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What is this project?

1. Northwestern University, Sandia Labs, Oak Ridge

2. Part of Hobbes Project

3. They also develop Palacios



Why is it interesting for us?

I Proposes a microkernel

I Uses hyperthreads in HPC context

I Targets Xeon Phi
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Idea

1. HPC app runs in user mode

2. Hardware available in kernel mode

3. When an HPC program runs in kernel mode:

3.1 All nice features are directly available



A Typical dialog with the kernel
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user mode 

kernel mode 

ARE PROVIDED KERNEL 

ABSTRACTIONS THE RIGHT ONES?


NOT ALWAYS


I’d like to pin 
memory to a 
specific PFN 

range please 

NO! 

runtime 

general OS 
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user mode 

kernel mode 

NOT ALWAYS


I’d like to never 
be interrupted 

please 

NOPE 

runtime 

general OS 

ARE PROVIDED KERNEL 

ABSTRACTIONS THE RIGHT ONES?
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user mode 

kernel mode 

RESTRICTED ACCESS TO HARDWARE


I’d like to set up 
some custom 

page mappings 
please 

Uh no 

runtime 

general OS 
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user mode 

kernel mode 

I’d like to interrupt 
another 

processor please 

HA! 

runtime 

general OS 

RESTRICTED ACCESS TO HARDWARE




Motivation

1. HPC app runs in user mode

2. Hardware available in kernel mode

3. When an HPC program runs in kernel mode:

3.1 All nice features are directly available
3.2 Kernel does not restrict the program with bad abstractions:

For example, the run-time might need subset
barriers, and be forced to build them out of mutexes.

3.3 Kernel may waste resources for the features the application
doesn’t need:

For example, the run-time might not require
coherence, but get it anyway.
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Hybrid Run-Time (HRT)

the basic model and core services have necessarily ossified
in order to maintain compatibility with the widest range
of hardware and software. In a general-purpose kernel, the
needs of parallelism and a parallel run-time have not been
first-order concerns.

Run-time implementors often complain about the limita-
tions imposed by a general-purpose kernel. While there
are many examples of significant performance enhancements
within general-purpose kernels, and others are certainly pos-
sible to support parallel run-times better, a parallel run-time
as a user level component is fundamentally constrained by
the kernel/user abstraction. In contrast, as a kernel, a paral-
lel run-time would have full access to all hardware features
of the machine, and the ability to create any abstractions
that it needs using those features. We show in this paper
that, in fact, breaking free from the user/kernel abstraction
can produce measurable benefits for parallel run-times.

At first glance, transforming a parallel run-time into a kernel
seems to be a particularly daunting task because language
run-times often have many dependencies on libraries and
system calls. It is important to be clear that we are focused
on the performance or energy-critical core of the run-time
where the bulk of execution time is spent, not on the whole
functional base of the run-time. The core of the run-time
has considerably fewer dependencies and thus is much more
feasible to transform into a kernel. As we describe in Sec-
tion 2, virtualization and hardware partitioning in various
forms have the potential to allow us to partition the run-
time so the non-core elements run at user-level on top of the
full software stack they expect, while the core of the run-
time runs as a kernel. We refer to such a kernel as a hybrid
run-time (HRT) as it is a hybrid between a kernel and a
run-time. Our focus in this paper is on the HRT.

We make the following contributions:

• We describe the limitations of building parallel run-
time systems on top of general-purpose operating sys-
tems and how these limitations are avoided if the run-
time is a kernel. That is, we motivate HRTs.

• We describe the design, implementation, and perfor-
mance of Nautilus, a prototype kernel framework to
facilitate the porting of existing parallel run-times to
run as kernels, as well as the implementation of new
parallel run-times directly as kernels. That is, we cre-
ate the tools needed to easily make HRTs.

• We describe our experiences in using Nautilus to trans-
form three run-times into kernels, specifically Legion,
NESL, and a new language implementation named NDPC
that is being co-developed with Nautilus. That is, we
make HRTs, demonstrating their feasibility.

2. ARGUMENT
A language’s run-time is a system (typically) charged with
two major responsibilities. The first is allowing a program
written in the language to interact with its environment (at
runtime). This includes access to underlying software layers
(e.g., the OS) and the machine itself. The run-time ab-
stracts the properties of both and impedance-matches them

Parallel&App&

Parallel&Run,-me&

General&Kernel&

Node&HW&

User%Mode%

Kernel%Mode%

Parallel&App&

Hybrid&Run,-me&
(HRT)&

Node&HW&

User%Mode%

Kernel%Mode%

Parallel&Run,-me&

General&Kernel&

Node&HW&

User%Mode%

Kernel%Mode%

Parallel&App&

Hybrid&Run,-me&
(HRT)&

User%Mode%

Kernel%Mode%

Hybrid&Virtual&Machine&(HVM)&

Specialized&
Virtualiza-on&
Model&

General&
Virtualiza-on&
Model&

Pe
rf
or
m
an

ce
*P
at
h*

Parallel&App&

Legacy*Path*

(a) Current Model (b) Hybrid Run-time Model 

(c) Hybrid Run-time Model Within a Hybrid Virtual Machine 

Pe
rf
or
m
an

ce
*P
at
h*

Figure 1: Overview of Hybrid Run-time (HRT) approach:
(a) current model used by parallel run-times, (b) proposed
HRT model, and (c) proposed HRT model combined with a
hybrid virtual machine (HVM).

with the language’s model. The challenges of doing so,
particularly for the hardware, depend considerably on just
how high-level the language is—the larger the gap between
the language model and the hardware and OS models, the
greater the challenge. At the same time, however, a higher-
level language has more freedom in implementing the impedance-
matching.

The second major responsibility of the run-time is carrying
out tasks that are hidden from the programmer but nec-
essary to program operation. Common examples include
garbage collection in managed languages, JIT compilation or
interpretation for compilers that target an abstract machine,
exception management, profiling, instrumentation, task and
memory mapping and scheduling, and even management of
multiple execution contexts or virtual processors. While
some run-times may o↵er more or less in the way of fea-
tures, they all provide the programmer with a much simpler
view of the machine than if he were to program it directly.

As a run-time gains more responsibilities and features, the
lines between the run-time and the OS often become blurred.
For example, Legion manages execution contexts (an ab-
straction of cores or hardware threads), regions (an abstrac-
tion of NUMA and other complex memory models), task to
execution context mapping, task scheduling with preemp-
tion, and events. In the worst case this means that the run-
time and the OS are actually trying to provide the same
functionality. In fact, what we have found is that in some
cases this duplication of functionality is brought about by
inadequacies of or grievances with the OS and the services it
provides. A common refrain of run-time developers is that
they want the kernel to simply give them a subset of the ma-
chine’s resources and then leave them alone. They attempt
to approximate this as best they can within the confines of
user space and the available system calls.

the basic model and core services have necessarily ossified
in order to maintain compatibility with the widest range
of hardware and software. In a general-purpose kernel, the
needs of parallelism and a parallel run-time have not been
first-order concerns.

Run-time implementors often complain about the limita-
tions imposed by a general-purpose kernel. While there
are many examples of significant performance enhancements
within general-purpose kernels, and others are certainly pos-
sible to support parallel run-times better, a parallel run-time
as a user level component is fundamentally constrained by
the kernel/user abstraction. In contrast, as a kernel, a paral-
lel run-time would have full access to all hardware features
of the machine, and the ability to create any abstractions
that it needs using those features. We show in this paper
that, in fact, breaking free from the user/kernel abstraction
can produce measurable benefits for parallel run-times.

At first glance, transforming a parallel run-time into a kernel
seems to be a particularly daunting task because language
run-times often have many dependencies on libraries and
system calls. It is important to be clear that we are focused
on the performance or energy-critical core of the run-time
where the bulk of execution time is spent, not on the whole
functional base of the run-time. The core of the run-time
has considerably fewer dependencies and thus is much more
feasible to transform into a kernel. As we describe in Sec-
tion 2, virtualization and hardware partitioning in various
forms have the potential to allow us to partition the run-
time so the non-core elements run at user-level on top of the
full software stack they expect, while the core of the run-
time runs as a kernel. We refer to such a kernel as a hybrid
run-time (HRT) as it is a hybrid between a kernel and a
run-time. Our focus in this paper is on the HRT.

We make the following contributions:

• We describe the limitations of building parallel run-
time systems on top of general-purpose operating sys-
tems and how these limitations are avoided if the run-
time is a kernel. That is, we motivate HRTs.

• We describe the design, implementation, and perfor-
mance of Nautilus, a prototype kernel framework to
facilitate the porting of existing parallel run-times to
run as kernels, as well as the implementation of new
parallel run-times directly as kernels. That is, we cre-
ate the tools needed to easily make HRTs.

• We describe our experiences in using Nautilus to trans-
form three run-times into kernels, specifically Legion,
NESL, and a new language implementation named NDPC
that is being co-developed with Nautilus. That is, we
make HRTs, demonstrating their feasibility.

2. ARGUMENT
A language’s run-time is a system (typically) charged with
two major responsibilities. The first is allowing a program
written in the language to interact with its environment (at
runtime). This includes access to underlying software layers
(e.g., the OS) and the machine itself. The run-time ab-
stracts the properties of both and impedance-matches them
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Figure 1: Overview of Hybrid Run-time (HRT) approach:
(a) current model used by parallel run-times, (b) proposed
HRT model, and (c) proposed HRT model combined with a
hybrid virtual machine (HVM).

with the language’s model. The challenges of doing so,
particularly for the hardware, depend considerably on just
how high-level the language is—the larger the gap between
the language model and the hardware and OS models, the
greater the challenge. At the same time, however, a higher-
level language has more freedom in implementing the impedance-
matching.

The second major responsibility of the run-time is carrying
out tasks that are hidden from the programmer but nec-
essary to program operation. Common examples include
garbage collection in managed languages, JIT compilation or
interpretation for compilers that target an abstract machine,
exception management, profiling, instrumentation, task and
memory mapping and scheduling, and even management of
multiple execution contexts or virtual processors. While
some run-times may o↵er more or less in the way of fea-
tures, they all provide the programmer with a much simpler
view of the machine than if he were to program it directly.

As a run-time gains more responsibilities and features, the
lines between the run-time and the OS often become blurred.
For example, Legion manages execution contexts (an ab-
straction of cores or hardware threads), regions (an abstrac-
tion of NUMA and other complex memory models), task to
execution context mapping, task scheduling with preemp-
tion, and events. In the worst case this means that the run-
time and the OS are actually trying to provide the same
functionality. In fact, what we have found is that in some
cases this duplication of functionality is brought about by
inadequacies of or grievances with the OS and the services it
provides. A common refrain of run-time developers is that
they want the kernel to simply give them a subset of the ma-
chine’s resources and then leave them alone. They attempt
to approximate this as best they can within the confines of
user space and the available system calls.
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OS Avg Min Max
Nautilus 16795 2907 44264
Linux 38456 34447 238866

Figure 3: Time to create a single thread measured in cycles.

Experimental setup We took all measurements on our lab
machine named leviathan. We chose this machine for our
experiment because it has a large number of cores and an
interesting organization, similar to what a supercomputer
node might look like. It is a 2.1GHz AMD Opteron 6272
(Interlagos) server machine with 64 cores and 128 GB of
memory. The cores are spread across 4 sockets, and each
socket comprises two NUMA domains. All CPUs within
one of these NUMA domains share an L3 cache. Within
the domain, CPUs are organized into 4 groups of 2 hard-
ware threads. The hardware threads share an L1 instruction
cache and a unified L2 cache. Hardware threads have their
own L1 data cache. We configured the BIOS for this ma-
chine to “Maximum performance” to eliminate the e↵ects of
power management. This machine also has a “freerunning‘
TSC, which means that the TSC will tick at a constant rate
regardless of the operating frequency of the processor core.
For Linux tests, it runs Red Hat 6.5 with stock Linux kernel
version 2.6.32.

Threads In designing a threading model for Nautilus, we
considered the experiences of many others, including work
on high-performance user-level threading techniques like sched-
uler activations [1] and Qthreads [50]. Ultimately, we de-
signed our threads to be very lightweight in order to provide
an e�cient starting point for HRTs. The threading model
is not imposed on the run-time. It is simply o↵ered as a
primitive. We found that our threads performed quite well
compared to traditional user-space pthread usage. It is im-
portant to note that, unlike pthreads, the threads we use
in Nautilus are kernel threads. They are more than that
however, because there is only a kernel, which includes the
HRT and the Nautilus kernel framework. The nature of the
threads in Nautilus is determined by how the runtime uses
them. This means that we can directly map the logical view
of the machine from a runtime’s point of view (see Section 4)
to the physical machine. This is not typically possible to do
with any kind of guarantees when running in userspace. In
fact, this is one of the concerns that the Legion runtime
developers expressed with running Legion on Linux.

Figure 3 shows the average, minimum, and maximum time
in cycles to create a single thread in both Nautilus and Linux
(using pthreads). These numbers were taken over 1000 runs
and we used the rdtscp instruction to enforce proper seri-

alization of instructions when timing. Notice how the mini-
mum time to create a thread for Nautilus is about 11x faster
than with pthreads.

Figure 4 shows the time to create a number of threads in
sequence, and we take results over 10 runs. This figure il-
lustrates that the performance advantage of Nautilus’s very
light-weight threads, in fact, increases as the thread count
scales. This creates an advantage for parallel run-times that
need to leverage node-level parallelism to create units of
work very quickly. Graphs (d), (e), and (f) highlight the per-
formance di↵erence as a function of thread count by showing
the speedup of Nautilus’s threading facilities over pthreads
in Linux. We believe these results show that Nautilus pro-
vides a reasonable starting point for HRTs attempting to
exploit the full potential of the machine.

Another distinctive aspect to Nautilus threads is that a
thread fork (and join) mechanism is provided in addition
to the common interface of starting a new thread with a
clean new stack in a function. A forked thread has a limited
lifetime and will terminate when it returns from the current
function. It is incumbent upon the run-time to manage the
parent and child stacks correctly. This capability is lever-
aged in our ports of NESL and NDPC.

Synchronization We now give a brief description of the
simple spinlock primitive used in Nautilus. We chose to
highlight spinlocks because in designing Nautilus, we fo-
cused heavily on the Legion run-time’s model of execution,
in which threads represent logical processors. The ideal case
for Legion occurs when threads are pinned to CPUs and
experience no contention (i.e. no preemption) for physical
resources. In this case, more complex synchronization prim-
itives like mutexes are unnecessary.

Nautilus’s implementation of a spinlock uses a GCC intrinsic
that compiles down into an atomic xchg instruction, which
will enforce locking on the memory bus. We use the pause

instruction in between spins to allow maximum performance
for hyperthreads on the same physical core. This instruc-
tion will insert a small delay into the spin loop, freeing up
pipeline resources for potential contenders.

Figure 5 shows the total time to acquire and subsequently
release a spinlock 500 million times on both Nautilus and
Linux. Here, “Linux” means we use pthread_spin_lock.
Note that the time comes within 9% of the heavily optimized
pthreads version. The bottom rows show the time, measured
in cycles, to acquire and release a single lock one time. The
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the basic model and core services have necessarily ossified
in order to maintain compatibility with the widest range
of hardware and software. In a general-purpose kernel, the
needs of parallelism and a parallel run-time have not been
first-order concerns.

Run-time implementors often complain about the limita-
tions imposed by a general-purpose kernel. While there
are many examples of significant performance enhancements
within general-purpose kernels, and others are certainly pos-
sible to support parallel run-times better, a parallel run-time
as a user level component is fundamentally constrained by
the kernel/user abstraction. In contrast, as a kernel, a paral-
lel run-time would have full access to all hardware features
of the machine, and the ability to create any abstractions
that it needs using those features. We show in this paper
that, in fact, breaking free from the user/kernel abstraction
can produce measurable benefits for parallel run-times.

At first glance, transforming a parallel run-time into a kernel
seems to be a particularly daunting task because language
run-times often have many dependencies on libraries and
system calls. It is important to be clear that we are focused
on the performance or energy-critical core of the run-time
where the bulk of execution time is spent, not on the whole
functional base of the run-time. The core of the run-time
has considerably fewer dependencies and thus is much more
feasible to transform into a kernel. As we describe in Sec-
tion 2, virtualization and hardware partitioning in various
forms have the potential to allow us to partition the run-
time so the non-core elements run at user-level on top of the
full software stack they expect, while the core of the run-
time runs as a kernel. We refer to such a kernel as a hybrid
run-time (HRT) as it is a hybrid between a kernel and a
run-time. Our focus in this paper is on the HRT.

We make the following contributions:

• We describe the limitations of building parallel run-
time systems on top of general-purpose operating sys-
tems and how these limitations are avoided if the run-
time is a kernel. That is, we motivate HRTs.

• We describe the design, implementation, and perfor-
mance of Nautilus, a prototype kernel framework to
facilitate the porting of existing parallel run-times to
run as kernels, as well as the implementation of new
parallel run-times directly as kernels. That is, we cre-
ate the tools needed to easily make HRTs.

• We describe our experiences in using Nautilus to trans-
form three run-times into kernels, specifically Legion,
NESL, and a new language implementation named NDPC
that is being co-developed with Nautilus. That is, we
make HRTs, demonstrating their feasibility.

2. ARGUMENT
A language’s run-time is a system (typically) charged with
two major responsibilities. The first is allowing a program
written in the language to interact with its environment (at
runtime). This includes access to underlying software layers
(e.g., the OS) and the machine itself. The run-time ab-
stracts the properties of both and impedance-matches them
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Figure 1: Overview of Hybrid Run-time (HRT) approach:
(a) current model used by parallel run-times, (b) proposed
HRT model, and (c) proposed HRT model combined with a
hybrid virtual machine (HVM).

with the language’s model. The challenges of doing so,
particularly for the hardware, depend considerably on just
how high-level the language is—the larger the gap between
the language model and the hardware and OS models, the
greater the challenge. At the same time, however, a higher-
level language has more freedom in implementing the impedance-
matching.

The second major responsibility of the run-time is carrying
out tasks that are hidden from the programmer but nec-
essary to program operation. Common examples include
garbage collection in managed languages, JIT compilation or
interpretation for compilers that target an abstract machine,
exception management, profiling, instrumentation, task and
memory mapping and scheduling, and even management of
multiple execution contexts or virtual processors. While
some run-times may o↵er more or less in the way of fea-
tures, they all provide the programmer with a much simpler
view of the machine than if he were to program it directly.

As a run-time gains more responsibilities and features, the
lines between the run-time and the OS often become blurred.
For example, Legion manages execution contexts (an ab-
straction of cores or hardware threads), regions (an abstrac-
tion of NUMA and other complex memory models), task to
execution context mapping, task scheduling with preemp-
tion, and events. In the worst case this means that the run-
time and the OS are actually trying to provide the same
functionality. In fact, what we have found is that in some
cases this duplication of functionality is brought about by
inadequacies of or grievances with the OS and the services it
provides. A common refrain of run-time developers is that
they want the kernel to simply give them a subset of the ma-
chine’s resources and then leave them alone. They attempt
to approximate this as best they can within the confines of
user space and the available system calls.
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Figure 4: Average (a), minimum (b), and maximum (c) time to create a number of threads in sequence. Average (d), minimum
(e), and maximum (f) speedup of Nautilus over Linux for multiple thread creations.

OS Execution time (s)
Nautilus 13.72
Linux 12.53
OS Avg. acquire/release time (cycles)
Nautilus 59
Linux 36

Figure 5: Total time to acquire and release a spinlock 500
million times on Nautilus and Linux, and average time in
cycles for an acquire/release pair.

parallel applications we tested on Legion spend most of their
time in computation-heavy loops, and are thus not heavily
influenced by the cost of synchronization.

Paging Nautilus has a very simple, yet very high-performance
paging model aimed at high-performance parallel applica-
tions. When the machine boots up, each core identity-maps
the entire physical address space using 2 MB pages to cre-
ate a single unified address space. The static identity map
eliminates expensive page faults and TLB shootdowns, and
reduces TLB misses. These events would not only reduce
performance, but also introduce unpredictable OS noise. OS
noise is well known to introduce timing variance that be-
comes a serious obstacle in large-scale distributed machines
running parallel applications. The same will hold true for
single nodes as core counts continue to scale up. The intro-
duction of variance by OS noise (not just by asynchronous
paging events) not only limits the performance and pre-
dictability of existing run-times, but also limits the kinds
of run-times that can take advantage of the machine. For
example, run-times that need tasks to execute in synchrony
(e.g., in order to support a bulk-synchronous parallel appli-
cation or a run-time that uses an abstract vector model) will
experience serious degradation if OS noise comes into play.

The use of a single unified address space also allows very
fast communication between threads, and eliminates much
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Figure 6: Average event wakeup latency.

of the overhead of context switches when Nautilus boots
with preemption enabled. The only preemption is between
kernel threads, so no page table switch ever occurs. This is
especially useful when Nautilus runs virtualized, as a large
portion of VM exits come from paging related faults and
dynamic mappings initiated by the OS, particularly using
shadow paging. A shadow-paged Nautilus exhibits the min-
imum possible shadow page faults, and shadow paging can
be more e�cient that nested paging, except when shadow
page faults are common.

Events Events are a common abstraction that run-time sys-
tems often use to distribute work to execution units, or work-
ers. The Legion run-time makes heavy use of them, so we
wanted to make sure that Nautilus provided an e�cient im-
plementation of them. In Legion, the events are used to no-
tify logical processors (Legion threads) when there are tasks
ready to execute. To help show the potential of Legion +
Nautilus as an HRT, we measured the performance of these
“wakeup” events.

Figure: Average, minimum, and maximum time to create a number of
threads in sequence.



Thread creation

 0

 1x106
 2x106
 3x106
 4x106
 5x106
 6x106
 7x106

2 4 8 16 32 64

C
yc

le
s

Threads

(a)

Nautilus
Linux

 0

 1x106
 2x106
 3x106
 4x106
 5x106
 6x106
 7x106

2 4 8 16 32 64

C
yc

le
s

Threads

(b)

Nautilus
Linux

 0

 1x106
 2x106
 3x106
 4x106
 5x106
 6x106
 7x106

2 4 8 16 32 64

C
yc

le
s

Threads

(c)

Nautilus
Linux

 8
 10
 12
 14
 16
 18
 20
 22
 24
 26

2 4 8 16 32 64

S
p
e
e
d
u
p

Threads

(d)

 10

 15

 20

 25

 30

 35

 40

2 4 8 16 32 64
S

p
e
e
d
u
p

Threads

(e)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

2 4 8 16 32 64

S
p
e
e
d
u
p

Threads

(f)

Figure 4: Average (a), minimum (b), and maximum (c) time to create a number of threads in sequence. Average (d), minimum
(e), and maximum (f) speedup of Nautilus over Linux for multiple thread creations.
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Linux 12.53
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Figure 5: Total time to acquire and release a spinlock 500
million times on Nautilus and Linux, and average time in
cycles for an acquire/release pair.

parallel applications we tested on Legion spend most of their
time in computation-heavy loops, and are thus not heavily
influenced by the cost of synchronization.

Paging Nautilus has a very simple, yet very high-performance
paging model aimed at high-performance parallel applica-
tions. When the machine boots up, each core identity-maps
the entire physical address space using 2 MB pages to cre-
ate a single unified address space. The static identity map
eliminates expensive page faults and TLB shootdowns, and
reduces TLB misses. These events would not only reduce
performance, but also introduce unpredictable OS noise. OS
noise is well known to introduce timing variance that be-
comes a serious obstacle in large-scale distributed machines
running parallel applications. The same will hold true for
single nodes as core counts continue to scale up. The intro-
duction of variance by OS noise (not just by asynchronous
paging events) not only limits the performance and pre-
dictability of existing run-times, but also limits the kinds
of run-times that can take advantage of the machine. For
example, run-times that need tasks to execute in synchrony
(e.g., in order to support a bulk-synchronous parallel appli-
cation or a run-time that uses an abstract vector model) will
experience serious degradation if OS noise comes into play.

The use of a single unified address space also allows very
fast communication between threads, and eliminates much
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Figure 6: Average event wakeup latency.

of the overhead of context switches when Nautilus boots
with preemption enabled. The only preemption is between
kernel threads, so no page table switch ever occurs. This is
especially useful when Nautilus runs virtualized, as a large
portion of VM exits come from paging related faults and
dynamic mappings initiated by the OS, particularly using
shadow paging. A shadow-paged Nautilus exhibits the min-
imum possible shadow page faults, and shadow paging can
be more e�cient that nested paging, except when shadow
page faults are common.

Events Events are a common abstraction that run-time sys-
tems often use to distribute work to execution units, or work-
ers. The Legion run-time makes heavy use of them, so we
wanted to make sure that Nautilus provided an e�cient im-
plementation of them. In Legion, the events are used to no-
tify logical processors (Legion threads) when there are tasks
ready to execute. To help show the potential of Legion +
Nautilus as an HRT, we measured the performance of these
“wakeup” events.

Figure: Linux
Nautilus from previous figure
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Figure 5: Total time to acquire and release a spinlock 500
million times on Nautilus and Linux, and average time in
cycles for an acquire/release pair.

parallel applications we tested on Legion spend most of their
time in computation-heavy loops, and are thus not heavily
influenced by the cost of synchronization.

Paging Nautilus has a very simple, yet very high-performance
paging model aimed at high-performance parallel applica-
tions. When the machine boots up, each core identity-maps
the entire physical address space using 2 MB pages to cre-
ate a single unified address space. The static identity map
eliminates expensive page faults and TLB shootdowns, and
reduces TLB misses. These events would not only reduce
performance, but also introduce unpredictable OS noise. OS
noise is well known to introduce timing variance that be-
comes a serious obstacle in large-scale distributed machines
running parallel applications. The same will hold true for
single nodes as core counts continue to scale up. The intro-
duction of variance by OS noise (not just by asynchronous
paging events) not only limits the performance and pre-
dictability of existing run-times, but also limits the kinds
of run-times that can take advantage of the machine. For
example, run-times that need tasks to execute in synchrony
(e.g., in order to support a bulk-synchronous parallel appli-
cation or a run-time that uses an abstract vector model) will
experience serious degradation if OS noise comes into play.

The use of a single unified address space also allows very
fast communication between threads, and eliminates much
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of the overhead of context switches when Nautilus boots
with preemption enabled. The only preemption is between
kernel threads, so no page table switch ever occurs. This is
especially useful when Nautilus runs virtualized, as a large
portion of VM exits come from paging related faults and
dynamic mappings initiated by the OS, particularly using
shadow paging. A shadow-paged Nautilus exhibits the min-
imum possible shadow page faults, and shadow paging can
be more e�cient that nested paging, except when shadow
page faults are common.

Events Events are a common abstraction that run-time sys-
tems often use to distribute work to execution units, or work-
ers. The Legion run-time makes heavy use of them, so we
wanted to make sure that Nautilus provided an e�cient im-
plementation of them. In Legion, the events are used to no-
tify logical processors (Legion threads) when there are tasks
ready to execute. To help show the potential of Legion +
Nautilus as an HRT, we measured the performance of these
“wakeup” events.

Figure: Linux
Nautilus from previous figure
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OS Avg Min Max
Nautilus 16795 2907 44264
Linux 38456 34447 238866

Figure 3: Time to create a single thread measured in cycles.

Experimental setup We took all measurements on our lab
machine named leviathan. We chose this machine for our
experiment because it has a large number of cores and an
interesting organization, similar to what a supercomputer
node might look like. It is a 2.1GHz AMD Opteron 6272
(Interlagos) server machine with 64 cores and 128 GB of
memory. The cores are spread across 4 sockets, and each
socket comprises two NUMA domains. All CPUs within
one of these NUMA domains share an L3 cache. Within
the domain, CPUs are organized into 4 groups of 2 hard-
ware threads. The hardware threads share an L1 instruction
cache and a unified L2 cache. Hardware threads have their
own L1 data cache. We configured the BIOS for this ma-
chine to “Maximum performance” to eliminate the e↵ects of
power management. This machine also has a “freerunning‘
TSC, which means that the TSC will tick at a constant rate
regardless of the operating frequency of the processor core.
For Linux tests, it runs Red Hat 6.5 with stock Linux kernel
version 2.6.32.

Threads In designing a threading model for Nautilus, we
considered the experiences of many others, including work
on high-performance user-level threading techniques like sched-
uler activations [1] and Qthreads [50]. Ultimately, we de-
signed our threads to be very lightweight in order to provide
an e�cient starting point for HRTs. The threading model
is not imposed on the run-time. It is simply o↵ered as a
primitive. We found that our threads performed quite well
compared to traditional user-space pthread usage. It is im-
portant to note that, unlike pthreads, the threads we use
in Nautilus are kernel threads. They are more than that
however, because there is only a kernel, which includes the
HRT and the Nautilus kernel framework. The nature of the
threads in Nautilus is determined by how the runtime uses
them. This means that we can directly map the logical view
of the machine from a runtime’s point of view (see Section 4)
to the physical machine. This is not typically possible to do
with any kind of guarantees when running in userspace. In
fact, this is one of the concerns that the Legion runtime
developers expressed with running Legion on Linux.

Figure 3 shows the average, minimum, and maximum time
in cycles to create a single thread in both Nautilus and Linux
(using pthreads). These numbers were taken over 1000 runs
and we used the rdtscp instruction to enforce proper seri-

alization of instructions when timing. Notice how the mini-
mum time to create a thread for Nautilus is about 11x faster
than with pthreads.

Figure 4 shows the time to create a number of threads in
sequence, and we take results over 10 runs. This figure il-
lustrates that the performance advantage of Nautilus’s very
light-weight threads, in fact, increases as the thread count
scales. This creates an advantage for parallel run-times that
need to leverage node-level parallelism to create units of
work very quickly. Graphs (d), (e), and (f) highlight the per-
formance di↵erence as a function of thread count by showing
the speedup of Nautilus’s threading facilities over pthreads
in Linux. We believe these results show that Nautilus pro-
vides a reasonable starting point for HRTs attempting to
exploit the full potential of the machine.

Another distinctive aspect to Nautilus threads is that a
thread fork (and join) mechanism is provided in addition
to the common interface of starting a new thread with a
clean new stack in a function. A forked thread has a limited
lifetime and will terminate when it returns from the current
function. It is incumbent upon the run-time to manage the
parent and child stacks correctly. This capability is lever-
aged in our ports of NESL and NDPC.

Synchronization We now give a brief description of the
simple spinlock primitive used in Nautilus. We chose to
highlight spinlocks because in designing Nautilus, we fo-
cused heavily on the Legion run-time’s model of execution,
in which threads represent logical processors. The ideal case
for Legion occurs when threads are pinned to CPUs and
experience no contention (i.e. no preemption) for physical
resources. In this case, more complex synchronization prim-
itives like mutexes are unnecessary.

Nautilus’s implementation of a spinlock uses a GCC intrinsic
that compiles down into an atomic xchg instruction, which
will enforce locking on the memory bus. We use the pause

instruction in between spins to allow maximum performance
for hyperthreads on the same physical core. This instruc-
tion will insert a small delay into the spin loop, freeing up
pipeline resources for potential contenders.

Figure 5 shows the total time to acquire and subsequently
release a spinlock 500 million times on both Nautilus and
Linux. Here, “Linux” means we use pthread_spin_lock.
Note that the time comes within 9% of the heavily optimized
pthreads version. The bottom rows show the time, measured
in cycles, to acquire and release a single lock one time. The
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Figure 4: Average (a), minimum (b), and maximum (c) time to create a number of threads in sequence. Average (d), minimum
(e), and maximum (f) speedup of Nautilus over Linux for multiple thread creations.

OS Execution time (s)
Nautilus 13.72
Linux 12.53
OS Avg. acquire/release time (cycles)
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Figure 5: Total time to acquire and release a spinlock 500
million times on Nautilus and Linux, and average time in
cycles for an acquire/release pair.

parallel applications we tested on Legion spend most of their
time in computation-heavy loops, and are thus not heavily
influenced by the cost of synchronization.

Paging Nautilus has a very simple, yet very high-performance
paging model aimed at high-performance parallel applica-
tions. When the machine boots up, each core identity-maps
the entire physical address space using 2 MB pages to cre-
ate a single unified address space. The static identity map
eliminates expensive page faults and TLB shootdowns, and
reduces TLB misses. These events would not only reduce
performance, but also introduce unpredictable OS noise. OS
noise is well known to introduce timing variance that be-
comes a serious obstacle in large-scale distributed machines
running parallel applications. The same will hold true for
single nodes as core counts continue to scale up. The intro-
duction of variance by OS noise (not just by asynchronous
paging events) not only limits the performance and pre-
dictability of existing run-times, but also limits the kinds
of run-times that can take advantage of the machine. For
example, run-times that need tasks to execute in synchrony
(e.g., in order to support a bulk-synchronous parallel appli-
cation or a run-time that uses an abstract vector model) will
experience serious degradation if OS noise comes into play.

The use of a single unified address space also allows very
fast communication between threads, and eliminates much
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Figure 6: Average event wakeup latency.

of the overhead of context switches when Nautilus boots
with preemption enabled. The only preemption is between
kernel threads, so no page table switch ever occurs. This is
especially useful when Nautilus runs virtualized, as a large
portion of VM exits come from paging related faults and
dynamic mappings initiated by the OS, particularly using
shadow paging. A shadow-paged Nautilus exhibits the min-
imum possible shadow page faults, and shadow paging can
be more e�cient that nested paging, except when shadow
page faults are common.

Events Events are a common abstraction that run-time sys-
tems often use to distribute work to execution units, or work-
ers. The Legion run-time makes heavy use of them, so we
wanted to make sure that Nautilus provided an e�cient im-
plementation of them. In Legion, the events are used to no-
tify logical processors (Legion threads) when there are tasks
ready to execute. To help show the potential of Legion +
Nautilus as an HRT, we measured the performance of these
“wakeup” events.
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Figure 4: Average (a), minimum (b), and maximum (c) time to create a number of threads in sequence. Average (d), minimum
(e), and maximum (f) speedup of Nautilus over Linux for multiple thread creations.
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Figure 5: Total time to acquire and release a spinlock 500
million times on Nautilus and Linux, and average time in
cycles for an acquire/release pair.

parallel applications we tested on Legion spend most of their
time in computation-heavy loops, and are thus not heavily
influenced by the cost of synchronization.

Paging Nautilus has a very simple, yet very high-performance
paging model aimed at high-performance parallel applica-
tions. When the machine boots up, each core identity-maps
the entire physical address space using 2 MB pages to cre-
ate a single unified address space. The static identity map
eliminates expensive page faults and TLB shootdowns, and
reduces TLB misses. These events would not only reduce
performance, but also introduce unpredictable OS noise. OS
noise is well known to introduce timing variance that be-
comes a serious obstacle in large-scale distributed machines
running parallel applications. The same will hold true for
single nodes as core counts continue to scale up. The intro-
duction of variance by OS noise (not just by asynchronous
paging events) not only limits the performance and pre-
dictability of existing run-times, but also limits the kinds
of run-times that can take advantage of the machine. For
example, run-times that need tasks to execute in synchrony
(e.g., in order to support a bulk-synchronous parallel appli-
cation or a run-time that uses an abstract vector model) will
experience serious degradation if OS noise comes into play.

The use of a single unified address space also allows very
fast communication between threads, and eliminates much
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of the overhead of context switches when Nautilus boots
with preemption enabled. The only preemption is between
kernel threads, so no page table switch ever occurs. This is
especially useful when Nautilus runs virtualized, as a large
portion of VM exits come from paging related faults and
dynamic mappings initiated by the OS, particularly using
shadow paging. A shadow-paged Nautilus exhibits the min-
imum possible shadow page faults, and shadow paging can
be more e�cient that nested paging, except when shadow
page faults are common.

Events Events are a common abstraction that run-time sys-
tems often use to distribute work to execution units, or work-
ers. The Legion run-time makes heavy use of them, so we
wanted to make sure that Nautilus provided an e�cient im-
plementation of them. In Legion, the events are used to no-
tify logical processors (Legion threads) when there are tasks
ready to execute. To help show the potential of Legion +
Nautilus as an HRT, we measured the performance of these
“wakeup” events.
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Figure 11: Run time of Legion circuit simulator versus core
count. The baseline Nautilus version has higher performance
at 62 cores than the Linux version.

high-level run-time and the low-level run-time. The high-
level run-time is portable across machines, and the low-level
run-time contains all of the machine specific code. There is
a separate low-level implementation called the shared low-
level run-time. This is the low-level layer implemented for
shared memory machines. As we are interested in single-
node performance, we naturally focused our e↵orts on the
shared low-level Legion run-time. All of our modifications to
Legion when porting it to Nautilus were made to the shared
low-level component. Outside of optimizations using hard-
ware access, and understanding the needs of the run-time,
the port was fairly straight-forward.

Legion, in its default user-level implementation, uses pthreads
as representations of logical processors, so the low-level run-
time makes fairly heavy use of the pthreads interface. In or-
der to transform Legion into a kernel-level HRT, we simply
had to provide a similar interface in Nautilus. The amount
of code added to Nautilus was less than 800 lines, and is
described in Figure 10. After porting Legion into Nautilus,
we then began to explore how Legion could benefit from
unrestricted access to the machine.

We now evaluate our transformation of the user-level Le-
gion run-time into a kernel using Nautilus, highlighting the
realized and potential benefits of having Legion operate as
an HRT. Our port is based on Legion as of October 14, 2014,
specifically commit e22962dbc05e52897a3c699085df9ad19590453a,
which can be found via the Legion project web site.2

The Legion distribution includes numerous test codes, as
well as an example parallel application that is a circuit sim-
ulator. We used the test codes to check the correctness of
our work and the circuit simulator as our initial performance
benchmark. Legion creates an abstract machine that con-
sists of a set of cooperating threads that execute work when
it is ready. These are essentially logical processors. The
number of such threads can vary, representing an abstract
machine of a di↵erent size.

We ran the circuit simulator with a medium problem size
(100000 steps) and varied the number of cores Legion used

2http://legion.stanford.edu

 0

 2

 4

 6

 8

 10

 12

 14

 16

2 4 8 16 32 62

S
p

e
e

d
u

p

Legion Processors (threads)

Nautilus
Linux

Figure 12: Speedup of Legion (normalized to 2 Legion pro-
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a function of Legion processor (thread) count.
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Figure 13: Speedup of Legion circuit simulator comparing
the baseline Nautilus version and a Nautilus version that
executes Legion tasks with interrupts o↵.

to execute Legion tasks. Figure 11 shows the results. The
x-axis shows the number of threads/logical processors. The
thread count only goes up to 62 because the Linux version
would hang at higher core counts, we believe due to a live-
lock situation in Legion’s interaction with Linux. Notice
how closely, even with no hardware optimizations, Nautilus
tracks the performance of Linux. The di↵erence between the
two actually increases when scaling the number of threads.
They are essentially at parity, even though Nautilus and the
Legion port to it are still in their early stages. Nautilus is
slightly faster at 62 cores.

The speedup of the circuit simulator running in Legion as
a function of the number of cores is shown in Figure 12.
Speedups are normalized to Legion running with two threads.
The circuit simulator is largely CPU-bound and spends 99%
of its time in a loop computing a stencil approximation for
a PDE. We suspect that the benefits of running in an HRT
would be magnified in a more memory-bound code or one
that stresses the system primitives (see Section 3).

To experiment with hardware functionality in the HRT model,
we wanted to take advantage of a capability that normally
isn’t available in Linux at user-level. We decided to use the
capability to disable interrupts. In the Legion HRT, there
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high-level run-time and the low-level run-time. The high-
level run-time is portable across machines, and the low-level
run-time contains all of the machine specific code. There is
a separate low-level implementation called the shared low-
level run-time. This is the low-level layer implemented for
shared memory machines. As we are interested in single-
node performance, we naturally focused our e↵orts on the
shared low-level Legion run-time. All of our modifications to
Legion when porting it to Nautilus were made to the shared
low-level component. Outside of optimizations using hard-
ware access, and understanding the needs of the run-time,
the port was fairly straight-forward.

Legion, in its default user-level implementation, uses pthreads
as representations of logical processors, so the low-level run-
time makes fairly heavy use of the pthreads interface. In or-
der to transform Legion into a kernel-level HRT, we simply
had to provide a similar interface in Nautilus. The amount
of code added to Nautilus was less than 800 lines, and is
described in Figure 10. After porting Legion into Nautilus,
we then began to explore how Legion could benefit from
unrestricted access to the machine.

We now evaluate our transformation of the user-level Le-
gion run-time into a kernel using Nautilus, highlighting the
realized and potential benefits of having Legion operate as
an HRT. Our port is based on Legion as of October 14, 2014,
specifically commit e22962dbc05e52897a3c699085df9ad19590453a,
which can be found via the Legion project web site.2

The Legion distribution includes numerous test codes, as
well as an example parallel application that is a circuit sim-
ulator. We used the test codes to check the correctness of
our work and the circuit simulator as our initial performance
benchmark. Legion creates an abstract machine that con-
sists of a set of cooperating threads that execute work when
it is ready. These are essentially logical processors. The
number of such threads can vary, representing an abstract
machine of a di↵erent size.

We ran the circuit simulator with a medium problem size
(100000 steps) and varied the number of cores Legion used

2http://legion.stanford.edu
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to execute Legion tasks. Figure 11 shows the results. The
x-axis shows the number of threads/logical processors. The
thread count only goes up to 62 because the Linux version
would hang at higher core counts, we believe due to a live-
lock situation in Legion’s interaction with Linux. Notice
how closely, even with no hardware optimizations, Nautilus
tracks the performance of Linux. The di↵erence between the
two actually increases when scaling the number of threads.
They are essentially at parity, even though Nautilus and the
Legion port to it are still in their early stages. Nautilus is
slightly faster at 62 cores.

The speedup of the circuit simulator running in Legion as
a function of the number of cores is shown in Figure 12.
Speedups are normalized to Legion running with two threads.
The circuit simulator is largely CPU-bound and spends 99%
of its time in a loop computing a stencil approximation for
a PDE. We suspect that the benefits of running in an HRT
would be magnified in a more memory-bound code or one
that stresses the system primitives (see Section 3).

To experiment with hardware functionality in the HRT model,
we wanted to take advantage of a capability that normally
isn’t available in Linux at user-level. We decided to use the
capability to disable interrupts. In the Legion HRT, there
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high-level run-time and the low-level run-time. The high-
level run-time is portable across machines, and the low-level
run-time contains all of the machine specific code. There is
a separate low-level implementation called the shared low-
level run-time. This is the low-level layer implemented for
shared memory machines. As we are interested in single-
node performance, we naturally focused our e↵orts on the
shared low-level Legion run-time. All of our modifications to
Legion when porting it to Nautilus were made to the shared
low-level component. Outside of optimizations using hard-
ware access, and understanding the needs of the run-time,
the port was fairly straight-forward.

Legion, in its default user-level implementation, uses pthreads
as representations of logical processors, so the low-level run-
time makes fairly heavy use of the pthreads interface. In or-
der to transform Legion into a kernel-level HRT, we simply
had to provide a similar interface in Nautilus. The amount
of code added to Nautilus was less than 800 lines, and is
described in Figure 10. After porting Legion into Nautilus,
we then began to explore how Legion could benefit from
unrestricted access to the machine.

We now evaluate our transformation of the user-level Le-
gion run-time into a kernel using Nautilus, highlighting the
realized and potential benefits of having Legion operate as
an HRT. Our port is based on Legion as of October 14, 2014,
specifically commit e22962dbc05e52897a3c699085df9ad19590453a,
which can be found via the Legion project web site.2

The Legion distribution includes numerous test codes, as
well as an example parallel application that is a circuit sim-
ulator. We used the test codes to check the correctness of
our work and the circuit simulator as our initial performance
benchmark. Legion creates an abstract machine that con-
sists of a set of cooperating threads that execute work when
it is ready. These are essentially logical processors. The
number of such threads can vary, representing an abstract
machine of a di↵erent size.

We ran the circuit simulator with a medium problem size
(100000 steps) and varied the number of cores Legion used

2http://legion.stanford.edu
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Figure 12: Speedup of Legion (normalized to 2 Legion pro-
cessors) circuit simulator running on Linux and Nautilus as
a function of Legion processor (thread) count.
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Figure 13: Speedup of Legion circuit simulator comparing
the baseline Nautilus version and a Nautilus version that
executes Legion tasks with interrupts o↵.

to execute Legion tasks. Figure 11 shows the results. The
x-axis shows the number of threads/logical processors. The
thread count only goes up to 62 because the Linux version
would hang at higher core counts, we believe due to a live-
lock situation in Legion’s interaction with Linux. Notice
how closely, even with no hardware optimizations, Nautilus
tracks the performance of Linux. The di↵erence between the
two actually increases when scaling the number of threads.
They are essentially at parity, even though Nautilus and the
Legion port to it are still in their early stages. Nautilus is
slightly faster at 62 cores.

The speedup of the circuit simulator running in Legion as
a function of the number of cores is shown in Figure 12.
Speedups are normalized to Legion running with two threads.
The circuit simulator is largely CPU-bound and spends 99%
of its time in a loop computing a stencil approximation for
a PDE. We suspect that the benefits of running in an HRT
would be magnified in a more memory-bound code or one
that stresses the system primitives (see Section 3).

To experiment with hardware functionality in the HRT model,
we wanted to take advantage of a capability that normally
isn’t available in Linux at user-level. We decided to use the
capability to disable interrupts. In the Legion HRT, there
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Kernel development

The process of building Nautilus as minimal kernel layer
with support for a complex, modern, many-core x86
machine took six person-months of effort on the part of
seasoned OS/VMM kernel developers.
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Figure 9: Source lines of code for the Nautilus kernel.

trol over the placement of threads and memory and can
thus enjoy guarantees about what can a↵ect run-time per-
formance.

Bootstrap Nautilus bootstraps the machine much like any
other OS, but is spared the need to bring up a complex user-
space environment. Once Nautilus initializes the physical
resources of the machine, such as memory, processors, and
devices, control over these resources falls into the hands of
the run-time. Nautilus enforces no policies or mechanisms
that may limit the performance or functionality of parallel
run-times. Because HRT bootstrap may well take the place
of process creation within an HVM, the timing of Nautilus
bootstrap is important. On our hardware, the time from
when the boot loader invokes Nautilus to the time the first
instruction of the run-time executes is on the order of a few
milliseconds.

Timers By default, Nautilus enables a scheduler tick mech-
anism so that run-times may, if they require it, implement a
preemptive scheduling model. The default periodic timer in-
terrupt in Nautilus comes from the Advanced Programmable
Interrupt Controller (APIC) present on all modern x86 ma-
chines. We chose the APIC timer because every processor
core has its own APIC timer, and therefore does not need
to receive scheduling events from other cores. This frees up
IPIs for other uses within the run-time.

For timing of events, Nautilus provides primitives to read
several platform timers, including the legacy i8254 PIT and
the more precise high-precision event timer (HPET). For
example, Nautilus exposes a clock_gettime() function that
will read the HPET’s monotonic counter registers. While
this made the process of porting run-times easier, the run-
time is by no means limited to using this method.

IRQs External interrupts in Nautilus work just like any
other operating system, with the exception that by default
only the timer interrupt is enabled at bootup. The run-
time has complete control over interrupts, including their
mapping, assignment, and priority ordering.

Console Nautilus exposes a set of text-mode console utili-
ties (such as printk()) that allow a run-time to immediately
display useful output on the machine. This output can be
routed to the video card and/or a serial port.

3.2 Complexity
We now make a case for the potential for Nautilus as a vehi-
cle for HRTs, now setting aside the attractive performance
of its primitives.

The process of building Nautilus as a minimal kernel layer
with support for a complex, modern, many-core x86 machine
took six person-months of e↵ort on the part of seasoned
OS/VMM kernel developers. Figure 9 shows that Nautilus
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Figure 10: Lines of code added to Nautilus to support Le-
gion, NDPC, and NESL.

is fairly compact, with a total of roughly 24000 lines of code.

Building a kernel, however, was not our main goal. Our main
focus was supporting the porting and construction of run-
times for the HRT model. The Legion run-time, discussed
at length in the next section, was the most challenging and
complex of the three run-times to bring up in Nautilus. Le-
gion is about double the size of Nautilus in terms of code-
base size, consisting of about 43000 lines of C++. Porting
Legion and the other run-times took a total of about four
person-months of e↵ort. Most of this work went into under-
standing Legion and its needs. The lines of code actually
added to Nautilus to support all three run-times is shown in
Figure 10. We only needed to add about 800 lines of code.
This is tiny considering the size of the Legion run-time.

This suggests that exploring the HRT model for existing or
new parallel run-times, especially with a small kernel like
Nautilus designed with this in mind, is a perfectly manage-
able task for an experienced systems researcher or developer.
We hope that these results will encourage others to similarly
explore the benefits of HRTs.

4. EXAMPLE: LEGION
The Legion run-time system is designed to provide applica-
tions with a parallel programming model that maps well to
heterogeneous architectures [2, 49]. Whether the application
runs on a single node or across nodes—even with GPUs—
the Legion run-time can manage the underlying resources
so that the application does not have to. There are several
reasons why we chose to port Legion to the HRT model.
The first is that the primary focus of the Legion developers
is on the design of the run-time system. This not only al-
lows us to leverage their experience in designing run-times,
but also gives us access to a system designed with experi-
mentation in mind. Further, the codebase has reached the
point where the developers’ ability to rapidly prototype new
ideas is hindered by abstractions imposed by the OS layer.
Another reason we chose Legion is that it is quickly gaining
adoption among the HPC community, including within the
DOE’s exascale e↵ort. The third reason is that we have cor-
responded directly with the Legion developers and discussed
with them issues with the OS layer that they found when
developing their run-time.

Under the covers, Legion bears many similarities to an op-
erating system and concerns itself with many issues that
an OS must deal with, including task scheduling, isolation,
multiplexing of hardware resources, and synchronization. As
we discussed in Section 2, the way that a complex run-time
like Legion attempts to manage the machine to suit its own
needs can often conflict with the services and abstractions
provided by the OS.

As Legion is designed for heterogeneous hardware, includ-
ing multi-node clusters and machines with GPUs, it is de-
signed with a multi-layer architecture. It is split up into the
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trol over the placement of threads and memory and can
thus enjoy guarantees about what can a↵ect run-time per-
formance.

Bootstrap Nautilus bootstraps the machine much like any
other OS, but is spared the need to bring up a complex user-
space environment. Once Nautilus initializes the physical
resources of the machine, such as memory, processors, and
devices, control over these resources falls into the hands of
the run-time. Nautilus enforces no policies or mechanisms
that may limit the performance or functionality of parallel
run-times. Because HRT bootstrap may well take the place
of process creation within an HVM, the timing of Nautilus
bootstrap is important. On our hardware, the time from
when the boot loader invokes Nautilus to the time the first
instruction of the run-time executes is on the order of a few
milliseconds.

Timers By default, Nautilus enables a scheduler tick mech-
anism so that run-times may, if they require it, implement a
preemptive scheduling model. The default periodic timer in-
terrupt in Nautilus comes from the Advanced Programmable
Interrupt Controller (APIC) present on all modern x86 ma-
chines. We chose the APIC timer because every processor
core has its own APIC timer, and therefore does not need
to receive scheduling events from other cores. This frees up
IPIs for other uses within the run-time.

For timing of events, Nautilus provides primitives to read
several platform timers, including the legacy i8254 PIT and
the more precise high-precision event timer (HPET). For
example, Nautilus exposes a clock_gettime() function that
will read the HPET’s monotonic counter registers. While
this made the process of porting run-times easier, the run-
time is by no means limited to using this method.

IRQs External interrupts in Nautilus work just like any
other operating system, with the exception that by default
only the timer interrupt is enabled at bootup. The run-
time has complete control over interrupts, including their
mapping, assignment, and priority ordering.

Console Nautilus exposes a set of text-mode console utili-
ties (such as printk()) that allow a run-time to immediately
display useful output on the machine. This output can be
routed to the video card and/or a serial port.

3.2 Complexity
We now make a case for the potential for Nautilus as a vehi-
cle for HRTs, now setting aside the attractive performance
of its primitives.

The process of building Nautilus as a minimal kernel layer
with support for a complex, modern, many-core x86 machine
took six person-months of e↵ort on the part of seasoned
OS/VMM kernel developers. Figure 9 shows that Nautilus
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is fairly compact, with a total of roughly 24000 lines of code.

Building a kernel, however, was not our main goal. Our main
focus was supporting the porting and construction of run-
times for the HRT model. The Legion run-time, discussed
at length in the next section, was the most challenging and
complex of the three run-times to bring up in Nautilus. Le-
gion is about double the size of Nautilus in terms of code-
base size, consisting of about 43000 lines of C++. Porting
Legion and the other run-times took a total of about four
person-months of e↵ort. Most of this work went into under-
standing Legion and its needs. The lines of code actually
added to Nautilus to support all three run-times is shown in
Figure 10. We only needed to add about 800 lines of code.
This is tiny considering the size of the Legion run-time.

This suggests that exploring the HRT model for existing or
new parallel run-times, especially with a small kernel like
Nautilus designed with this in mind, is a perfectly manage-
able task for an experienced systems researcher or developer.
We hope that these results will encourage others to similarly
explore the benefits of HRTs.

4. EXAMPLE: LEGION
The Legion run-time system is designed to provide applica-
tions with a parallel programming model that maps well to
heterogeneous architectures [2, 49]. Whether the application
runs on a single node or across nodes—even with GPUs—
the Legion run-time can manage the underlying resources
so that the application does not have to. There are several
reasons why we chose to port Legion to the HRT model.
The first is that the primary focus of the Legion developers
is on the design of the run-time system. This not only al-
lows us to leverage their experience in designing run-times,
but also gives us access to a system designed with experi-
mentation in mind. Further, the codebase has reached the
point where the developers’ ability to rapidly prototype new
ideas is hindered by abstractions imposed by the OS layer.
Another reason we chose Legion is that it is quickly gaining
adoption among the HPC community, including within the
DOE’s exascale e↵ort. The third reason is that we have cor-
responded directly with the Legion developers and discussed
with them issues with the OS layer that they found when
developing their run-time.

Under the covers, Legion bears many similarities to an op-
erating system and concerns itself with many issues that
an OS must deal with, including task scheduling, isolation,
multiplexing of hardware resources, and synchronization. As
we discussed in Section 2, the way that a complex run-time
like Legion attempts to manage the machine to suit its own
needs can often conflict with the services and abstractions
provided by the OS.

As Legion is designed for heterogeneous hardware, includ-
ing multi-node clusters and machines with GPUs, it is de-
signed with a multi-layer architecture. It is split up into the

I Four person-months to port

Also porting NESL and NDPC (related to each other).
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Conclusion

I A mikrokernel

I And a lightweight kernel

I Requires effort for porting

I Early stage of development
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