Case for Transforming Parallel Run-times Into
Operating System Kernels
Paper Reading Group

Kyle Hale
Peter Dinda
Presents: Maksym Planeta

18.02.2016

Table of Contents

Introduction

Evaluation

Development effort

Conclusion

Table of Contents

Introduction

What is this project?

1. Northwestern University, Sandia Labs, Oak Ridge
2. Part of Hobbes Project

3. They also develop Palacios

Why is it interesting for us?

» Proposes a microkernel

Why is it interesting for us?

» Proposes a microkernel

» Uses hyperthreads in HPC context

Why is it interesting for us?

» Proposes a microkernel
» Uses hyperthreads in HPC context
> Targets Xeon Phi

Why is it interesting for us?

v

Proposes a microkernel

v

Uses hyperthreads in HPC context
Targets Xeon Phi

v

v

It cites L4 paper:

[40] J. Liedtke. On micro-kernel construction. In
Proceedings of the 15" ACM Symposium on Operating
Systems Principles (SOSP 1995), pages 237-250, Dec.
1995.

Idea

1. HPC app runs in user mode
2. Hardware available in kernel mode

3. When an HPC program runs in kernel mode:
3.1 All nice features are directly available

A Typical dialog with the kernel

ARE PROVIDED KERNEL
ABSTRACTIONS THE RIGHT ONES?

I'd like to pin
memory to a
specific PFN
range please

user mode

kernel mode

general OS

NOT ALWAYS.

ARE PROVIDED KERNEL
ABSTRACTIONS THE RIGHT ONES?

I'd like to never
be interrupted
please

user mode

kernel mode

general OS

NOT ALWAYS.

RESTRICTED ACCESS TO HARDWARE

user mode

kernel mode

general OS

I'd like to set up
some custom
page mappings
please

> = Q>

RESTRICTED ACCESS TO HARDWARE

I'd like to interrupt
another
processor please

user mode

kernel mode

general OS

< > «F P AE» (E>» = o>

Motivation

1. HPC app runs in user mode
2. Hardware available in kernel mode

3. When an HPC program runs in kernel mode:

3.1 All nice features are directly available

3.2 Kernel does not restrict the program with bad abstractions:
For example, the run-time might need subset
barriers, and be forced to build them out of mutexes.

Motivation

1. HPC app runs in user mode
2. Hardware available in kernel mode

3. When an HPC program runs in kernel mode:

3.1 All nice features are directly available

3.2 Kernel does not restrict the program with bad abstractions:
For example, the run-time might need subset
barriers, and be forced to build them out of mutexes.

3.3 Kernel may waste resources for the features the application

doesn't need:
For example, the run-time might not require

coherence, but get it anyway.

Contributions

1. Criticize traditional architecture
2. Propose a new OS structure

3. Port some of the existing runtimes

Hybrid Run-Time (HRT)

User Mode

Parallel App

Parallel Run-time

Kernel Mode

General Kernel

Node HW

(a) Current Model

User Mode

Kernel Mode

Parallel App

Hybrid Run-time
(HRT) I

Node HWV

Performance Path

(b) Hybrid Run-time Model

What is HRT?

» The runtime is the kernel, built within a kernel framework

What is HRT?

» The runtime is the kernel, built within a kernel framework

> Everything is kernel space

What is HRT?

» The runtime is the kernel, built within a kernel framework
> Everything is kernel space

» HRT has full access to the hardware

What is HRT?

v

The runtime is the kernel, built within a kernel framework

v

Everything is kernel space

v

HRT has full access to the hardware

v

HRT can pick its own abstractions

Aerokernel

User Mode

P .
ernel Mode Parallel Application :

: Kernel
Runtime :

: HRT

Threads | Sync. | Paging | Events | Topology | Bootstrap | Timers | IRQs | Console

Figure 2: Structure of Nautilus.

u]
o)
I
i
it

Benefits

» Better abstractions
» Noiseless
» Lightweight

Legacy support

User Mode

Parallel App

Parallel Run-time(

Kernel Mode

General Kernel

General
Virtualization
Model

Hybrid Virtual Machine (HVM)

User Mode
K | Mod
ernet Wiode Parallel App
Hybrid Run-time
= Legacy Path (HRT)
Specialized

Virtualization
Model

|

Node HW

€

(c) Hybrid Run-time Model Within a Hybrid Virtual Machine

Performance Path

Table of Contents

Evaluation

Thread creation

7x10° " 7x10° 7x10°
X0 Nautilus —e— X100 Nautilus —e— X100 Nautilus —e—
6x10 Linux - © -, 610 Linux - @ -, 6x10 Linux - -
5 . o . o .
5x10 . 5x10 . 5x10
8 axto® : 8 axi0® - 8 ax0® .
& axto® o & ax10° ’ 8 ax10° o
3 3 » 3 . & 310 -
2x10°8 o 2x10° 2x10° o
1x10° o x108 LB 1x10° o ye/‘
0B ;.__G-/4 0 B - g 0 |
2 4 8 16 82 64 2 4 8 6 82 64 2 4 8 16 82 64
Threads Threads Threads

Figure: Average, minimum, and maximum time to create a number of
threads in sequence.

Thread creation

®

[C) ©

26 40 45
24 40
22 3 35
o 20 o 30 o 30
S 18 T B 25

@ o 25 b3
2 16 g g 20
o 14 @20 o 15
12 10
10 ® 5
8 10 0

2 4 8 16 32 64 2 4 8 16 32 64 2
Threads Threads
Linux

Figure: from previous figure

Nautilus

8

16
Threads

Thread creation

(@ (e) U}
26 40 45
24 40
22 35 35
2 20 s 30 g 30
g s 5
3 18 2 5 3 2
g 16 4 g 20
o 14 w20 » 15
12 o
10 s s
8 10 0
2 4 8 16 32 64 2 4 8 1 32 64 2 4 8 16 32 64
Threads Threads Threads

H . _Linux H .
Figure: z0c- from previous figure

Why bends? At (d) at 8 threads, (e) at 32, and (f) at 8. Bugs?

Thread creation (summary)

B e

OS Avg | Min Max
Nautilus | 16795 2907 44264
Linux 38456 | 34447 | 238866

Figure 3: Time to create a single thread measured in cycles.

Spinlock microbenchmark

oS Execution time (s)
Nautilus 13.72

Linux 12.53

oS Avg. acquire/release time (cycles)
Nautilus 99

Linux 36

Figure 5: Total time to acquire and release a spinlock 500
million times on Nautilus and Linux, and average time in
cycles for an acquire/release pair.

Wake-up microbenchmark

30000

not available in userspace

25000

20000

overhead too high
in userspace

15000

Cycles

10000

5000 -

0
Linux N. MWAIT N. condvar N. w/kick

Figure 6: Average event wakeup latency.

Circuit simulator benchmark

110

Nautilus —©—
100 1 Linux - E]- i

90
80
70
60

50

Runtime (s)

40
30

20 -

10

0
2 4 8 16 32 62

Legion Processors (threads)

Figure 11: Run time of Legion circuit simulator versus core
count. The baseline Nautilus version has higher performance
at 62 cores than the Linux version.

Circuit simulator benchmark

16

Nautilus +
Linux - E1-

14

12

10

Speedup
0]

2 4 8 16 32 62
Legion Processors (threads)

Figure 12: Speedup of Legion (normalized to 2 Legion pro-

cessors) circuit simulator running on Linux and Nautilus as

a function of Legion processor (thread) count.

Circuit simulator benchmark

5%

45%

4%

35%

3% |

Speedup

25%
2% |
15%

q
1% r

05% ‘ ‘ ‘ ‘ ‘
2 4 8 16 32 62
Figure 13: Speedup of Legion circuit simulator comparing
the baseline Nautilus version and a Nautilus version that

executes Legion tasks with interrupts off.

Table of Contents

Development effort

Kernel development

The process of building Nautilus as minimal kernel layer
with support for a complex, modern, many-core x86
machine took six person-months of effort on the part of
seasoned OS/VVMM kernel developers.

Language SLOC
C 22697
CH++ 133
x86 Assembly 428
Scripting 706

Figure 9: Source lines of code for the Nautilus kernel.

Run-time support

Porting Legion:
» 43000 SLOC in C++

» Most of the work went into understating Legion

» Some code added to Nautilus

Language | SLOC
C++ 133
C 636

Figure 10: Lines of code added to Nautilus to support Le-
gion, NDPC, and NESL.

» Four person-months to port
Also porting NESL and NDPC (related to each other).

Table of Contents

Conclusion

Conclusion

A mikrokernel

v

v

And a lightweight kernel

v

Requires effort for porting

v

Early stage of development

	Introduction
	Evaluation
	Development effort
	Conclusion

