
FIRST-CLASS USER-LEVEL
THREADS

BRIAN D. MARSH, THOMAS J. LEBLANC,
MICHAEL L. SCOTT, EVANGELOS P. MARKATOS

IT IS OFTEN DESIRABLE, FOR REASONS OF
CLARITY, PORTABILITY, AND EFFICIENCY, TO WRITE
PARALLEL PROGRAMS IN WHICH THE NUMBER OF
USER PROCESSES IS INDEPENDENT OF THE
NUMBER OF AVAILABLE PROCESSORS.

Brian D. Marsh, et al.

FIRST-CLASS USER-LEVEL THREADS

FIRST-CLASS USER-LEVEL THREADS

WHAT’S WRONG WITH KERNEL-LEVEL THREADS?

▸ semantic inflexibility

▸ poor performance

FIRST-CLASS USER-LEVEL THREADS

WHAT’S WRONG WITH USER-LEVEL THREADS?

▸ Blocking denies service to other threads

▸ Lack of coordination between scheduling &
synchronization

▸ Lack of conventions for data sharing between thread
packages

User-level threads are not recognized
or supported by the kernel.

GOALS

GRANTING FIRST-CLASS STATUS TO USER-LEVEL THREADS

▸ Blocking operations without denying service to their peers

▸ Threads in different, but overlapping, address spaces are
able to synchronize access to shared data

▸ Provide user-level code with the same scheduling
information available to the kernel

Most operations reasonable in the
kernel will become reasonable in
user space.

FIRST-CLASS USER-LEVEL THREADS

PREMISE

▸ Most thread operations can be performed in user space

▸ Fine-grained user scheduler

▸ Coarse-grained kernel scheduler

User space and kernel space
schedulers need to communicate.

COMMUNICATION

OBSERVATIONS

▸ Thread state information accessible to kernel

▸ Thread package accepts scheduling interrupts from the
kernel

▸ Thread package schedulers provide a standard interface

COMMUNICATION

MECHANISMS

▸ Shared data structures

▸ Software interrupts (signals, upcalls)

▸ Standard interface for user level schedulers

MECHANISMS

SHARED KERNEL/USER DATA STRUCTURES

KERNEL DATA
Read-only
in user mode

preemption interrupt desired?

thread

timers

preemption imminent?

software interrupts queued?
software interrupts disabled?

software interrupt stack

VIRTUAL PROCESSOR

preemption warning period

Read-write in user mode
USER DATA

thread-id

THREAD
scheduler routines

registers, etc.
stack, saved

thread package data:

statistics
. . .

virtual processor
physical processor
address space

PSEUDO-REGISTERS

software interrupt vectors
ADDRESS SPACE

Figure 1: Shared Kernel/User Data Structures in Psyche

program counter and stack pointer, and enters user space.
The user-level interrupt handler is then free to do as it
pleases with the information it has been given. There is
no return into the kernel from a software interrupt; the ker-
nel retains no information about the interrupt after enter-
ing user space.

If the kernel wishes to deliver a software interrupt
while interrupts are masked, it queues the interrupt
instead, and sets a flag in the virtual processor data struc-
ture indicating that one or more interrupts are queued.
The kernel sorts the queue based on the relative impor-
tance of interrupts. Program faults, for example, are
queued ahead of timer expirations. We have not found it
necessary to set the interrupt priorities in user space, but
could do so by adding a priority field to the software inter-
rupt vectors stored in the address space data structure.

As with hardware interrupts, the handlers for software
interrupts should be designed to finish quickly. Once it
has done everything necessary with the information on the
interrupt stack (or has switched to a different stack), the
typical handler re-enables interrupts and inspects the flag
that indicates whether interrupts were queued. If it finds
the bit set, it gives the kernel an opportunity to deliver a
queued interrupt by executing a system call that blocks the
virtual processor until the kernel has an interrupt to give it.

Software interrupts are always delivered by the local
instance of the kernel, which runs in mutual exclusion
with user code. If the kernel sees a flag indicating that
interrupts are masked, it can assume that they will remain
so until control re-enters user space. Likewise if user code
sees a flag indicating that interrupts are queued, it can
assume that they will remain so until the virtual processor
executes a ‘‘block until interrupt’’ system call. The kernel
delivers software interrupts only (1) at the moment they
arise, provided they are not masked or queued, or (2) in

response to this system call. These mechanisms suffice to
avoid any race conditions between the kernel and user-
level code. As in conventional device drivers, deadlock is
avoided by masking software interrupts when acquiring a
lock (or other resource) that might be required by an inter-
rupt handler.

The following is a partial list of software interrupts in
Psyche:

virtual processor initialization
thread blocked in the kernel
thread unblocked in the kernel
signal from another virtual processor
timer expiration
imminent preemption
program faults

Every virtual processor begins execution in the handler for
the initialization interrupt. (Interrupt vectors are specified
in the address space data structure, which must already
exist when the virtual processor is created.) It also enters
an interrupt handler in response to timer expiration, sig-
nals from other virtual processors, and various sorts of
faults (divide by zero, protection violation, etc.). Slightly
more complicated rules apply to blocking system calls and
to virtual processor preemption.

When a system call must block for a large amount of
time, the kernel delivers a software interrupt that allows
the user-level thread package to run a different thread.
When the operation completes, the kernel delivers a
second interrupt that allows the thread package to
reschedule the first thread. A single-threaded application
can disable the scheduling hooks (thereby arranging for
traditional blocking calls) by specifying null handlers for
the interrupts associated with system calls.

PUTTING IT ALL TOGETHER

A TYPICAL PSYCHE THREAD PACKAGE

of the scheduler operations will be invoked with ordinary
procedure calls. If the thread packages lie in distinct but
overlapping address spaces, then the unblock routine will
be invoked via PPC. Further details can be found in [21].

3.4. Putting it All Together
By mirroring the behavior of a physical machine, with

memory and interrupts, our approach provides the writers
of thread packages with a familiar model of concurrent
programming. System implementors are accustomed to
using this model in operating systems, and in signal-based
programs in Unix. Day-to-day programmers need never
see the kernel interface; we assume that system calls will
almost always be filtered through a thread-package library
or language run-time system.

A typical thread package employs one virtual proces-
sor on each of several physical processors (see Figure 2).
The virtual processors share a collection of scheduling
routines and data, including the state of user-level threads.
The pseudo-registers on each processor point to data struc-
tures describing the currently executing virtual processor
and its address space. The thread field in the virtual pro-
cessor data structure points into the data of the thread
package. The software interrupt vectors in the address
space data structure, and the scheduler operation list in the
thread data structure, point into the scheduling routines of
the thread package. Each virtual processor will execute
scheduler routines at startup and in response to program
faults, timers, and PPC requests. It will also execute
scheduler routines when a system call blocks in the kernel,
and when that call completes. By polling the two-minute
warning flag or asking for two-minute interrupts, each vir-
tual processor can arrange to execute scheduler code
immediately prior to preemption and, by yielding expli-
citly, immediately after resumption. In an application
whose level of available parallelism fluctuates

thread
thread

thread
thread

thread
scheduling code

kernel

regs
pseudo pseudo

regs regs
pseudo

thread package

virtual
processor processor

virtual
address
space

virtual
processor

Figure 2: Typical Psyche Thread Package

dynamically, virtual processors can yield when they run
out of work. Running virtual processors can re-awaken
their peers with explicit signals when new work is created
or arrives via PPC.

We have not found the implementation of thread pack-
ages on top of Psyche to be especially difficult. Three of
the five packages available at present were ported from
other systems. The first port took over a month, mainly
because it uncovered kernel bugs, while the other two
ports took less than a month each. All of the packages
were integrated into a general system for cross-model syn-
chronization and communication over the course of a
two-month period [16].

4. Discussion
Returning to the issues enumerated in section 1, we

now consider the degree to which our mechanisms support
the construction of first-class user-level threads.

Semantic flexibility. In order to provide the implemen-
tors of user-level thread packages with as much flexibility
as possible, we have attempted to minimize the assump-
tions embodied in the kernel. In particular, the kernel
leaves space management (including the allocation of
interrupt stacks) to user-level code, and most thread opera-
tions can be implemented entirely in user space. To
ensure the integrity of scheduling within the thread pack-
age, the kernel provides software interrupts at every point
where a scheduler action might be required. In our experi-
ments with Psyche, we have successfully ported or imple-
mented Multilisp futures [11], Uniform System tasks [25],
Lynx threads [22], heavyweight single-threaded programs,
and two different thread libraries.

Performance. As in all user-level thread packages, the
ability to create, destroy, schedule, and synchronize
threads without the assistance of the kernel keeps the cost
of these operations low. Shared data structures allow the

PERFORMANCE

COMPARISON WITH KERNEL THREADS

Application Kernel-level
vCPU

User-level
Thread

Gaussian
elimination

33.8s 22.0s

Parallel sort 44.3s 27.1s

PERFORMANCE

COMPARISON WITH KERNEL THREADS
In the first implementation, 128 kernel processes (virtual
processors) were created and distributed evenly among the
16 physical processors. In the second implementation,
128 user-level threads were created and distributed evenly
among 16 virtual processors, which were mapped one-to-
one with physical processors. The results appear in the
following table.

kernel-level user-level
application virtual processors threads
Gaussian elimination 33.8 sec 22.0 sec
parallel sort 44.3 sec 27.1 sec

As can been seen from the table, performance improves by
35% when using user-level context switching in the Gaus-
sian elimination program, and by 39% in the parallel sort.
The improvement is large in both cases because of the fre-
quency of context switching in these applications. The
sort program has 4608 centralized barriers, each of which
requires context switching among the 8 threads (or
processes) on a physical processor. Since a context switch
between kernel processes takes 550 µs, we can expect the
sort program to spend almost 18 seconds during execution
just to context switch between kernel processes. The
Gaussian elimination program has only 512 barriers, but
each is a tree barrier, which can introduce context
switches for each level in the tree [15].

The performance advantage of user-level threads is
substantial in these cases, and we would expect many
parallel applications to produce comparable results on
other systems. To show that these are not pathological
examples, particularly with respect to the number of
threads in use, we measured the speedup of the Gaussian
elimination program on 16 processors as we varied the
number of threads per processor from 1 to 8, thereby vary-
ing the amount of work performed by each thread. The
results appear in Figure 3.6 Threads in excess of the phy-
sical level of parallelism induce additional overhead no
matter how they are implemented. With user-level
threads, speedup on 16 processors degrades from 14.2
with one thread per processor to 11.1 with 8 threads per
processor. The impact on application speedup is much
more pronounced in the case of kernel threads, however:
they degrade from a speedup of nearly 14.0 with one ker-
nel process per processor to 7.3 with 8 kernel processes
per processor.

6.2. Comparison to Conventional Thread
Packages

Even on a uniprocessor the completion time of an
application will suffer if user-level threads block in the
kernel and thus deny service to their peers. Good thread
packages therefore utilize non-blocking portions of the
kernel interface whenever possible. Ignoring the possibil-
ity that threads on different processors might be waiting
for one another, simply blocking the threads on one pro-
cessor can have a serious impact on performance. A
thread package that makes a blocking system call every 20
ms, with an expected service time of 5 ms, will be able to
use no more than three quarters of the available CPU

6 We believe the anomaly at 2 processors to be an artifact
of the tree barrier implementation.

2 4 6 8

5

10

15

Figure 3: Speedup on 16 physical processors as a func-
tion of the number of kernel processes (dotted) or user
threads (solid) per processor.

cycles, even if it always has runnable threads. Without
requiring an explicitly non-blocking interface, our
approach allows a thread package to regain control of the
processor whenever any system call blocks.

If kernel-level scheduling is not coordinated with
user-level synchronization, threads may also block for
locks that are held by threads on preempted virtual proces-
sors, or for conditions that can be made true only by
threads on preempted virtual processors. Zahorjan et al.
[28] report performance degradations in the neighborhood
of 25% when processes may be preempted at arbitrary
times, while sharing a lock that is in use 75% of the time.
Leutenneger [14] describes the variation in performance
degradation as a function of lock utilization. For a lock
that is in use 50% of the time, he reports that round-robin
scheduling performs 10% worse than a processor alloca-
tion scheme in which the processes of a given application
always run concurrently. For a lock that is in use 80% of
the time, performance degradation increases to 57%.

Similar effects can occur in programs with condition
synchronization. One of the most common models of
parallel programming employs a collection of worker
processes, one per processor, which repeatedly dequeue
and execute tasks from a central work queue [11, 25, 26].
One of the things that a task may do is generate more
tasks. It will often do so only if it is the last task of a cer-
tain kind to finish. Central work queue programs can thus
be considered a generalization of barriers; parallel execu-
tion continues as long as the queue remains non-empty,
and stops when no more tasks can be generated until some
preempted task has completed.

Barrier programs can be expected to suffer from inop-
portune preemption more than do programs based on spin
locks, because the probability is high that a process will be
working on something critical (i.e. progress towards the
barrier) at any given time. Tucker and Gupta [26] observe
that the impact of preemption on work-queue based pro-
grams can be reduced by introducing a mechanism to
preempt worker processes only after they finish a task and
before another task is removed from the work queue. We
have experimented with this technique in Psyche using a
Uniform System program with the iterative structure
characteristic of Gaussian elimination, the grassfire

In the first implementation, 128 kernel processes (virtual
processors) were created and distributed evenly among the
16 physical processors. In the second implementation,
128 user-level threads were created and distributed evenly
among 16 virtual processors, which were mapped one-to-
one with physical processors. The results appear in the
following table.

kernel-level user-level
application virtual processors threads
Gaussian elimination 33.8 sec 22.0 sec
parallel sort 44.3 sec 27.1 sec

As can been seen from the table, performance improves by
35% when using user-level context switching in the Gaus-
sian elimination program, and by 39% in the parallel sort.
The improvement is large in both cases because of the fre-
quency of context switching in these applications. The
sort program has 4608 centralized barriers, each of which
requires context switching among the 8 threads (or
processes) on a physical processor. Since a context switch
between kernel processes takes 550 µs, we can expect the
sort program to spend almost 18 seconds during execution
just to context switch between kernel processes. The
Gaussian elimination program has only 512 barriers, but
each is a tree barrier, which can introduce context
switches for each level in the tree [15].

The performance advantage of user-level threads is
substantial in these cases, and we would expect many
parallel applications to produce comparable results on
other systems. To show that these are not pathological
examples, particularly with respect to the number of
threads in use, we measured the speedup of the Gaussian
elimination program on 16 processors as we varied the
number of threads per processor from 1 to 8, thereby vary-
ing the amount of work performed by each thread. The
results appear in Figure 3.6 Threads in excess of the phy-
sical level of parallelism induce additional overhead no
matter how they are implemented. With user-level
threads, speedup on 16 processors degrades from 14.2
with one thread per processor to 11.1 with 8 threads per
processor. The impact on application speedup is much
more pronounced in the case of kernel threads, however:
they degrade from a speedup of nearly 14.0 with one ker-
nel process per processor to 7.3 with 8 kernel processes
per processor.

6.2. Comparison to Conventional Thread
Packages

Even on a uniprocessor the completion time of an
application will suffer if user-level threads block in the
kernel and thus deny service to their peers. Good thread
packages therefore utilize non-blocking portions of the
kernel interface whenever possible. Ignoring the possibil-
ity that threads on different processors might be waiting
for one another, simply blocking the threads on one pro-
cessor can have a serious impact on performance. A
thread package that makes a blocking system call every 20
ms, with an expected service time of 5 ms, will be able to
use no more than three quarters of the available CPU

6 We believe the anomaly at 2 processors to be an artifact
of the tree barrier implementation.

2 4 6 8

5

10

15

Figure 3: Speedup on 16 physical processors as a func-
tion of the number of kernel processes (dotted) or user
threads (solid) per processor.

cycles, even if it always has runnable threads. Without
requiring an explicitly non-blocking interface, our
approach allows a thread package to regain control of the
processor whenever any system call blocks.

If kernel-level scheduling is not coordinated with
user-level synchronization, threads may also block for
locks that are held by threads on preempted virtual proces-
sors, or for conditions that can be made true only by
threads on preempted virtual processors. Zahorjan et al.
[28] report performance degradations in the neighborhood
of 25% when processes may be preempted at arbitrary
times, while sharing a lock that is in use 75% of the time.
Leutenneger [14] describes the variation in performance
degradation as a function of lock utilization. For a lock
that is in use 50% of the time, he reports that round-robin
scheduling performs 10% worse than a processor alloca-
tion scheme in which the processes of a given application
always run concurrently. For a lock that is in use 80% of
the time, performance degradation increases to 57%.

Similar effects can occur in programs with condition
synchronization. One of the most common models of
parallel programming employs a collection of worker
processes, one per processor, which repeatedly dequeue
and execute tasks from a central work queue [11, 25, 26].
One of the things that a task may do is generate more
tasks. It will often do so only if it is the last task of a cer-
tain kind to finish. Central work queue programs can thus
be considered a generalization of barriers; parallel execu-
tion continues as long as the queue remains non-empty,
and stops when no more tasks can be generated until some
preempted task has completed.

Barrier programs can be expected to suffer from inop-
portune preemption more than do programs based on spin
locks, because the probability is high that a process will be
working on something critical (i.e. progress towards the
barrier) at any given time. Tucker and Gupta [26] observe
that the impact of preemption on work-queue based pro-
grams can be reduced by introducing a mechanism to
preempt worker processes only after they finish a task and
before another task is removed from the work queue. We
have experimented with this technique in Psyche using a
Uniform System program with the iterative structure
characteristic of Gaussian elimination, the grassfire

PERFORMANCE

COMPARISON TO CONVENTIONAL THREAD PACKAGES

Multi-
Programming

Level

Two-minute warning

Disabled Enabled

1 8.5s 8.58s

2 40.1s 16.0s

3 61.6s 23.8s

FIRST-CLASS USER-LEVEL THREADS

CONCLUSION

▸ Kernel threads are inflexible and expensive for fine-
grained operations

▸ User-level threads experience performance losses when
blocking in the kernel or are preempted in critical sections

▸ Accord first-class status to user-level threads

FIRST-CLASS USER-LEVEL THREADS

DISCUSSION

▸ Explicit user-level threading vs. run time-managed
parallism

▸ Validity of micro-benchmarks

▸ Usefulness for real-time

