BRIAN D. MARSH, THOMAS J. LEBLANC,
MICHAEL L. SCOTT, EVANGELOS P. MARKATOS

FIRST-CLASS USER-LEVEL
THREADS




FIRST-CLASS USER-LEVEL THREADS

Brian D. Marsh, et al.



FIRST-CLASS USER-LEVEL THREADS

WHAT'S WRONG WITH KERNEL-LEVEL THREADS?

» semantic inflexibility

» poor performance



FIRST-CLASS USER-LEVEL THREADS

WHAT'S WRONG WITH USER-LEVEL THREADS?

» Blocking denies service to other threads

» Lack of coordination between scheduling &
synchronization

» Lack of conventions for data sharing between thread
packages

User-level threads are not recognized
or supported by the kernel.



GOALS

GRANTING FIRST-CLASS STATUS TO USER-LEVEL THREADS

» Blocking operations without denying service to their peers

» Threads in different, but overlapping, address spaces are
able to synchronize access to shared data

» Provide user-level code with the same scheduling
information available to the kernel

Most operations reasonable in the
kernel will become reasonable in
user space.



FIRST-CLASS USER-LEVEL THREADS

PREMISE

» Most thread operations can be performed in user space
» Fine-grained user scheduler

» Coarse-grained kernel scheduler

User space and kernel space
schedulers need to communicate.



COMMUNICATION

OBSERVATIONS

» Thread state information accessible to kernel

» Thread package accepts scheduling interrupts from the
kernel

» Thread package schedulers provide a standard interface



COMMUNICATION

MECHANISMS

» Shared data structures
» Software interrupts (signals, upcalls)

» Standard interface for user level schedulers



KERNEL DATA

Read-only
In user mode

PSEUDO-REGISTERS

virtual processor
physical processor

address space
statistics

USER DATA

Read-write 1n user mode

VIRTUAL PROCESSOR

thread
software interrupts disabled?
software interrupts queued?
preemption warning period
preemption imminent?
preemption interrupt desired?
timers

- software interrupt stack

THREAD

- scheduler routines

thread-1d

thread package data:
stack, saved
registers, etc.

| ADDRESS SPACE

software interrupt vectors




thread package

scheduling code

virtual virtual virtual
processor processor processor
address
space
regs regs regs

@)

kernel




PERFORMANCE

COMPARISON WITH KERNEL THREADS

Gaussian 33.85 22.0s
elimination




2 4 6 3

Figure 3: Speedup on 16 physical processors as a func-
tion of the number of kernel processes (dotted) or user
threads (solid) per processor.




PERFORMANCE

COMPARISON TO CONVENTIONAL THREAD PACKAGES

1 8.5s 8.58s

3 61.6s 23.8s



FIRST-CLASS USER-LEVEL THREADS

CONCLUSION

» Kernel threads are inflexible and expensive for fine-
grained operations

» User-level threads experience performance losses when
blocking in the kernel or are preempted in critical sections

» Accord first-class status to user-level threads



FIRST-CLASS USER-LEVEL THREADS

DISCUSSION

» Explicit user-level threading vs. run time-managed
parallism

» Validity of micro-benchmarks

» Usefulness for real-time



