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Motivation

Fast, low-latency hardware: Ethernet, SSD
I/O-intensive applications
OS on critical (data) path
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Figure 1: Linux networking architecture and workflow.

removed, there is an opportunity to rethink the POSIX API
for more streamlined networking. In addition to a POSIX
compatible interface, Arrakis provides a native interface
(Arrakis/N) which supports true zero-copy I/O.

2.2 Storage Stack Overheads

To illustrate the overhead of today’s OS storage stacks,
we conduct an experiment, where we execute small write
operations immediately followed by an fsync1 system call
in a tight loop of 10,000 iterations, measuring each oper-
ation’s latency. We store the file system on a RAM disk,
so the measured latencies represent purely CPU overhead.

The overheads shown in Figure 2 stem from data copy-
ing between user and kernel space, parameter and access
control checks, block and inode allocation, virtualization
(the VFS layer), snapshot maintenance (btrfs), as well as
metadata updates, in many cases via a journal [53].

While historically these CPU overheads have been
insignificant compared to disk access time, recent hard-
ware trends have drastically reduced common-case write
storage latency by introducing flash-backed DRAM onto
the device. In these systems, OS storage stack overhead
becomes a major factor. We measured average write
latency to our RAID cache to be 25 µs. PCIe-attached
flash storage adapters, like Fusion-IO’s ioDrive2, report
hardware access latencies as low as 15 µs [24]. In
comparison, OS storage stack overheads are high, adding
between 40% and 200% for the extended file systems,
depending on journal use, and up to 5× for btrfs. The large
standard deviation for btrfs stems from its highly threaded
design, used to flush non-critical file system metadata and
update reference counts in the background.

2.3 Application Overheads

What do these I/O stack overheads mean to operation
latencies within a typical datacenter application? Consider
the Redis [18] NoSQL store. Redis persists each write via
an operational log (called append-only file)2 and serves
reads from an in-memory data structure.

To serve a read, Redis performs a series of operations:
First, epoll is called to await data for reading, followed

1We also tried fdatasync, with negligible difference in latency.
2Redis also supports snapshot persistence because of the high

per-operation overhead imposed by Linux.
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Figure 2: Average overhead in µs of various Linux file system
implementations, when conducting small, persistent writes.
Error bars show standard deviation.

by recv to receive a request. After receiving, the (textual)
request is parsed and the key looked-up in memory. Once
found, a response is prepared and then, after epoll is
called again to check whether the socket is ready, sent
to the client via send. For writes, Redis additionally
marshals the operation into log format, writes the log
and waits for persistence (via the fsync call) before
responding. Redis also spends time in accounting, access
checks, and connection handling (Other row in Table 2).

Table 2 shows that a total of 76% of the latency in an
average read hit on Linux is due to socket operations.
In Arrakis, we reduce socket operation latency by 68%.
Similarly, 90% of the latency of a write on Linux is due to
I/O operations. In Arrakis we reduce I/O latency by 82%.

We can also see that Arrakis reduces some application-
level overheads. This is due to better cache behavior of the
user-level I/O stacks and the control/data plane separation
evading all kernel crossings. Arrakis’ write latency is still
dominated by storage access latency (25µs in our system).
We expect the gap between Linux and Arrakis performance
to widen as faster storage devices appear on the market.

2.4 Hardware I/O Virtualization

Single-Root I/O Virtualization (SR-IOV) [38] is a
hardware technology intended to support high-speed I/O
for multiple virtual machines sharing a single physical
machine. An SR-IOV-capable I/O adapter appears on the
PCIe interconnect as a single “physical function” (PCI
parlance for a device) which can in turn dynamically create
additional “virtual functions”. Each of these resembles a
PCI device, which can be directly mapped into a different
virtual machine and access can be protected via IOMMU
(e.g. Intel’s VT-d [34]). To the guest operating system,
each virtual function can be programmed as if it was
a regular physical device, with a normal device driver
and an unchanged I/O stack. Hypervisor software with
access to the physical hardware (such as Domain 0 in
a Xen [9] installation) creates and deletes these virtual
functions, and configures filters in the SR-IOV adapter
to demultiplex hardware operations to different virtual
functions and therefore different guest operating systems.
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removed, there is an opportunity to rethink the POSIX API
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compatible interface, Arrakis provides a native interface
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ation’s latency. We store the file system on a RAM disk,
so the measured latencies represent purely CPU overhead.

The overheads shown in Figure 2 stem from data copy-
ing between user and kernel space, parameter and access
control checks, block and inode allocation, virtualization
(the VFS layer), snapshot maintenance (btrfs), as well as
metadata updates, in many cases via a journal [53].

While historically these CPU overheads have been
insignificant compared to disk access time, recent hard-
ware trends have drastically reduced common-case write
storage latency by introducing flash-backed DRAM onto
the device. In these systems, OS storage stack overhead
becomes a major factor. We measured average write
latency to our RAID cache to be 25 µs. PCIe-attached
flash storage adapters, like Fusion-IO’s ioDrive2, report
hardware access latencies as low as 15 µs [24]. In
comparison, OS storage stack overheads are high, adding
between 40% and 200% for the extended file systems,
depending on journal use, and up to 5× for btrfs. The large
standard deviation for btrfs stems from its highly threaded
design, used to flush non-critical file system metadata and
update reference counts in the background.

2.3 Application Overheads

What do these I/O stack overheads mean to operation
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by recv to receive a request. After receiving, the (textual)
request is parsed and the key looked-up in memory. Once
found, a response is prepared and then, after epoll is
called again to check whether the socket is ready, sent
to the client via send. For writes, Redis additionally
marshals the operation into log format, writes the log
and waits for persistence (via the fsync call) before
responding. Redis also spends time in accounting, access
checks, and connection handling (Other row in Table 2).

Table 2 shows that a total of 76% of the latency in an
average read hit on Linux is due to socket operations.
In Arrakis, we reduce socket operation latency by 68%.
Similarly, 90% of the latency of a write on Linux is due to
I/O operations. In Arrakis we reduce I/O latency by 82%.

We can also see that Arrakis reduces some application-
level overheads. This is due to better cache behavior of the
user-level I/O stacks and the control/data plane separation
evading all kernel crossings. Arrakis’ write latency is still
dominated by storage access latency (25µs in our system).
We expect the gap between Linux and Arrakis performance
to widen as faster storage devices appear on the market.

2.4 Hardware I/O Virtualization

Single-Root I/O Virtualization (SR-IOV) [38] is a
hardware technology intended to support high-speed I/O
for multiple virtual machines sharing a single physical
machine. An SR-IOV-capable I/O adapter appears on the
PCIe interconnect as a single “physical function” (PCI
parlance for a device) which can in turn dynamically create
additional “virtual functions”. Each of these resembles a
PCI device, which can be directly mapped into a different
virtual machine and access can be protected via IOMMU
(e.g. Intel’s VT-d [34]). To the guest operating system,
each virtual function can be programmed as if it was
a regular physical device, with a normal device driver
and an unchanged I/O stack. Hypervisor software with
access to the physical hardware (such as Domain 0 in
a Xen [9] installation) creates and deletes these virtual
functions, and configures filters in the SR-IOV adapter
to demultiplex hardware operations to different virtual
functions and therefore different guest operating systems.
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Motivation

Receiver Running CPU Idle

Network Stack in 1.26 (37.6 %) 1.24 (20.0 %)
out 1.05 (31.3 %) 1.42 (22.9 %)

Scheduler 0.17 (5.0 %) 2.40 (38.8 %)

Copy in 0.24 (7.1 %) 0.25 (4.0 %)
out 0.44 (13.2 %) 0.55 (8.9 %)

Kernel Crossing return 0.10 (2.9 %) 0.20 (3.3 %)
syscall 0.10 (2.9 %) 0.13 (2.1 %)

Total 3.36 (σ = 0.66) 6.19 (σ = 0.82)

UDP echo: 1,024Byte payload, 1,000 samples, times in µs
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removed, there is an opportunity to rethink the POSIX API
for more streamlined networking. In addition to a POSIX
compatible interface, Arrakis provides a native interface
(Arrakis/N) which supports true zero-copy I/O.
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ation’s latency. We store the file system on a RAM disk,
so the measured latencies represent purely CPU overhead.
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ing between user and kernel space, parameter and access
control checks, block and inode allocation, virtualization
(the VFS layer), snapshot maintenance (btrfs), as well as
metadata updates, in many cases via a journal [53].

While historically these CPU overheads have been
insignificant compared to disk access time, recent hard-
ware trends have drastically reduced common-case write
storage latency by introducing flash-backed DRAM onto
the device. In these systems, OS storage stack overhead
becomes a major factor. We measured average write
latency to our RAID cache to be 25 µs. PCIe-attached
flash storage adapters, like Fusion-IO’s ioDrive2, report
hardware access latencies as low as 15 µs [24]. In
comparison, OS storage stack overheads are high, adding
between 40% and 200% for the extended file systems,
depending on journal use, and up to 5× for btrfs. The large
standard deviation for btrfs stems from its highly threaded
design, used to flush non-critical file system metadata and
update reference counts in the background.
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What do these I/O stack overheads mean to operation
latencies within a typical datacenter application? Consider
the Redis [18] NoSQL store. Redis persists each write via
an operational log (called append-only file)2 and serves
reads from an in-memory data structure.

To serve a read, Redis performs a series of operations:
First, epoll is called to await data for reading, followed
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by recv to receive a request. After receiving, the (textual)
request is parsed and the key looked-up in memory. Once
found, a response is prepared and then, after epoll is
called again to check whether the socket is ready, sent
to the client via send. For writes, Redis additionally
marshals the operation into log format, writes the log
and waits for persistence (via the fsync call) before
responding. Redis also spends time in accounting, access
checks, and connection handling (Other row in Table 2).

Table 2 shows that a total of 76% of the latency in an
average read hit on Linux is due to socket operations.
In Arrakis, we reduce socket operation latency by 68%.
Similarly, 90% of the latency of a write on Linux is due to
I/O operations. In Arrakis we reduce I/O latency by 82%.

We can also see that Arrakis reduces some application-
level overheads. This is due to better cache behavior of the
user-level I/O stacks and the control/data plane separation
evading all kernel crossings. Arrakis’ write latency is still
dominated by storage access latency (25µs in our system).
We expect the gap between Linux and Arrakis performance
to widen as faster storage devices appear on the market.

2.4 Hardware I/O Virtualization

Single-Root I/O Virtualization (SR-IOV) [38] is a
hardware technology intended to support high-speed I/O
for multiple virtual machines sharing a single physical
machine. An SR-IOV-capable I/O adapter appears on the
PCIe interconnect as a single “physical function” (PCI
parlance for a device) which can in turn dynamically create
additional “virtual functions”. Each of these resembles a
PCI device, which can be directly mapped into a different
virtual machine and access can be protected via IOMMU
(e.g. Intel’s VT-d [34]). To the guest operating system,
each virtual function can be programmed as if it was
a regular physical device, with a normal device driver
and an unchanged I/O stack. Hypervisor software with
access to the physical hardware (such as Domain 0 in
a Xen [9] installation) creates and deletes these virtual
functions, and configures filters in the SR-IOV adapter
to demultiplex hardware operations to different virtual
functions and therefore different guest operating systems.
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Goal

Direct application-level access to I/O devices
Maintain properties of classical server OS: isolation, rate limiting, global naming

Use hardware virtualisation mechanisms
SR-IOV: virtual PCI devices with dedicated resources
Standard for NIC, expected for RAID
Memory protection via IOMMU

Support only policies that hardware can implement efficiently
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Arrakis —Hardware Model

Virtual interface cards:
Managed by control plane
Dedicated queues and rate limiters
Virtual network interface card (VNIC)

Transmit and receive filters
Optional support for offloading

Virtual storage interface controller (VSIC)
Virtual storage areas (VSA)
Emulated by dedicated CPU core
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Figure 3: Arrakis architecture. The storage controller maps
VSAs to physical storage.

through their protected virtual device instance without re-
quiring kernel intervention. In order to perform these oper-
ations, applications rely on a user-level I/O stack that is pro-
vided as a library. The user-level I/O stack can be tailored to
the application as it can assume exclusive access to a virtu-
alized device instance, allowing us to remove any features
not necessary for the application’s functionality. Finally,
(de-)multiplexing operations and security checks are not
needed in this dedicated environment and can be removed.

The user naming and protection model is unchanged.
A global naming system is provided by the control plane.
This is especially important for sharing stored data.
Applications implement their own storage, while the
control plane manages naming and coarse-grain allocation,
by associating each application with the directories and
files it manages. Other applications can still read those
files by indirecting through the kernel, which hands the
directory or read request to the appropriate application.

3.2 Hardware Model

A key element of our work is to develop a hardware-
independent layer for virtualized I/O—that is, a device
model providing an “ideal” set of hardware features.
This device model captures the functionality required
to implement in hardware the data plane operations of a
traditional kernel. Our model resembles what is already
provided by some hardware I/O adapters; we hope it will
provide guidance as to what is needed to support secure
user-level networking and storage.

In particular, we assume our network devices provide
support for virtualization by presenting themselves as
multiple virtual network interface cards (VNICs) and
that they can also multiplex/demultiplex packets based on
complex filter expressions, directly to queues that can be
managed entirely in user space without the need for kernel
intervention. Similarly, each storage controller exposes
multiple virtual storage interface controllers (VSICs)
in our model. Each VSIC provides independent storage
command queues (e.g., of SCSI or ATA format) that are
multiplexed by the hardware. Associated with each such
virtual interface card (VIC) are queues and rate limiters.

VNICs also provide filters and VSICs provide virtual
storage areas. We discuss these components below.

Queues: Each VIC contains multiple pairs of DMA
queues for user-space send and receive. The exact form
of these VIC queues could depend on the specifics of
the I/O interface card. For example, it could support a
scatter/gather interface to aggregate multiple physically-
disjoint memory regions into a single data transfer. For
NICs, it could also optionally support hardware checksum
offload and TCP segmentation facilities. These features
enable I/O to be handled more efficiently by performing
additional work in hardware. In such cases, the Arrakis
system offloads operations and further reduces overheads.

Transmit and receive filters: A transmit filter is a pred-
icate on network packet header fields that the hardware
will use to determine whether to send the packet or discard
it (possibly signaling an error either to the application or
the OS). The transmit filter prevents applications from
spoofing information such as IP addresses and VLAN
tags and thus eliminates kernel mediation to enforce these
security checks. It can also be used to limit an application
to communicate with only a pre-selected set of nodes.

A receive filter is a similar predicate that determines
which packets received from the network will be delivered
to a VNIC and to a specific queue associated with the target
VNIC. For example, a VNIC can be set up to receive all
packets sent to a particular port, so both connection setup
and data transfers can happen at user-level. Installation
of transmit and receive filters are privileged operations
performed via the kernel control plane.

Virtual storage areas: Storage controllers need to pro-
vide an interface via their physical function to map virtual
storage areas (VSAs) to extents of physical drives, and
associate them with VSICs. A typical VSA will be large
enough to allow the application to ignore the underlying
multiplexing—e.g., multiple erasure blocks on flash, or
cylinder groups on disk. An application can store multiple
sub-directories and files in a single VSA, providing precise
control over multi-object serialization constraints.

A VSA is thus a persistent segment [13]. Applications
reference blocks in the VSA using virtual offsets,
converted by hardware into physical storage locations. A
VSIC may have multiple VSAs, and each VSA may be
mapped into multiple VSICs for interprocess sharing.

Bandwidth allocators: This includes support for re-
source allocation mechanisms such as rate limiters and
pacing/traffic shaping of I/O. Once a frame has been
removed from a transmit rate-limited or paced queue, the
next time another frame could be fetched from that queue
is regulated by the rate limits and the inter-packet pacing
controls associated with the queue. Installation of these
controls are also privileged operations.
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Arrakis —Control Plane

Provides VICs, filters, VSAs, rate specifiers
IPC endpoints (“doorbells”) associated to
events on VIC
Virtual file system interfaces with
directories exported by applications
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Arrakis —Data Plane

Applications use (virtual) hardware directly
Asynchronous operations, doorbells signal completion
Optimised native interfaces with POSIX-compatibility layer on top
Network

Send/Receive packet to/from queue
Extaris: user-level network stack partly based on lwIP

Storage
Read/Write/Flush in a VSA; any offset, arbitrary size
Caladan: library of persistent data structures (log, queue)
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Evaluation

Implemented by extending Barrelfish
6 machine cluster for evaluation

6-core Intel Xeon E5-2430 (Sandy Bridge) @ 2.2GHz
Intel X520 (82599-based) 10Gb Ethernet adapter
Intel MegaRAID RS3DC040 RAID controller
100GB Intel DC S3700 SSD

One machine executes application, others act as clients
“Tuned” Ubuntu Linux 13.04 (Linux 3.8)
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UDP Echo (1,024Byte payload, 1,000 samples, times in µs)

Linux Arrakis

Receiver Running CPU Idle POSIX Native

Network stack in 1.26 (37.6 %) 1.24 (20.0 %) 0.32 (22.3 %) 0.21 (55.3 %)
out 1.05 (31.3 %) 1.42 (22.9 %) 0.27 (18.7 %) 0.17 (44.7 %)

Scheduler 0.17 (5.0 %) 2.40 (38.8 %) — —

Copy in 0.24 (7.1 %) 0.25 (4.0 %) 0.27 (18.7 %) —
out 0.44 (13.2 %) 0.55 (8.9 %) 0.58 (40.3 %) —

Kernel crossing return 0.10 (2.9 %) 0.20 (3.3 %) — —
syscall 0.10 (2.9 %) 0.13 (2.1 %) — —

Total 3.36 (σ = 0.66) 6.19 (σ = 0.82) 1.44 (σ < 0.01) 0.38 (σ < 0.01)
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• What are the major contributors to performance
overhead in Arrakis and how do they compare to those
of Linux (presented in §2)?

• Does Arrakis provide better latency and throughput
for real-world cloud applications? How does the
throughput scale with the number of CPU cores for
these workloads?

• Can Arrakis retain the benefits of user-level application
execution and kernel enforcement, while providing
high-performance packet-level network IO?

• What additional performance gains are possible by
departing from the POSIX interface?

We compare the performance of the following OS
configurations: Linux kernel version 3.8 (Ubuntu version
13.04), Arrakis using the POSIX interface (Arrakis/P),
and Arrakis using its native interface (Arrakis/N).

We tuned Linux network performance by installing the
latest ixgbe device driver version 3.17.3 and disabling
receive side scaling (RSS) when applications execute on
only one processor. RSS spreads packets over several NIC
receive queues, but incurs needless coherence overhead on
a single core. The changes yield a throughput improvement
of 10% over non-tuned Linux. We use the kernel-shipped
MegaRAID driver version 6.600.18.00-rc1.

Linux uses a number of performance-enhancing
features of the network hardware, which Arrakis does
not currently support. Among these features is the use
of direct processor cache access by the NIC, TCP and
UDP segmentation offload, large receive offload, and
network packet header splitting. All of these features
can be implemented in Arrakis; thus, our performance
comparison is weighted in favor of Linux.

4.1 Server-side Packet Processing Performance

We load the UDP echo benchmark from §2 on the server
and use all other machines in the cluster as load generators.
These generate 1 KB UDP packets at a fixed rate and record
the rate at which their echoes arrive. Each experiment
exposes the server to maximum load for 20 seconds.

Shown in Table 1, compared to Linux, Arrakis elimi-
nates two system calls, software demultiplexing overhead,
socket buffer locks, and security checks. In Arrakis/N, we
additionally eliminate two socket buffer copies. Arrakis/P
incurs a total server-side overhead of 1.44 µs, 57% less
than Linux. Arrakis/N reduces this overhead to 0.38 µs.

The echo server is able to add a configurable delay
before sending back each packet. We use this delay to
simulate additional application-level processing time at
the server. Figure 4 shows the average throughput attained
by each system over various such delays; the theoretical
line rate is 1.26M pps with zero processing.

In the best case (no additional processing time),
Arrakis/P achieves 2.3× the throughput of Linux. By
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Figure 4: Average UDP echo throughput for packets with 1024
byte payload over various processing times. The top y-axis value
shows theoretical maximum throughput on the 10G network.
Error bars in this and following figures show min/max measured
over 5 repeats of the experiment.

departing from POSIX, Arrakis/N achieves 3.9× the
throughput of Linux. The relative benefit of Arrakis
disappears at 64 µs. To gauge how close Arrakis comes
to the maximum possible throughput, we embedded a
minimal echo server directly into the NIC device driver,
eliminating any remaining API overhead. Arrakis/N
achieves 94% of the driver limit.

4.2 Memcached Key-Value Store

Memcached is an in-memory key-value store used by
many cloud applications. It incurs a processing overhead
of 2–3 µs for an average object fetch request, comparable
to the overhead of OS kernel network processing.

We benchmark memcached 1.4.15 by sending it
requests at a constant rate via its binary UDP protocol,
using a tool similar to the popular memslap benchmark [2].
We configure a workload pattern of 90% fetch and 10%
store requests on a pre-generated range of 128 different
keys of a fixed size of 64 bytes and a value size of 1 KB,
in line with real cloud deployments [7].

To measure network stack scalability for multiple cores,
we vary the number of memcached server processes. Each
server process executes independently on its own port
number, such that measurements are not impacted by scal-
ability bottlenecks in memcached itself, and we distribute
load equally among the available memcached instances.
On Linux, memcached processes share the kernel-level
network stack. On Arrakis, each process obtains its own
VNIC with an independent set of packet queues, each
controlled by an independent instance of Extaris.

Figure 5 shows that memcached on Arrakis/P achieves
1.7× the throughput of Linux on one core, and attains near
line-rate at 4 CPU cores. The slightly lower throughput
on all 6 cores is due to contention with Barrelfish
system management processes [10]. By contrast, Linux
throughput nearly plateaus beyond two cores. A single,
multi-threaded memcached instance shows no noticeable
throughput difference to the multi-process scenario. This
is not surprising as memcached is optimized to scale well.
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UDP Echo (1,024Byte payload, 1,000 samples, times in µs)

Linux Arrakis

Receiver Running CPU Idle POSIX Native

Network stack in 1.26 (37.6 %) 1.24 (20.0 %) 0.32 (22.3 %) 0.21 (55.3 %)
out 1.05 (31.3 %) 1.42 (22.9 %) 0.27 (18.7 %) 0.17 (44.7 %)

Scheduler 0.17 (5.0 %) 2.40 (38.8 %) — —

Copy in 0.24 (7.1 %) 0.25 (4.0 %) 0.27 (18.7 %) —
out 0.44 (13.2 %) 0.55 (8.9 %) 0.58 (40.3 %) —

Kernel crossing return 0.10 (2.9 %) 0.20 (3.3 %) — —
syscall 0.10 (2.9 %) 0.13 (2.1 %) — —

Total 3.36 (σ = 0.66) 6.19 (σ = 0.82) 1.44 (σ < 0.01) 0.38 (σ < 0.01)
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• What are the major contributors to performance
overhead in Arrakis and how do they compare to those
of Linux (presented in §2)?

• Does Arrakis provide better latency and throughput
for real-world cloud applications? How does the
throughput scale with the number of CPU cores for
these workloads?

• Can Arrakis retain the benefits of user-level application
execution and kernel enforcement, while providing
high-performance packet-level network IO?

• What additional performance gains are possible by
departing from the POSIX interface?

We compare the performance of the following OS
configurations: Linux kernel version 3.8 (Ubuntu version
13.04), Arrakis using the POSIX interface (Arrakis/P),
and Arrakis using its native interface (Arrakis/N).

We tuned Linux network performance by installing the
latest ixgbe device driver version 3.17.3 and disabling
receive side scaling (RSS) when applications execute on
only one processor. RSS spreads packets over several NIC
receive queues, but incurs needless coherence overhead on
a single core. The changes yield a throughput improvement
of 10% over non-tuned Linux. We use the kernel-shipped
MegaRAID driver version 6.600.18.00-rc1.

Linux uses a number of performance-enhancing
features of the network hardware, which Arrakis does
not currently support. Among these features is the use
of direct processor cache access by the NIC, TCP and
UDP segmentation offload, large receive offload, and
network packet header splitting. All of these features
can be implemented in Arrakis; thus, our performance
comparison is weighted in favor of Linux.

4.1 Server-side Packet Processing Performance

We load the UDP echo benchmark from §2 on the server
and use all other machines in the cluster as load generators.
These generate 1 KB UDP packets at a fixed rate and record
the rate at which their echoes arrive. Each experiment
exposes the server to maximum load for 20 seconds.

Shown in Table 1, compared to Linux, Arrakis elimi-
nates two system calls, software demultiplexing overhead,
socket buffer locks, and security checks. In Arrakis/N, we
additionally eliminate two socket buffer copies. Arrakis/P
incurs a total server-side overhead of 1.44 µs, 57% less
than Linux. Arrakis/N reduces this overhead to 0.38 µs.

The echo server is able to add a configurable delay
before sending back each packet. We use this delay to
simulate additional application-level processing time at
the server. Figure 4 shows the average throughput attained
by each system over various such delays; the theoretical
line rate is 1.26M pps with zero processing.

In the best case (no additional processing time),
Arrakis/P achieves 2.3× the throughput of Linux. By
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Figure 4: Average UDP echo throughput for packets with 1024
byte payload over various processing times. The top y-axis value
shows theoretical maximum throughput on the 10G network.
Error bars in this and following figures show min/max measured
over 5 repeats of the experiment.

departing from POSIX, Arrakis/N achieves 3.9× the
throughput of Linux. The relative benefit of Arrakis
disappears at 64 µs. To gauge how close Arrakis comes
to the maximum possible throughput, we embedded a
minimal echo server directly into the NIC device driver,
eliminating any remaining API overhead. Arrakis/N
achieves 94% of the driver limit.

4.2 Memcached Key-Value Store

Memcached is an in-memory key-value store used by
many cloud applications. It incurs a processing overhead
of 2–3 µs for an average object fetch request, comparable
to the overhead of OS kernel network processing.

We benchmark memcached 1.4.15 by sending it
requests at a constant rate via its binary UDP protocol,
using a tool similar to the popular memslap benchmark [2].
We configure a workload pattern of 90% fetch and 10%
store requests on a pre-generated range of 128 different
keys of a fixed size of 64 bytes and a value size of 1 KB,
in line with real cloud deployments [7].

To measure network stack scalability for multiple cores,
we vary the number of memcached server processes. Each
server process executes independently on its own port
number, such that measurements are not impacted by scal-
ability bottlenecks in memcached itself, and we distribute
load equally among the available memcached instances.
On Linux, memcached processes share the kernel-level
network stack. On Arrakis, each process obtains its own
VNIC with an independent set of packet queues, each
controlled by an independent instance of Extaris.

Figure 5 shows that memcached on Arrakis/P achieves
1.7× the throughput of Linux on one core, and attains near
line-rate at 4 CPU cores. The slightly lower throughput
on all 6 cores is due to contention with Barrelfish
system management processes [10]. By contrast, Linux
throughput nearly plateaus beyond two cores. A single,
multi-threaded memcached instance shows no noticeable
throughput difference to the multi-process scenario. This
is not surprising as memcached is optimized to scale well.
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Redis (64k random keys, 1,024Byte value size, 1,000 samples, times in µs)

Read Hit Durable Write

Linux Arrakis/P Linux Arrakis/P

epoll 2.42 (27.91 %) 1.12 (27.52 %) 2.64 (1.62 %) 1.49 (4.73 %)
recv 0.98 (11.30 %) 0.29 (7.13 %) 1.55 (0.95 %) 0.66 (2.09 %)
Parse Input 0.85 (9.80 %) 0.66 (16.22 %) 2.34 (1.43 %) 1.19 (3.78 %)
Lookup/Set Key 0.10 (1.15 %) 0.10 (2.46 %) 1.03 (0.63 %) 0.43 (1.36 %)
Log Marshaling — — 3.64 (2.23 %) 2.43 (7.71 %)
write — — 6.33 (3.88 %) 0.10 (0.32 %)
fsync — — 137.84 (84.49 %) 24.26 (76.99 %)
Prepare Response 0.60 (6.92 %) 0.64 (15.72 %) 0.59 (0.36 %) 0.10 (0.32 %)
send 3.17 (36.56 %) 0.71 (17.44 %) 5.06 (3.10 %) 0.33 (1.05 %)
Other 0.55 (6.34 %) 0.46 (11.30 %) 2.12 (1.30 %) 0.52 (1.65 %)

Total 8.67 (σ = 2.55) 4.07 (σ = 0.44) 163.14 (σ = 13.68) 31.51 (σ = 1.91)
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Figure 5: Average memcached transaction throughput and
scalability. Top y-axis value = 10Gb/s.

To conclude, the separation of network stack and appli-
cation in Linux provides only limited information about
the application’s packet processing and poses difficulty as-
signing threads to the right CPU core. The resulting cache
misses and socket lock contention are responsible for much
of the Linux overhead. In Arrakis, the application is in con-
trol of the whole packet processing flow: assignment of
packets to packet queues, packet queues to cores, and fi-
nally the scheduling of its own threads on these cores. The
network stack thus does not need to acquire any locks, and
packet data is always available in the right processor cache.

Memcached is also an excellent example of the com-
munication endpoint abstraction: we can create hardware
filters to allow packet reception and transmission only
between the memcached server and a designated list of
client machines that are part of the cloud application. In the
Linux case, we have to filter connections in the application.

4.3 Arrakis Native Interface Case Study

As a case study, we modified memcached to make use
of Arrakis/N. In total, 74 lines of code were changed,
with 11 pertaining to the receive side, and 63 to the send
side. On the receive side, the changes involve eliminating
memcached’s receive buffer and working directly with
pointers to packet buffers provided by Extaris, as well
as returning completed buffers to Extaris. The changes
increase average throughput by 9% over Arrakis/P. On the
send side, changes include allocating a number of send
buffers to allow buffering of responses until fully sent
by the NIC, which now must be done within memcached
itself. They also involve the addition of reference counts
to hash table entries and send buffers to determine when
it is safe to reuse buffers and hash table entries that might
otherwise still be processed by the NIC. We gain an
additional 10% average throughput when using the send
side API in addition to the receive side API.

4.4 Redis NoSQL Store

Redis [18] extends the memcached model from a cache
to a persistent NoSQL object store. Our results in Table 2
show that Redis operations—while more laborious than
Memcached—are still dominated by I/O stack overheads.
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Figure 6: Average Redis transaction throughput for GET and
SET operations. The Arrakis/P [15us] and Linux/Caladan
configurations apply only to SET operations.

Redis can be used in the same scenario as Memcached
and we follow an identical experiment setup, using Redis
version 2.8.5. We use the benchmarking tool distributed
with Redis and configure it to execute GET and SET
requests in two separate benchmarks to a range of 65,536
random keys with a value size of 1,024 bytes, persisting
each SET operation individually, with a total concurrency
of 1,600 connections from 16 benchmark clients executing
on the client machines. Redis is single-threaded, so we
investigate only single-core performance.

The Arrakis version of Redis uses Caladan. We changed
109 lines in the application to manage and exchange
records with the Caladan log instead of a file. We did not
eliminate Redis’ marshaling overhead (cf. Table 2). If we
did, we would save another 2.43 µs of write latency. Due
to the fast I/O stacks, Redis’ read performance mirrors that
of Memcached and write latency improves by 63%, while
write throughput improves vastly, by 9×.

To investigate what would happen if we had access
to state-of-the-art storage hardware, we simulate (via a
write-delaying RAM disk) a storage backend with 15 µs
write latency, such as the ioDrive2 [24]. Write throughput
improves by another 1.6×, nearing Linux read throughput.

Both network and disk virtualization is needed for good
Redis performance. We tested this by porting Caladan to
run on Linux, with the unmodified Linux network stack.
This improved write throughput by only 5× compared to
Linux, compared to 9× on Arrakis.

Together, the combination of data-plane network and
storage stacks can yield large benefits in latency and
throughput for both read and write-heavy workloads.
The tight integration of storage and data structure in
Caladan allows for a number of latency-saving techniques
that eliminate marshaling overhead, book-keeping of
journals for file system metadata, and can offset storage
allocation overhead. These benefits will increase further
with upcoming hardware improvements.

4.5 HTTP Load Balancer

To aid scalability of web services, HTTP load balancers
are often deployed to distribute client load over a number
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Redis (64k random keys, 1,024Byte value size, 1,000 samples, times in µs)

Read Hit Durable Write

Linux Arrakis/P Linux Arrakis/P
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write — — 6.33 (3.88 %) 0.10 (0.32 %)
fsync — — 137.84 (84.49 %) 24.26 (76.99 %)
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To conclude, the separation of network stack and appli-
cation in Linux provides only limited information about
the application’s packet processing and poses difficulty as-
signing threads to the right CPU core. The resulting cache
misses and socket lock contention are responsible for much
of the Linux overhead. In Arrakis, the application is in con-
trol of the whole packet processing flow: assignment of
packets to packet queues, packet queues to cores, and fi-
nally the scheduling of its own threads on these cores. The
network stack thus does not need to acquire any locks, and
packet data is always available in the right processor cache.

Memcached is also an excellent example of the com-
munication endpoint abstraction: we can create hardware
filters to allow packet reception and transmission only
between the memcached server and a designated list of
client machines that are part of the cloud application. In the
Linux case, we have to filter connections in the application.

4.3 Arrakis Native Interface Case Study

As a case study, we modified memcached to make use
of Arrakis/N. In total, 74 lines of code were changed,
with 11 pertaining to the receive side, and 63 to the send
side. On the receive side, the changes involve eliminating
memcached’s receive buffer and working directly with
pointers to packet buffers provided by Extaris, as well
as returning completed buffers to Extaris. The changes
increase average throughput by 9% over Arrakis/P. On the
send side, changes include allocating a number of send
buffers to allow buffering of responses until fully sent
by the NIC, which now must be done within memcached
itself. They also involve the addition of reference counts
to hash table entries and send buffers to determine when
it is safe to reuse buffers and hash table entries that might
otherwise still be processed by the NIC. We gain an
additional 10% average throughput when using the send
side API in addition to the receive side API.

4.4 Redis NoSQL Store

Redis [18] extends the memcached model from a cache
to a persistent NoSQL object store. Our results in Table 2
show that Redis operations—while more laborious than
Memcached—are still dominated by I/O stack overheads.
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Redis can be used in the same scenario as Memcached
and we follow an identical experiment setup, using Redis
version 2.8.5. We use the benchmarking tool distributed
with Redis and configure it to execute GET and SET
requests in two separate benchmarks to a range of 65,536
random keys with a value size of 1,024 bytes, persisting
each SET operation individually, with a total concurrency
of 1,600 connections from 16 benchmark clients executing
on the client machines. Redis is single-threaded, so we
investigate only single-core performance.

The Arrakis version of Redis uses Caladan. We changed
109 lines in the application to manage and exchange
records with the Caladan log instead of a file. We did not
eliminate Redis’ marshaling overhead (cf. Table 2). If we
did, we would save another 2.43 µs of write latency. Due
to the fast I/O stacks, Redis’ read performance mirrors that
of Memcached and write latency improves by 63%, while
write throughput improves vastly, by 9×.

To investigate what would happen if we had access
to state-of-the-art storage hardware, we simulate (via a
write-delaying RAM disk) a storage backend with 15 µs
write latency, such as the ioDrive2 [24]. Write throughput
improves by another 1.6×, nearing Linux read throughput.

Both network and disk virtualization is needed for good
Redis performance. We tested this by porting Caladan to
run on Linux, with the unmodified Linux network stack.
This improved write throughput by only 5× compared to
Linux, compared to 9× on Arrakis.

Together, the combination of data-plane network and
storage stacks can yield large benefits in latency and
throughput for both read and write-heavy workloads.
The tight integration of storage and data structure in
Caladan allows for a number of latency-saving techniques
that eliminate marshaling overhead, book-keeping of
journals for file system metadata, and can offset storage
allocation overhead. These benefits will increase further
with upcoming hardware improvements.

4.5 HTTP Load Balancer

To aid scalability of web services, HTTP load balancers
are often deployed to distribute client load over a number
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Conclusion

Control plane configures hardware to enforce policies
Direct application access to (virtualised) hardware
Specialised, application-level I/O stacks
Significant performance improvements
Merged back into Barrelfish mainline
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