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What is this project?

1. Northwestern University, Sandia Labs, Oak Ridge
2. Part of Hobbes Project

3. They also develop Palacios



Why is it interesting for us?
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Why is it interesting for us?
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It cites L4 paper:

[40] J. Liedtke. On micro-kernel construction. In
Proceedings of the 15" ACM Symposium on Operating
Systems Principles (SOSP 1995), pages 237-250, Dec.
1995.



Idea

1. HPC app runs in user mode
2. Hardware available in kernel mode

3. When an HPC program runs in kernel mode:
3.1 All nice features are directly available



A Typical dialog with the kernel



ARE PROVIDED KERNEL
ABSTRACTIONS THE RIGHT ONES?

I'd like to pin
memory to a
specific PFN
range please

user mode

kernel mode

general OS

NOT ALWAYS. . .. ... ...



ARE PROVIDED KERNEL
ABSTRACTIONS THE RIGHT ONES?

I'd like to never
be interrupted
please

user mode

kernel mode

general OS

NOT ALWAYS. . .. ... ...



RESTRICTED ACCESS TO HARDWARE

user mode

kernel mode

general OS

I'd like to set up
some custom
page mappings
please

> = Q>



RESTRICTED ACCESS TO HARDWARE

I'd like to interrupt
another
processor please

user mode

kernel mode

general OS
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Motivation

1. HPC app runs in user mode
2. Hardware available in kernel mode

3. When an HPC program runs in kernel mode:

3.1 All nice features are directly available

3.2 Kernel does not restrict the program with bad abstractions:
For example, the run-time might need subset
barriers, and be forced to build them out of mutexes.
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1. HPC app runs in user mode
2. Hardware available in kernel mode

3. When an HPC program runs in kernel mode:

3.1 All nice features are directly available

3.2 Kernel does not restrict the program with bad abstractions:
For example, the run-time might need subset
barriers, and be forced to build them out of mutexes.

3.3 Kernel may waste resources for the features the application

doesn't need:
For example, the run-time might not require

coherence, but get it anyway.



Contributions

1. Criticize traditional architecture
2. Propose a new OS structure

3. Port some of the existing runtimes



Hybrid Run-Time (HRT)
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What is HRT?

» The runtime is the kernel, built within a kernel framework
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What is HRT?
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The runtime is the kernel, built within a kernel framework

v

Everything is kernel space

v

HRT has full access to the hardware

v

HRT can pick its own abstractions
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Benefits

» Better abstractions
» Noiseless
» Lightweight



Legacy support
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Thread creation
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Figure: Average, minimum, and maximum time to create a number of
threads in sequence.



Thread creation
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Thread creation
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Why bends? At (d) at 8 threads, (e) at 32, and (f) at 8. Bugs?



Thread creation (summary)

B e

OS Avg | Min Max
Nautilus | 16795 2907 44264
Linux 38456 | 34447 | 238866

Figure 3: Time to create a single thread measured in cycles.



Spinlock microbenchmark

oS Execution time (s)
Nautilus 13.72

Linux 12.53

oS Avg. acquire/release time (cycles)
Nautilus 99

Linux 36

Figure 5: Total time to acquire and release a spinlock 500
million times on Nautilus and Linux, and average time in
cycles for an acquire/release pair.



Wake-up microbenchmark
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Figure 6: Average event wakeup latency.



Circuit simulator benchmark
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Figure 11: Run time of Legion circuit simulator versus core
count. The baseline Nautilus version has higher performance
at 62 cores than the Linux version.



Circuit simulator benchmark
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Figure 12: Speedup of Legion (normalized to 2 Legion pro-

cessors) circuit simulator running on Linux and Nautilus as

a function of Legion processor (thread) count.



Circuit simulator benchmark
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Figure 13: Speedup of Legion circuit simulator comparing
the baseline Nautilus version and a Nautilus version that

executes Legion tasks with interrupts off.



Table of Contents

Development effort



Kernel development

The process of building Nautilus as minimal kernel layer
with support for a complex, modern, many-core x86
machine took six person-months of effort on the part of
seasoned OS/VVMM kernel developers.

Language SLOC
C 22697
CH++ 133
x86 Assembly 428
Scripting 706

Figure 9: Source lines of code for the Nautilus kernel.



Run-time support

Porting Legion:
» 43000 SLOC in C++

» Most of the work went into understating Legion

» Some code added to Nautilus

Language | SLOC
C++ 133
C 636

Figure 10: Lines of code added to Nautilus to support Le-
gion, NDPC, and NESL.

» Four person-months to port
Also porting NESL and NDPC (related to each other).
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Conclusion

A mikrokernel

v

v

And a lightweight kernel

v

Requires effort for porting

v

Early stage of development
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