Quantifying the Effectiveness of Load Balance Algorithms

Olga Pearce Todd Gamblin Bronis R. de Supinski Martin Schulz Nance M. Amato

> Department of Computer Science and Engineering Texas A&M University Center for Applied Scientific Computing,

Lawrence Livermore National Laboratory

ICS '12

Motivation

Three load balancing steps:

- Evaluate imbalance
- Decide if and how to balance
- Redistribute work

 $1\ \&\ 2$ should be done application-independent, but with application knowledge.

Motivation

Load model

Algorithm

- After each timestep, update load graph
- Use Cost Model to check is load balancing is beneficialIf it is:
 - Run LB algorithm to get new mapping
 - Instruct the application to move its data

$C_{\text{BalAlg}} = C_{\text{LbDecission}} + C_{\text{DataMvmt}},$

$C_{BalAlg} = C_{LbDecission} + C_{DataMvmt},$

$C_{BalAlg} = C_{LbDecission} + C_{DataMvmt},$ $C_{DataMvmt} = \alpha + \beta ElementsMoved_{max} \cdot elementsize,$

$$C_{BalAlg} = C_{LbDecission} + C_{DataMvmt},$$

$$C_{DataMvmt} = \alpha + \beta ElementsMoved_{max} \cdot elementsize,$$

$$ElementsMoved_{max} = Elements_{max} \frac{L_{avg}}{L_{max} - L_{avg}};$$
(?)

 $C_{BalAlg} = C_{LbDecission} + C_{DataMvmt},$ $C_{DataMvmt} = \alpha + \beta ElementsMoved_{max} \cdot elementsize,$ $ElementsMoved_{max} = Elements_{max} \frac{L_{avg}}{L_{max} - L_{avg}};$ $T_{BalAlg} = \sum_{i=0}^{steps} (C_{BalAlg_i} + L_{max_i}),$

 $C_{BalAlg} = C_{LbDecission} + C_{DataMvmt},$ $C_{DataMvmt} = \alpha + \beta ElementsMoved_{max} \cdot elementsize,$ $ElementsMoved_{max} = Elements_{max} \frac{L_{avg}}{L_{max} - L_{avg}};$ $T_{BalAlg} = \sum_{i=0}^{steps} (C_{BalAlg_i} + L_{max_i}),$ $T_{global} = C_{global_1} + steps \cdot L_{avg},$

 $C_{BalAlg} = C_{LbDecission} + C_{DataMvmt}$ $C_{\text{DataMvmt}} = \alpha + \beta \text{ElementsMoved}_{max} \cdot \text{elementsize},$ $ElementsMoved_{max} = Elements_{max} \frac{L_{avg}}{I_{max} - I_{avg}};$ (?)steps $T_{BalAlg} = \sum_{i=1}^{n} (C_{BalAlg_i} + L_{max_i}),$ $T_{alobal} = C_{alobal_1} + steps \cdot L_{avg}$ steps $T_{diff} = \sum (C_{diff_i} + L_{max_i}),$

 $C_{BalAlg} = C_{LbDecission} + C_{DataMvmt}$ $C_{\text{DataMvmt}} = \alpha + \beta \text{ElementsMoved}_{max} \cdot \text{elementsize},$ $ElementsMoved_{max} = Elements_{max} \frac{L_{avg}}{I_{max} - I_{avg}};$ (?)steps $T_{BalAlg} = \sum (C_{BalAlg_i} + L_{max_i}),$ $T_{alobal} = C_{alobal_1} + steps \cdot L_{avg},$ steps $T_{\text{diff}} = \sum (C_{\text{diff}_i} + L_{\text{max}_i}),$ i=0 $T_{none} = steps \cdot L_{max_1}$.

Applications

- Benchmark calls MPI_I{Send,Recv} and sleep according to load graph.
- 2. ddcMD
 - ► Can report three load models: molecules, barriers, forces.
 - ▶ Special internal representation requires special treatment.
- 3. ParaDIS
 - Simulation grows over time.
 - 3D decomposition of domain into cuboids

Evaluation 1

Figure 4: Evaluation of Three ddcMD Models

Figure 5: ParaDiS Model Evaluation

Evaluation 2 – Cost Model

