by the process in a set, denoted as Si.
Therefore,

N∑

i=1

Si = A, (1)

where N is the total number of processes sharing the cache
and A is the number of ways in the cache. Note that Si is
a real value in our model because it represents the average
number of ways process i occupies in a set during prolonged
execution. If the cache access behavior of all processes is
static, then Si will be stable. We define this as the steady-
state condition.

Reuse Distance: We define the reuse distance, Rj , of
cache line j to be the number of distinct cache lines within
the same set accessed between two consecutive accesses to
line j. A reuse distance histogram represents the distribution
of cache line reuse distances for an entire shared cache.
Given an A-way set-associative cache, Figure 2 shows a reuse
distance histogram for the mcf application (see Section VI).
The x-axis shows the reuse distance and the y-axis shows
the normalized frequencies of the associated reuse distances.
The first bar in the histogram, i.e., hist1, gives the probability
that a most-recently-used line will be accessed again, while
the last bar, i.e., hist13+, gives the probability that the data
for the next cache access does not exist in the most-recently-
used 12 lines, which can be denoted as

∑∞
k=13 histk. Hist∞

is the probability that the data in the line is never accessed
again. Note that hist∞ can be very large for some streaming
applications. For process i with an effective cache size of Si,
all accesses to the cache lines with a reuse distance larger
than Si result in cache misses. Hence, the probability of a
cache access resulting in a miss for process i with an effective
cache size of Si, can be expressed as follows.

MPAi(Si) =

∫ ∞

Si

histi(x) dx. (2)

Note that histi(x) is a continuous function derived using
linear interpolation of the discrete histogram to support
estimation for non-integer average reuse distances.

IV.B. Problem Formulation and Assumptions
The cache contention prediction problem can be formu-

lated as follows: given N processes assigned to cores sharing
the same A-way set-associative last-level cache, predict the
steady-state cache size occupied by each process during
concurrent execution. Note that the steady-state cache size
can be directly translated to performance, as illustrated by
Equation 2. Solving this problem is helpful for process
assignment and migration in a CMP environment because
it allows one to predict the consequences of tentative process
assignment and migration decisions. However, accurate pre-
diction of process performance is challenging because there
are many combinations of processes that may share the same
cache.

We make the following assumptions.
1) For each process, we assume that data accesses are

uniformly distributed across all cache sets. The tempo-
ral cache access behaviors such as number of cache
accesses per second (APS) and the reuse distance
histogram (see Section IV-A) are assumed to be station-
ary. In the case of multiple non-repeating phases with
distinct memory access patterns [17], non-repeating
phases should be modeled separately.

2) We assume no hardware prefetching. Hardware
prefetching complicates the model by predictively
fetching cache lines based on access patterns. The
model might therefore be inaccurate for systems using

78

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 26,2010 at 02:49:23 UTC from IEEE Xplore. Restrictions apply.

MPAi(Si) =
∫ ∞
Si

histi(x) dx

MPA Probability of cache miss for
process i

hist Linear interpolation of reuse
distance histgram

5 / 13

Analytical Model—Applications II

Cache Accesses

APS = API
SPI

APS Accesses per second
API Accesses per instruction

(fixed for each application)
SPI Seconds per instruction

SPI = α ·MPA + β
α Off-chip latency (memory, disk)
β On-chip latency (computation)

Effective Cache Size

Gi(n) =
n∑
s=1

(Ps,n · s)

steady ⇓ state

n = G−1
i (Si)

Gi(n) Effective cache size of process i after n accesses
Ps,n Probability of having s cache lines after n

consecutive accesses

6 / 13

Analytical Model—Applications II

Cache Accesses

APS = API
SPI

APS Accesses per second
API Accesses per instruction

(fixed for each application)
SPI Seconds per instruction

SPI = α ·MPA + β
α Off-chip latency (memory, disk)
β On-chip latency (computation)

Effective Cache Size

Gi(n) =
n∑
s=1

(Ps,n · s)

steady ⇓ state

n = G−1
i (Si)

Gi(n) Effective cache size of process i after n accesses
Ps,n Probability of having s cache lines after n

consecutive accesses

6 / 13

Analytical Model—Applications II

Cache Accesses

APS = API
SPI

APS Accesses per second
API Accesses per instruction

(fixed for each application)
SPI Seconds per instruction

SPI = α ·MPA + β
α Off-chip latency (memory, disk)
β On-chip latency (computation)

Effective Cache Size

Gi(n) =
n∑
s=1

(Ps,n · s)

steady ⇓ state

n = G−1
i (Si)

Gi(n) Effective cache size of process i after n accesses
Ps,n Probability of having s cache lines after n

consecutive accesses

6 / 13

Analytical Model—Applications II

Cache Accesses

APS = API
SPI

APS Accesses per second
API Accesses per instruction

(fixed for each application)
SPI Seconds per instruction

SPI = α ·MPA + β
α Off-chip latency (memory, disk)
β On-chip latency (computation)

Effective Cache Size

Gi(n) =
n∑
s=1

(Ps,n · s)

steady ⇓ state

n = G−1
i (Si)

Gi(n) Effective cache size of process i after n accesses
Ps,n Probability of having s cache lines after n

consecutive accesses

6 / 13

Analytical Model—Applications III
At time t there is a duration T such that data accessed. . .

before t− T are evicted from cache
during [t− T, t] are present in cache

Assuming all processes are in steady state:
Si = Gi(APSi · T)

⇓
APSi = G−1

i (Si)/T
⇓

APSi = G−1
i (Si)
T = APIi

αi·MPAi(Si)+βi

⇓

T = G−1
i (Si)·αi·MPAi(Si)+βi

APIi

Reminder
APS = API

SPI

SPI = α ·MPA + β

N∑
i=1

Si = A

⇓

∀Nj=1 : G
−1
1 (S1)

G−1
j (Sj)

− API1 · (αj ·MPAj(Sj) + βj)
APIi · (α1 ·MPA1(S1) + β1) and

N∑
i=1

Si −A = 0

7 / 13

Analytical Model—Applications III
At time t there is a duration T such that data accessed. . .

before t− T are evicted from cache
during [t− T, t] are present in cache

Assuming all processes are in steady state:
Si = Gi(APSi · T)

⇓
APSi = G−1

i (Si)/T
⇓

APSi = G−1
i (Si)
T = APIi

αi·MPAi(Si)+βi

⇓

T = G−1
i (Si)·αi·MPAi(Si)+βi

APIi

Reminder
APS = API

SPI

SPI = α ·MPA + β

N∑
i=1

Si = A

⇓

∀Nj=1 : G
−1
1 (S1)

G−1
j (Sj)

− API1 · (αj ·MPAj(Sj) + βj)
APIi · (α1 ·MPA1(S1) + β1) and

N∑
i=1

Si −A = 0

7 / 13

Analytical Model—Applications III
At time t there is a duration T such that data accessed. . .

before t− T are evicted from cache
during [t− T, t] are present in cache

Assuming all processes are in steady state:
Si = Gi(APSi · T)

⇓
APSi = G−1

i (Si)/T

⇓

APSi = G−1
i (Si)
T = APIi

αi·MPAi(Si)+βi

⇓

T = G−1
i (Si)·αi·MPAi(Si)+βi

APIi

Reminder
APS = API

SPI

SPI = α ·MPA + β

N∑
i=1

Si = A

⇓

∀Nj=1 : G
−1
1 (S1)

G−1
j (Sj)

− API1 · (αj ·MPAj(Sj) + βj)
APIi · (α1 ·MPA1(S1) + β1) and

N∑
i=1

Si −A = 0

7 / 13

Analytical Model—Applications III
At time t there is a duration T such that data accessed. . .

before t− T are evicted from cache
during [t− T, t] are present in cache

Assuming all processes are in steady state:
Si = Gi(APSi · T)

⇓
APSi = G−1

i (Si)/T
⇓

APSi = G−1
i (Si)
T = APIi

αi·MPAi(Si)+βi

⇓

T = G−1
i (Si)·αi·MPAi(Si)+βi

APIi

Reminder
APS = API

SPI

SPI = α ·MPA + β

N∑
i=1

Si = A

⇓

∀Nj=1 : G
−1
1 (S1)

G−1
j (Sj)

− API1 · (αj ·MPAj(Sj) + βj)
APIi · (α1 ·MPA1(S1) + β1) and

N∑
i=1

Si −A = 0

7 / 13

Analytical Model—Applications III
At time t there is a duration T such that data accessed. . .

before t− T are evicted from cache
during [t− T, t] are present in cache

Assuming all processes are in steady state:
Si = Gi(APSi · T)

⇓
APSi = G−1

i (Si)/T
⇓

APSi = G−1
i (Si)
T = APIi

αi·MPAi(Si)+βi

⇓

T = G−1
i (Si)·αi·MPAi(Si)+βi

APIi

Reminder
APS = API

SPI

SPI = α ·MPA + β

N∑
i=1

Si = A

⇓

∀Nj=1 : G
−1
1 (S1)

G−1
j (Sj)

− API1 · (αj ·MPAj(Sj) + βj)
APIi · (α1 ·MPA1(S1) + β1) and

N∑
i=1

Si −A = 0

7 / 13

Analytical Model—Applications III
At time t there is a duration T such that data accessed. . .

before t− T are evicted from cache
during [t− T, t] are present in cache

Assuming all processes are in steady state:
Si = Gi(APSi · T)

⇓
APSi = G−1

i (Si)/T
⇓

APSi = G−1
i (Si)
T = APIi

αi·MPAi(Si)+βi

⇓

T = G−1
i (Si)·αi·MPAi(Si)+βi

APIi

Reminder
APS = API

SPI

SPI = α ·MPA + β

N∑
i=1

Si = A

⇓

∀Nj=1 : G
−1
1 (S1)

G−1
j (Sj)

− API1 · (αj ·MPAj(Sj) + βj)
APIi · (α1 ·MPA1(S1) + β1) and

N∑
i=1

Si −A = 0

7 / 13

Automated Profiling

Two processes running on separate cores sharing A-way last-level cache
One process uses l ways ⇒ other process uses A− l ways
stressmark: synthetic application with configurable cache occupation
Gather information on API, MPA and SPI via hardware performance counters
Derive reuse distance histogram, effective cache size (S), α and β

⇒ application-dependent feature vector

8 / 13

Evaluation

Intel Core 2 Duo-P8600 (2 core @ 2.4GHz, 3MB 12-way associative L2 cache)
MacOS X 10.5
Profiling via Shark at a period of 2ms
Subset of SPEC CPU2000: 5 CPU-intensive + 5 memory-intensive
Each application run 12 times for 10 s to determine characteristics
Examine all 55 pairwise combinations

9 / 13

Application profiles
TABLE II

API, α, AND β FOR DIFFERENT BENCHMARKS

Benchmark art mcf bzip2 swim equake mesa vpr ammp mgrid applu
API 0.0225 0.0733 0.0044 0.0116 0.0074 0.0013 0.0102 0.0092 0.0018 0.0018

α (×10−9) 446 134 99.9 -99.6 60.5 30.7 306 243 0.609 3.12
β (×10−7) 1.34 5.86 1.50 1.97 2.28 1.55 1.65 1.83 1.28 1.15

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

M
is

s
 R

a
te

Effective Cache Size

art

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

M
is

s
 R

a
te

Effective Cache Size

mcf

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

M
is

s
 R

a
te

Effective Cache Size

vpr

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

M
is

s
 R

a
te

Effective Cache Size

mesa

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

M
is

s
 R

a
te

Effective Cache Size

mgrid

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

M
is

s
 R

a
te

Effective Cache Size

swim

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

M
is

s
 R

a
te

Effective Cache Size

ammp

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

M
is

s
 R

a
te

Effective Cache Size

applu

Figure 3. Profiled cache miss rate corresponding to effective cache size.

proposed by Chandra et al. [5] requires the steady-state cache
access frequency of a process to be known a priori. We see
no practical way to accurately predetermine this value for
concurrently running processes. In contrast, our technique
determines the steady-state cache access frequency using
analysis of performance counter readings, i.e., the proposed
technique works correctly using only inputs that are readily
available in real systems.

In addition to the proposed technique, we considered
and evaluated two alternatives. The first, called Accesses
Based (AB), assumes the effective cache size of a process
is proportional to APS. Given two processes running on two
cores with effective cache sizes of S1 and S2, the formula to
determine effective cache sizes can be written as

APS1

APS2
=

S1

S2
=

API1 · (α2MPA2(S2) + β2)

API2 · (α1MPA1(S1) + β1)
. (17)

Note that this model only considers APS. It may be inaccurate
if the concurrently running processes have different MPAs or
reuse frequencies. The second model, known as Misses Based
(MB), assumes that Si is proportional to MPS. Therefore, the
equation used to determine S1 and S2 is

MPS1

MPS2
=

MPA1(S1) · API1 · (α2MPA2(S2) + β2)

MPA2(S2) · API2 · (α1MPA1(S1) + β1)
. (18)

The model only considers MPS. Thus it may be also inac-
curate if the concurrently running processes have different
reuse distance profiles.

Analysis of Results: We examined all 55 possible pairwise
combinations of 10 benchmarks: each benchmark is paired
with every other benchmark (including another instance of
itself) and assigned to the two cache-sharing cores. The mea-
sured performance data are then compared to those predicted

by AB, MB, and CAMP. AB and MB are not past work.
They are in fact alternative prediction models we considered.

Table III presents the average prediction error in cache
miss rate and performance for each benchmark when run
simultaneously with each of the 10 benchmarks. The first
column lists the benchmarks. Columns 2, 6, and 10 show the
average magnitudes of cache miss estimation error for CAMP,
AB, and MB. Columns 3, 7, and 11 show the percentage of
test cases with a cache miss estimation error larger than 5%
among all 10 test cases. Similarly, Columns 4, 8, and 12
indicate the average relative estimation error in performance
for the three techniques, while columns 5, 9, and 13 indicate
the percentage of test cases with a relative performance
estimation error larger than 5% among all 10 test cases for
the three techniques. The last two rows correspond to the
results for the 5 most memory-intensive benchmarks and all
10 benchmarks, respectively.

As indicated in Table III, CAMP has an average of
1.57% performance estimation error over all 10 benchmarks,
compared to 3.07% for AB and 4.89% for MB. In addition,
only 8% of the cases for CAMP have estimation errors
greater than 5%, compared to 21% for AB and 33% for
MB. Note that all three models have average performance
estimation errors below 5%. This is mainly because all the
three models are based on predicting the effective cache size
of each benchmark when subject to cache sharing. If one
of the two co-running benchmarks are CPU-intensive, e.g.,
mesa, applu, or mgrid, at least one of the two following
conditions holds: (1) its cache miss rate is insensitive to its
effective cache size or (2) its performance is insensitive to its
cache miss rate. Therefore, the large cache miss estimation
error may not be reflected in performance estimation error.

83

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 26,2010 at 02:49:23 UTC from IEEE Xplore. Restrictions apply.

10 / 13

Prediction Accuracy

TABLE III
PREDICTION ACCURACY FOR CACHE MISSES AND PERFORMANCE DEGRADATION

CAMP AB MB
MPA SPI MPA SPI MPA SPI

Benchmark Error >5% Error >5% Error >5% Error >5% Error >5% Error >5%
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

art 1.61 0 3.68 40 4.60 50 10.26 80 5.88 70 18.09 90
vpr 0.88 0 1.48 0 4.70 40 7.67 60 5.89 30 9.24 50
mcf 2.10 10 3.70 20 2.82 10 3.97 40 6.79 40 7.72 70
ammp 2.82 20 3.04 20 4.03 30 4.16 30 5.89 60 6.78 90
bzip2 1.86 10 1.17 0 3.17 20 1.89 0 6.09 60 3.63 30
mesa 4.23 50 0.83 0 4.90 30 0.94 0 7.77 50 1.55 0
swim 0.28 0 0.86 0 0.23 0 0.81 0 0.27 0 0.78 0
equake 0.70 0 0.38 0 0.92 0 0.41 0 1.43 0 0.45 0
applu 1.13 0 0.32 0 0.86 0 0.31 0 1.79 10 0.33 0
mgrid 2.79 10 0.28 0 3.35 20 0.28 0 6.00 40 0.30 0
top 5 average 1.86 8 2.61 16 3.86 30 5.59 42 6.11 52 9.09 66
average 1.86 4 1.57 8 2.94 20 3.07 21 4.78 36 4.89 33

This also explains why memory-intensive benchmarks have
larger estimation error than CPU-intensive benchmarks. In
Table III, the bottom 5 benchmarks are either CPU-intensive
applications or streaming applications with constant high
miss rates, e.g., swim. Their performance estimation errors are
below 1% for all three models. We thus also list the average
performance estimation error for the top 5 benchmarks, which
are relatively sensitive to the cache misses. CAMP has an
average of 2.61% performance prediction error, compared to
5.59% for AB and 9.09% for MB.

Analyzing One Benchmark–Art: We now examine the
accuracy of the three models when a specific benchmark,
namely art, runs simultaneously with other benchmarks.
Table IV presents the estimation error for MPA and SPI using
CAMP, AB, and MB when art runs concurrently with each
of the 10 benchmarks. The first column lists the benchmarks.
Columns 2 and 3 present the increase in MPA and in SPI of
each of the 10 benchmarks due to cache contention, compared
to those when it runs alone. Column 4 shows the number
of iterations required to solve for the effective cache size.
Columns 5, 7, and 9 show the prediction errors for MPA for
each of the three models. Columns 6, 8, and 10 show the
prediction errors for SPI for each of the three models. The
errors relative to measurements are reported. A positive error
indicates an over-prediction and a negative error indicates an
under-prediction. The last row shows the average results for
all 10 cases.

Table IV indicates that CAMP outperforms AB and MB in
terms of both MPA estimation error and SPI prediction error.
AB over-predicts the effective cache size of art, resulting
all 10 under-predictions of cache miss rate and 9 over-
predictions of SPI. It achieves an average SPI prediction
error of 10.26% and a maximum error of 17.47%. MB under-
predicts the effective cache size of art, resulting in 8 over-
predictions of MPS. It achieves an average SPI estimation
error of 18.48%. and a maximum error of 41.06%. In contrast,
CAMP achieves an average estimation error of 3.68% and
a maximum error of 7.15%. Note that the computation
overhead of CAMP is also lower than that of AB and MB

because it uses monotonic non-linear functions. This might
significantly reduce computational cost when the number of
cores is large. In addition, since the three models are based
on estimating the effective cache sizes of two processes, they
give the same results when two instances of art are running
together, as indicated in the first row of Table IV.

Analyzing Three Scenarios: We now explain why AB
usually leads to over-prediction and MB usually leads to
under-prediction of the effective cache size. Figures 4–6 illus-
trate the predicted and measured normalized SPIs. The black
portion shows the SPI when benchmark is run alone. Figure 4
shows the results when benchmarks art and mcf share cache
in a dual-core system, with the left part corresponding to
art and the right part corresponding to mcf. We denote this
scenario as <art, mcf>. Similarly, Figure 5 represents <art,
vpr>, and Figure 6 represents <vpr, mcf>. As indicated in
Figures 4–6, CAMP achieves the best accuracy in all three
cases. We take the left figure as an example to explain the
reason for variation in accuracy. As indicated in Figure 3,
given the same effective cache size, mcf has a higher miss
rate than art, resulting in larger SPI than art. Therefore, the
APS of art is approximately twice that of mcf when they run
concurrently, even though the API of mcf is larger than that of
art. Thus, art has a high APS with low MPS, which indicates
that art can access the cache very frequently with low reuse
distances, resulting in few misses. In this case, MB tends
to over-predict the performance of mcf because it ignores
factors such as APS. On the other hand, AB overestimates
mcf ’s performance due to ignoring its high reuse distances.
Note that when two processes share the cache in a dual-
core system, under-predicting the performance of one leads
to over-predicting the performance of the other. CAMP takes
both APS and MPS into consideration, and therefore is most
accurate.

VI.D. Generality of Predictor For Different Machines
Figure 7 shows the cache miss rate of art correspond-

ing to effective cache size profiled under two other cache
configurations differing from that in Figure 3. CAMP was
also validated on two other Intel Core 2 Duo Processors with

84

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 26,2010 at 02:49:23 UTC from IEEE Xplore. Restrictions apply.

11 / 13

Generality— art

TABLE IV
MPA AND SPI PREDICTION WHEN PROCESSES RUN WITH ART

Benchmark Extra Extra CAMP AB MB
MPA SPI Itera- MPA SPI MPA SPI MPA SPI

tions Error Error Error Error Error Error
(%) (%) (%) (%) (%) (%) (%) (%)

art 17.40 72.01 1 -1.96 +4.89 -1.96 +4.89 -1.96 +4.89
mcf 16.72 72.62 6 -1.52 +2.38 -7.16 +12.44 +13.60 -41.06
bzip2 6.13 31.48 5 +0.52 -0.13 -2.20 +6.82 +5.97 -17.71
swim 16.20 71.12 6 -4.12 +7.15 -9.35 +15.76 +6.58 -17.39
equake 10.92 48.03 8 +0.60 +0.19 -8.03 +17.47 +10.45 -31.18
mesa 2.33 13.93 4 -0.33 +5.60 -2.56 +11.50 -0.17 +5.18
vpr 8.41 42.24 5 +0.03 -0.66 -0.07 -0.41 +6.00 -18.72
ammp 5.42 32.84 5 -2.33 +4.45 -5.54 +11.80 +3.77 -13.48
mgrid 7.76 37.85 4 +2.17 -5.01 -3.29 +8.67 +5.26 -14.73
applu 9.40 44.74 6 +2.48 -6.38 -5.83 +12.79 +6.90 -20.46
average 10.07 46.69 5 1.61 3.68 4.60 10.26 6.07 18.48

 0

 2

 4

 6

 8

 10

 12

M
e
a
su

re
d

C
A
M

P

A
B

M
B

M
e
a
su

re
d

C
A
M

P

A
B

M
B

N
o
rm

a
li
z
e
d
 S

P
I

mcfart

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

M
easured

C
AM

P

AB M
B

M
easured

C
AM

P

AB M
B

N
o
rm

a
liz

e
d
 S

P
I

vprart

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

M
easured

C
AM

P

AB M
B

M
easured

C
AM

P

AB M
B

N
o
rm

a
liz

e
d
 S

P
I

mcfvpr

Figure 4. Performance degradation for <art,
mcf> pair.

Figure 5. Performance degradation for <art,
vpr> pair.

Figure 6. Performance degradation for <vpr,
mcf> pair.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 4 8 12 16 20 24

M
is

s
 R

a
te

Effective Cache Size

art

12-way 3M
16-way 4M
24-way 6M

Figure 7. Profiled cache miss rate corresponding to effective cache size for
different cache configurations.

4 MB and 6 MB of L2 unified cache. The three cache miss
rate curves closely match each other, suggesting that process
characterization data derived on one machine might be used
to accurately predict the performance of cache-sharing pro-
cesses on different types of processors with different cache
structures.

VII. CONCLUSION

Cache contention among processes running on differ-
ent CMP cores heavily influences performance. A cache-
contention aware assignment algorithm can help improve
system throughput and reduce power consumption. However,
this requires a model of cache contention behavior that can
quickly and accurately determine the impact of different
assignments on performance. This is challenging due to the
large numbers of potential assignments of processes to CMPs.
We have described CAMP, a predictive model that allows fast
and accurate estimation of system performance degradation
due to cache contention. More specifically, it first deter-
mines a process-dependent feature vector and reuse distance
histogram via (potentially on-line) pre-characterization. The
feature vectors of cache-sharing processes are supplied into a
group of non-linear equations that determine the steady-state
effective cache size and performance of each process. We also
described a method to automate the profiling and performance
prediction process. We evaluated the proposed technique on
55 different combinations of 10 SPEC CPU2000 benchmarks
on a dual-core machine. The average performance prediction
error is 1.57%. We also tested the generality of the proposed
technique by profiling processes on one CMP and using the
profiling information for performance prediction on two other
CMPs with different cache sizes. In contrast with existing
work, the proposed approach requires access only to infor-

85

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 26,2010 at 02:49:23 UTC from IEEE Xplore. Restrictions apply.

12 / 13

Conclusion

Summary
Predictive model of contention on shared last-level cache
Automated profiling and extraction of feature vector
No modification of hardware or operating system
“Average” error of <1.6%

Discussion
Varying input data
Benchmarking crimes
Generalisation
Practical application

13 / 13

Conclusion

Summary
Predictive model of contention on shared last-level cache
Automated profiling and extraction of feature vector
No modification of hardware or operating system
“Average” error of <1.6%

Discussion
Varying input data
Benchmarking crimes
Generalisation
Practical application

13 / 13

