
Quantifying the Effectiveness of Load Balance
Algorithms

Olga Pearce Todd Gamblin Bronis R. de Supinski
Martin Schulz Nance M. Amato

Department of Computer Science and Engineering
Texas A&M University

Center for Applied Scientific Computing,
Lawrence Livermore National Laboratory

ICS ’12

1 / 9

Motivation

Three load balancing steps:
I Evaluate imbalance
I Decide if and how to balance
I Redistribute work

1 & 2 should be done application-independent, but with
application knowledge.

2 / 9

Motivation

Algorithm 1 Using the Load Model (Application code in Italics)
Input. G← graph of work units and interactions
1: for timesteps do
2: execute application iteration
3: send G to LB Framework
4: update Load Model based on iteration measurements and G
5: use Cost Model for cost-benefit analysis of available LB algorithms
6: if benefit of rebalancing > cost of rebalancing then
7: provide selected LB algorithm with accurate input
8: send instructions on how to rebalance to application
9: end if

10: if instructed to rebalance then
11: rebalance as directed by LB Framework
12: end if
13: end for

• Metrics to evaluate application-provided load models and to
compare candidate application models;
• A methodology to evaluate load imbalance scenarios, and

how efficiently particular load balance schemes correct it;
• A cost model to evaluate balancing mechanisms and to select

the one most efficient for a particular imbalance scenario;
• An evaluation of load balance characteristics in the context

of two large-scale production simulations.

We show that ad hoc application models can mispredict imbal-
ance by up to 70% and the widely used ratio of maximum load to
average load incompletely represents imbalance. Our models pro-
vide insight into the cost of algorithms such as diffusion [7] and
partitioning [19]. Our model correctly selects the algorithm that
achieves the lowest runtime in up to 96% of the cases, and can
achieve a 19% gain over selecting a single balancing algorithm.

The remainder of this paper is organized as follows. We give an
overview of our method in Section 2 and demonstrate the shortfalls
of current load metrics in Section 3. We define our application-
independent load model in Section 4 and our cost model for load
balancing algorithms in Section 5. We describe our target appli-
cations and their balancing algorithms in Section 6. We evaluate
application models and demonstrate how to use our load model to
select the appropriate load balancing algorithm in Section 7.

2. OVERVIEW OF APPROACH
The computational load in high-performance physical simula-

tions can evolve over time. Our novel model, which represents
load in terms of application elements, provides a cost-benefit anal-
ysis of imbalance correction mechanisms. Thus, it can guide the
application developer on when and how to correct the imbalance.

Algorithm 1 summarizes the steps of our method. The core of
our load model is a graph that abstractly represents application
elements (vertices) and dependencies or communication between
them (edges). The application elements are the entities that can be
migrated to correct imbalance. A developer only needs to provide
the work units and their interactions (the same input that they would
provide to a partitioner) (Alg. 1, line 3). Our framework then builds
a graph to represent this abstract information.

Our load model combines the abstract application representation
with existing tools’ measurements of the degree of imbalance to
evaluate the load accurately in terms of the application elements
(Alg. 1, line 4). We perform a cost-benefit analysis of available load
balancing algorithms to determine if rebalancing the application
would be beneficial at a given time, and, if so, which load balancing
algorithm to use (Alg. 1, line 5). We give accurate load information
to the load balancing algorithm to determine how the application
should be rebalanced (Alg. 1, line 7). We instruct the application to

Load on each Process L λ σ g1 g2

(a)
0

1

2

3

P0 P1 P2 P3 P4 P5 P6 P7

2 0% 0 0 0

(b)
0

1

2

3

P0 P1 P2 P3 P4 P5 P6 P7

2 50% 1 1 −2

(c)
0

1

2

3

P0 P1 P2 P3 P4 P5 P6 P7

2 50% .5 2 1

(d)
0

1

2

3

P0 P1 P2 P3 P4 P5 P6 P7

2 50% .5 2 1

Table 1: Example Load Distributions and Their Moments

rebalance (answering the when question) with that load balancing
algorithm (answering the how question) (Alg. 1, line 8).

We show that evaluation of the imbalance and correction mech-
anisms requires awareness of application information. Our gen-
eral framework characterizes load imbalance and augments existing
load metrics by facilitating the evaluation of developer-provided
load estimation schemes. Thus, a developer can use it to refine ad
hoc load models and to understand their limitations. We demon-
strate this process for two large-scale applications in Section 7.1.
The developer can then use our cost model to select from available
load balancing algorithms, as we show in Section 7.2.

3. DEFICIENCIES OF LOAD METRICS
Formally, load imbalance is an uneven distribution of computa-

tional load among tasks in a parallel system. In large-scale SPMD
applications with synchronous time steps, imbalance can force all
processes to wait for the most overloaded process. The perfor-
mance penalty grows linearly as the number of processors increases,
so regularly balancing large-scale synchronous simulations is par-
ticularly important as their load distribution evolves over time.

Load balance metrics characterize how unevenly work is dis-
tributed. The percent imbalance metric, λ, is most commonly used:

λ =

(
Lmax

L
− 1

)
× 100% (1)

where Lmax is the maximum load on any process and L is the
mean load over all processes. This metric measures the perfor-
mance lost to imbalanced load or, conversely, the performance that
could be reclaimed by balancing the load. Percent imbalance mea-
sures the severity of load imbalance. However, it ignores statistical
properties of the load distribution that can provide insight into how
quickly a particular algorithm can correct an imbalance.

Statistical moments provide a detailed picture of load distribu-
tion that can indicate whether a distribution has a few highly loaded
outliers or many slightly imbalanced processes. These properties
impact which balancing algorithm will most efficiently correct the
imbalance. Diffusive algorithms [7] can quickly correct small im-
balances while the presence of an outlier in the load distribution
may require more drastic, global corrections. Figure 1 shows the
three most common statistical moments, standard deviation σ, skew-
ness g1 and kurtosis g2, where n is the number of processes and Li

is the load on the ith process. Positive skewness means that rela-
tively few processes have higher than average load, while negative
skewness means that relatively few processes have lower than av-
erage load. A normal distribution of load implies skewness of 0.
Higher kurtosis means that more of the variance arises from infre-
quent extreme deviations, while lower kurtosis corresponds to fre-

186

3 / 9

Load model

σ =

√√√√ 1

n

n∑

i=0

(Li − L)2 (2)

g1 =

1
n

n∑

i=0

(Li − L)3

(
1
n

n∑

i=0

(Li − L)2
)3/2

(3)

g2 =

1
n

n∑

i=0

(Li − L)4

(
1
n

n∑

i=0

(Li − L)2
)2 − 3 (4)

Figure 1: Statistical Moments

quent modestly sized deviations. A normal distribution has kurtosis
of 0. Statistical moments capture key information about load distri-
bution but are insufficient to evaluate the speed with which we can
correct imbalance because they do not include information about
the proximity of application elements in the simulation space.

Table 1 uses several load distributions to show how the statistical
moments fail to distinguish key properties. For simplicity, we show
a one-dimensional interaction pattern of processesP0...P7 in which
Pi and Pi+1 perform computation on neighboring domains. The
figure shows that load metrics cannot distinguish cases (c) and (d)
while the difficulty of correcting these load scenarios varies greatly
if the computation is optimal when neighboring portions of the sim-
ulated space are assigned to the neighboring processes. In case (c),
we could simply move the extra load on P1 to P0, while in (d) the
extra load from P7 must first displace work to P6, P5, and so on
through P1 until the under-loaded P0 receives enough work.

4. ELEMENT-AWARE LOAD MODEL
Parallel scientific applications decompose their physical domain

into work units, which, in different applications, can be elements
representing units of the simulated physical space, particles mod-
eled, or random samples performed on the domain. Some appli-
cation elements may involve more or less computation than oth-
ers due to their physical properties or spatial proximity. Section 3
shows that a load model must be aware of the application elements
and their interactions and placement in order to understand load
imbalance and, more importantly, how to correct it. A model that
does not include this information will fail to capture the effects of
the proximity of elements in the simulation space and the mapping
of the simulation space onto the process space.

Our investigation of large-scale scientific applications has shaped
our novel application-element-aware, application-independent load
model that represents application elements and interactions between
them. Our API enables the application to provide our framework
with abstract application information at the granularity of appli-
cation domain decomposition. This granularity allows our model
to reflect application elements, their communication and depen-
dencies, and their mapping to processes. Most load balancing al-
gorithms analyze and redistribute work with the same granularity,
which enables our framework to guide them. We provide a general
methodology to map observed application performance accurately
to the application elements at the appropriate granularity level.

1

2 3

2 5

1 2

3 2

2 1

2 1

4 2

7
1

2

2

3

1

2

Process 0 Process 1 Process 2
CompUnits = 7 CompUnits = 4 CompUnits = 5
CompWt = 16 CompWt = 8 CompWt = 16
MeasuredLoad = 11 MeasuredLoad = 5 MeasuredLoad = 10

Figure 2: Application Element-Aware Load Model

Figure 2 illustrates our load model: the edges represent bidi-
rectional interactions between application elements. Solid edges
represent interactions within a process, while dashed edges repre-
sent interprocess communication. The relationships between ap-
plication elements within the domain decomposition provide the
communication structure and the relative weights of computation
in the model. Node weights indicate the computation required for
each element as anticipated by the application (i.e., the application
load model). Importantly, we can correlate this information to wall-
clock measurements of the load on each process. The example in
Figure 2 shows that Process 0 has 7 work units with an application
anticipated load or relative computation weight of 16, and its work
units have 4 channels of communication with elements on Process
1 with a total relative communication cost of 6. For example, we
measure the load on Process 0 to be 11.

We must carefully consider the difference in modeled and mea-
sured load. If the model is accurate, the two are linearly related.
If they are not directly proportional, the application model is in-
complete and could be improved. We discuss our methodology to
evaluate abstract application information in Section 7.1. When we
are satisfied with the model accuracy, we can use it to compute the
load distribution metrics and to observe how the load is distributed
throughout the process space in terms of application elements.

Table 2 illustrates the versatility of our model by showing work
unit mappings for three major types of scientific applications.

Unstructured Mesh. In unstructured mesh applications, each cell
in the mesh is an element. We represent the mesh connectivity
with edges. In some unstructured mesh applications, the cells may
require similar computation and we would anticipate unit compu-
tation per mesh cell. In others, the computation per cell may be
proportional to the cell’s volume, and we reflect this in the weight
of each node in our model. Table 2(a) shows an unstructured mesh
application that performs a Monte Carlo algorithm on its mesh. In
this case, the work is proportional to the number of samples in each
mesh cell, so we use the sample count as the node weight. We show
communication between neighboring grid cells as edges.

Molecular Dynamics. In classical molecular dynamics applica-
tions and other N-body simulations, each individual body is an el-
ement. Edges reflect the simulated neighborhood of the bodies:
each body is connected to others within a cutoff radius (i.e., those
with which it interacts), as Table 2(b) shows. As we discuss in
Section 7.1, we can select from several models for computation per
element. Simple models assume that the work per body is constant,
while others reflect the density of the body’s neighborhood.

Empirical Model. Some applications, such as ParaDiS [6], use
empirical models to anticipate computation per element. An appli-
cation developer can construct this type of model by placing timers
around important computation regions. Table 2(c) shows how ad
hoc placement of timers may omit important load constituents.

187

4 / 9

Algorithm

I After each timestep, update load graph
I Use Cost Model to check is load balancing is beneficial
I If it is:

I Run LB algorithm to get new mapping
I Instruct the application to move its data

5 / 9

Cost Model

CBalAlg = CLbDecission + CDataMvmt,

CDataMvmt = α+ βElementsMovedmax · elementsize,

ElementsMovedmax = Elementsmax
Lavg

Lmax − Lavg
; (?)

TBalAlg =

steps∑
i=0

(CBalAlgi
+ Lmaxi

),

Tglobal = Cglobal1 + steps · Lavg,

Tdiff =

steps∑
i=0

(Cdiffi + Lmaxi
),

Tnone = steps · Lmax1
.

6 / 9

Cost Model

CBalAlg = CLbDecission + CDataMvmt,

CDataMvmt = α+ βElementsMovedmax · elementsize,

ElementsMovedmax = Elementsmax
Lavg

Lmax − Lavg
; (?)

TBalAlg =

steps∑
i=0

(CBalAlgi
+ Lmaxi

),

Tglobal = Cglobal1 + steps · Lavg,

Tdiff =

steps∑
i=0

(Cdiffi + Lmaxi
),

Tnone = steps · Lmax1
.

6 / 9

Cost Model

CBalAlg = CLbDecission + CDataMvmt,

CDataMvmt = α+ βElementsMovedmax · elementsize,

ElementsMovedmax = Elementsmax
Lavg

Lmax − Lavg
; (?)

TBalAlg =

steps∑
i=0

(CBalAlgi
+ Lmaxi

),

Tglobal = Cglobal1 + steps · Lavg,

Tdiff =

steps∑
i=0

(Cdiffi + Lmaxi
),

Tnone = steps · Lmax1
.

6 / 9

Cost Model

CBalAlg = CLbDecission + CDataMvmt,

CDataMvmt = α+ βElementsMovedmax · elementsize,

ElementsMovedmax = Elementsmax
Lavg

Lmax − Lavg
; (?)

TBalAlg =

steps∑
i=0

(CBalAlgi
+ Lmaxi

),

Tglobal = Cglobal1 + steps · Lavg,

Tdiff =

steps∑
i=0

(Cdiffi + Lmaxi
),

Tnone = steps · Lmax1
.

6 / 9

Cost Model

CBalAlg = CLbDecission + CDataMvmt,

CDataMvmt = α+ βElementsMovedmax · elementsize,

ElementsMovedmax = Elementsmax
Lavg

Lmax − Lavg
; (?)

TBalAlg =

steps∑
i=0

(CBalAlgi
+ Lmaxi

),

Tglobal = Cglobal1 + steps · Lavg,

Tdiff =

steps∑
i=0

(Cdiffi + Lmaxi
),

Tnone = steps · Lmax1
.

6 / 9

Cost Model

CBalAlg = CLbDecission + CDataMvmt,

CDataMvmt = α+ βElementsMovedmax · elementsize,

ElementsMovedmax = Elementsmax
Lavg

Lmax − Lavg
; (?)

TBalAlg =

steps∑
i=0

(CBalAlgi
+ Lmaxi

),

Tglobal = Cglobal1 + steps · Lavg,

Tdiff =

steps∑
i=0

(Cdiffi + Lmaxi
),

Tnone = steps · Lmax1
.

6 / 9

Cost Model

CBalAlg = CLbDecission + CDataMvmt,

CDataMvmt = α+ βElementsMovedmax · elementsize,

ElementsMovedmax = Elementsmax
Lavg

Lmax − Lavg
; (?)

TBalAlg =

steps∑
i=0

(CBalAlgi
+ Lmaxi

),

Tglobal = Cglobal1 + steps · Lavg,

Tdiff =

steps∑
i=0

(Cdiffi + Lmaxi
),

Tnone = steps · Lmax1
.

6 / 9

Cost Model

CBalAlg = CLbDecission + CDataMvmt,

CDataMvmt = α+ βElementsMovedmax · elementsize,

ElementsMovedmax = Elementsmax
Lavg

Lmax − Lavg
; (?)

TBalAlg =

steps∑
i=0

(CBalAlgi
+ Lmaxi

),

Tglobal = Cglobal1 + steps · Lavg,

Tdiff =

steps∑
i=0

(Cdiffi + Lmaxi
),

Tnone = steps · Lmax1
.

6 / 9

Applications

1. Benchmark calls MPI_I{Send,Recv} and sleep according
to load graph.

2. ddcMD
I Can report three load models: molecules, barriers, forces.
I Special internal representation requires special treatment.

3. ParaDIS
I Simulation grows over time.
I 3D decomposition of domain into cuboids

7 / 9

Evaluation 1

Comparison of application load metrics with Libra.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90

M
o
d
e
le

d
 L

o
a
d
 I
m

b
a
la

n
c
e
 (

%
)

Measured Load Imbalance (%)

ddcMD
Accurate

Molecules
Barriers
Forces

(a) % imbalance in runs

-2

-1

 0

 1

 2

 3

 4

 5

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5

M
o
d
e
le

d
 K

u
rt

o
s
is

Measured Kurtosis

ddcMD
Accurate

Molecules
Barriers
Forces

(b) Kurtosis of load distributions

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 10 20 30 40 50 60 70

R
a
n
k
 C

o
rr

e
la

ti
o
n

Experiment

ddcMD
Accurate

Molecules
Barriers
Forces

(c) Rank correlation of load distributions

 0

 5e+10

 1e+11

 1.5e+11

 2e+11

 2.5e+11

 3e+11

 3.5e+11

 4e+11

 4.5e+11

 0 10 20 30 40 50 60 70 80

T
im

e
 t
il
l
C

o
n
v
e
rg

e
n
c
e

Experiment (sorted by Force model convergence time)

ddcMD
Molecules

Barriers
Forces

(d) Steps for diffusion algorithm to converge

Figure 4: Evaluation of Three ddcMD Models

 10

 15

 20

 25

 30

 35

 40

 10 15 20 25 30 35 40

M
o
d
e
le

d
 L

o
a
d
 I
m

b
a
la

n
c
e
 (

%
)

Measured Load Imbalance (%)

ParaDiS
Accurate
Modeled

(a) % imbalance in runs

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 0 5 10 15 20 25 30 35

R
a
n
k
 C

o
rr

e
la

ti
o
n

Experiment

ParaDiS
Accurate
Modeled

(b) Rank correlation of load distributions

Figure 5: ParaDiS Model Evaluation

ers only measure the main force computation. Our load model in
conjunction with Libra’s data shows that this fails to capture the be-
havior of communication, collision detection, and remesh phases.
When we compare ParaDiS’s calipers to Libra’s measurements of
only the force computation, the model is quite accurate. Depending
on the problem, these omitted regions comprise up to 15% of the
execution time. We have communicated our findings to the appli-
cation developers, and are working with them to optimize how the
application reports load to the load balancer.

7.2 Cost Model Case Study
In this section, we evaluate how well our model selects the most

effective load balancer for particular imbalance scenarios, and we
further evaluate the net performance improvement achieved using
our model. We use the cost model defined in Section 5 to select the
load balancing algorithm that would lead to the shortest runtime of
our benchmark. We then apply our cost model to the global and
diffusive load balancing schemes in ddcMD.

For our benchmark, we compare total application runtime when
using the following load balancing algorithms:

1. Global: Correcting imbalance during the first time step using
Zoltan’s graph partitioner [9]; modeled by Equation 9;

2. Diffusive: Correcting imbalance at every time step using the
Koradi method [14]; modeled by Equation 10;

3. None: No correction; modeled by Equation 11.

We conduct runs spanning 2 to 64 processes with graphs with be-
tween 8,000 and 512,000 vertices and varying weights and initial
decompositions. Figure 6(a) shows initial imbalance in the bench-
mark runs; we chose these initial imbalance scenarios because they
are representative of some of the application runs we observed.

Figure 6(b) shows that our load model correctly selects the algo-
rithm that achieves the lowest runtime in 87% of the cases, tracing
the curve with highest performance improvement for most of the

experiments. In most cases, our model chooses the global algo-
rithm. This algorithm performs very well in 96% of the cases, but
4% of the time, its high algorithmic and redistribution cost (as mod-
eled by Equation 5) outweighs the performance benefit so it incurs
a 35% performance penalty. In these cases, the diffusive algorithm
outperforms the global algorithm, and our model correctly chooses
it instead. In the only cases where our model does not choose the
correct algorithm, it only suffers a penalty of 5.43% because these
were scenarios where the global and diffusive algorithm performed
within 6% of each other.

On average, using our model can achieve a 49% performance
gain while the next best alternative, the global algorithm, achieves
48% overall improvement in runtime. While the diffusive algo-
rithm performed much worse than either of these overall (averaging
net gains of only 3% over doing nothing), our model is still able to
exploit it in the rare cases where it did outperform the global al-
gorithm, leading to significant gains in these scenarios and more
reliable performance across the board. For these cases, the diffu-
sive algorithm performs significantly better than Zoltan, and using
our model can prevent performance loss for workloads that contain
many such pathological runs.

For evaluating the performance of our model for ddcMD, we
applied it to the input sets also used in Section 7.1; their initial load
properties are demonstrated in Figures 4 (a-c). Our model selected
among the following load balancing algorithms:

1. Global: Correcting imbalance during the first time step using
the Koradi method [14] several times to mimic a method that
corrects the imbalance in one step; modeled by Equation 9;

2. Diffusive: Correcting imbalance at every time step using the
ad hoc Voronoi decomposition method with the Forces ab-
straction evaluated in Sec. 7.1 as input; modeled by Eqn. 10;

3. None: no correction; modeled by Equation 11.

Table 5 shows runtimes of the load balancing algorithms for
several imbalance scenarios in the nanowire simulation. These

192

8 / 9

Evaluation 2 – Cost Model

 84

 86

 88

 90

 92

 94

 96

 98

 100

 102

 104

 0 5 10 15 20 25

M
e
a
s
u
re

d
 L

o
a
d
 I
m

b
a
la

n
c
e
 (

%
)

Benchmark Input

Benchmark
Imbalance

(a) Starting Imbalance of Benchmark Runs

-40

-20

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

%
 i
m

p
ro

v
e
m

e
n
t
o
v
e
r

N
o
n
e

Experiment (sorted by Load Model improvement)

Benchmark
None

Global
Diffusive

Load Model

(b) Model Performance on Benchmark Runs

-150

-100

-50

 0

 50

 0 10 20 30 40 50 60 70 80

%
 i
m

p
ro

v
e
m

e
n
t
o
v
e
r

N
o
n
e

Experiment (sorted by Load Model improvement)

ddcMD
None

Diffusive
Global

Load Model

(c) Model Performance on ddcMD Runs

Figure 6: Evaluation of our Load Model on Benchmark and ddcMD

Load on each Process Orig. Diffus. Global Model

(a)
 0
 1
 2
 3

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lo
ad

226 212 248 diff.

(b)
 0
 1
 2
 3

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lo
ad

344 459 269 global

(c)
 0
 1
 2
 3

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lo
ad

286 355 239 global

(d)
 0
 1
 2
 3

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lo
ad

270 267 235 global

Table 5: Sample ddcMD Imbalance Scenarios (seconds)

cases ran on 64 processors organized as a 4x16 process grid. Ta-
ble 5 shows the relative load in the beginning of the simulation,
with darker sections representing higher load and lighter blue rep-
resenting lower load for the particular process. For each of these,
we show the execution time without load balancing, the execution
time with the diffusion algorithm, and the execution time using the
global algorithm. We run the nanowire simulation for 200 time
steps. The diffusion algorithm has a cost (as defined in Equation 5)
of 0.01 seconds per simulation step. The global load balancing
method incurs a one-time cost of 9 seconds. In all cases, our cost
model guides the selection of the appropriate balancing algorithm.

Figure 6(c) shows that our load model correctly selects the best
algorithm in 96% of the cases, tracing the curve of the best perform-
ing algorithm. Because the ad hoc Voronoi algorithm improves
the performance in 82% of the cases with an average performance
gain of 14%, our model correctly selects it in most cases. The Ko-
radi algorithm consistently performs worse and is only selected by
the model in a few cases where its performance improvement out-
weighs the high cost of Koradi; overall, the model achieves a 19%
gain over the Koradi algorithm.

While our experiments are designed to explore a range of values,
a suite of production runs might contain a variety of pathological
cases, and our model will allow for a code to perform well even in
the cases where the otherwise preferred balancing algorithm will
perform poorly. Our model provides a means to select the appro-
priate load balancing algorithm at runtime without developer inter-
vention, correctly selecting the algorithm that achieves the lowest
runtime in up to 96% of the cases, achieving a 19% gain over se-
lecting a single balancing algorithm for all cases.

8. RELATED WORK
Previous work has focused on load measurement and finding

sources of imbalance. Efficient, scalable measurement of load [12,
24] identifies whether load imbalance is a problem for a particu-
lar application. Imbalance attribution [23] provides insight into the
source code locations that cause imbalance. Our load model takes
advantage of existing tools [10] and their measurements, and com-
bines them with knowledge of the application elements and their
interactions. This combination improves understanding of compu-
tational load in terms of application elements.

Many applications that suffer from load imbalance implement
their own load balancing algorithms that are usually tightly cou-
pled with application data structures and cannot be used outside
of the application. Some rely heavily on geometric decomposi-
tion of the domain (i.e., hierarchical recursive bisection [6]). AMR
applications can order boxes according to their spatial location by
placing a Morton space filling curve [16] through the box centroids
to increase the likelihood that neighboring patches reside on the
same process after load balancing [27]. N-body simulations ei-
ther explicitly assign bodies to processes or indirectly assign bod-
ies by assigning subspaces to processes using orthogonal recursive
bisection [2], oct-trees [21, 26], and fractiling [1]. These exam-
ples require application developers to construct an ad hoc model of
per-task load. These abstractions are frequently inaccurate because
they omit a significant subset of computational costs, or they fail
to consider the platform. Our load model enables evaluation of the
application abstractions, thus ensuring that the computation costs
are correctly assigned prior to being used to correct the imbalance.

Another common approach to load balancing uses suites of par-
titioners that work with mesh or graph representations of computa-
tion in the applications (e.g., ParMetis [19], Jostle [25], Zoltan [9]).
Users of these partitioners must supply information about the cur-
rent state of the application and the system, which again must be
application specific. Thus, they may provide inaccurate or incom-
plete information. Further, partitioners do not have sufficient infor-
mation to decide when to load balance, placing a further burden on
the application developer. Our load model enables actionable eval-
uation of load imbalance, and can help a developer decide when to
rebalance and whether the repartitioner is a good balancing algo-
rithm for a particular type of imbalance.

Charm++ [3, 5] provides a measurement-based load balancing
framework that records the work represented by objects and object-
to-object communication patterns. The load balancer can migrate
the objects between process queues. While this approach may work
well when the application developers can decompose their compu-
tation into independent objects, many applications cannot. In other
cases, Charm++ can over-decompose the domain [18] and then bal-

193

 84

 86

 88

 90

 92

 94

 96

 98

 100

 102

 104

 0 5 10 15 20 25

M
e
a
s
u
re

d
 L

o
a
d
 I
m

b
a
la

n
c
e
 (

%
)

Benchmark Input

Benchmark
Imbalance

(a) Starting Imbalance of Benchmark Runs

-40

-20

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

%
 i
m

p
ro

v
e
m

e
n
t
o
v
e
r

N
o
n
e

Experiment (sorted by Load Model improvement)

Benchmark
None

Global
Diffusive

Load Model

(b) Model Performance on Benchmark Runs

-150

-100

-50

 0

 50

 0 10 20 30 40 50 60 70 80

%
 i
m

p
ro

v
e
m

e
n
t
o
v
e
r

N
o
n
e

Experiment (sorted by Load Model improvement)

ddcMD
None

Diffusive
Global

Load Model

(c) Model Performance on ddcMD Runs

Figure 6: Evaluation of our Load Model on Benchmark and ddcMD

Load on each Process Orig. Diffus. Global Model

(a)
 0
 1
 2
 3

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lo
ad

226 212 248 diff.

(b)
 0
 1
 2
 3

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lo
ad

344 459 269 global

(c)
 0
 1
 2
 3

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lo
ad

286 355 239 global

(d)
 0
 1
 2
 3

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lo
ad

270 267 235 global

Table 5: Sample ddcMD Imbalance Scenarios (seconds)

cases ran on 64 processors organized as a 4x16 process grid. Ta-
ble 5 shows the relative load in the beginning of the simulation,
with darker sections representing higher load and lighter blue rep-
resenting lower load for the particular process. For each of these,
we show the execution time without load balancing, the execution
time with the diffusion algorithm, and the execution time using the
global algorithm. We run the nanowire simulation for 200 time
steps. The diffusion algorithm has a cost (as defined in Equation 5)
of 0.01 seconds per simulation step. The global load balancing
method incurs a one-time cost of 9 seconds. In all cases, our cost
model guides the selection of the appropriate balancing algorithm.

Figure 6(c) shows that our load model correctly selects the best
algorithm in 96% of the cases, tracing the curve of the best perform-
ing algorithm. Because the ad hoc Voronoi algorithm improves
the performance in 82% of the cases with an average performance
gain of 14%, our model correctly selects it in most cases. The Ko-
radi algorithm consistently performs worse and is only selected by
the model in a few cases where its performance improvement out-
weighs the high cost of Koradi; overall, the model achieves a 19%
gain over the Koradi algorithm.

While our experiments are designed to explore a range of values,
a suite of production runs might contain a variety of pathological
cases, and our model will allow for a code to perform well even in
the cases where the otherwise preferred balancing algorithm will
perform poorly. Our model provides a means to select the appro-
priate load balancing algorithm at runtime without developer inter-
vention, correctly selecting the algorithm that achieves the lowest
runtime in up to 96% of the cases, achieving a 19% gain over se-
lecting a single balancing algorithm for all cases.

8. RELATED WORK
Previous work has focused on load measurement and finding

sources of imbalance. Efficient, scalable measurement of load [12,
24] identifies whether load imbalance is a problem for a particu-
lar application. Imbalance attribution [23] provides insight into the
source code locations that cause imbalance. Our load model takes
advantage of existing tools [10] and their measurements, and com-
bines them with knowledge of the application elements and their
interactions. This combination improves understanding of compu-
tational load in terms of application elements.

Many applications that suffer from load imbalance implement
their own load balancing algorithms that are usually tightly cou-
pled with application data structures and cannot be used outside
of the application. Some rely heavily on geometric decomposi-
tion of the domain (i.e., hierarchical recursive bisection [6]). AMR
applications can order boxes according to their spatial location by
placing a Morton space filling curve [16] through the box centroids
to increase the likelihood that neighboring patches reside on the
same process after load balancing [27]. N-body simulations ei-
ther explicitly assign bodies to processes or indirectly assign bod-
ies by assigning subspaces to processes using orthogonal recursive
bisection [2], oct-trees [21, 26], and fractiling [1]. These exam-
ples require application developers to construct an ad hoc model of
per-task load. These abstractions are frequently inaccurate because
they omit a significant subset of computational costs, or they fail
to consider the platform. Our load model enables evaluation of the
application abstractions, thus ensuring that the computation costs
are correctly assigned prior to being used to correct the imbalance.

Another common approach to load balancing uses suites of par-
titioners that work with mesh or graph representations of computa-
tion in the applications (e.g., ParMetis [19], Jostle [25], Zoltan [9]).
Users of these partitioners must supply information about the cur-
rent state of the application and the system, which again must be
application specific. Thus, they may provide inaccurate or incom-
plete information. Further, partitioners do not have sufficient infor-
mation to decide when to load balance, placing a further burden on
the application developer. Our load model enables actionable eval-
uation of load imbalance, and can help a developer decide when to
rebalance and whether the repartitioner is a good balancing algo-
rithm for a particular type of imbalance.

Charm++ [3, 5] provides a measurement-based load balancing
framework that records the work represented by objects and object-
to-object communication patterns. The load balancer can migrate
the objects between process queues. While this approach may work
well when the application developers can decompose their compu-
tation into independent objects, many applications cannot. In other
cases, Charm++ can over-decompose the domain [18] and then bal-

193

9 / 9

