
Effective Data-Race Detection for the Kernel

John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, Kirk Olynyk

Microsoft Research

Symposium on Operating Systems Design and
Implementation (OSDI), October 2010

1 / 13

Motivation

Finding data races is hard
Analysing them is even harder
Races often indicate problems
Kernel code “operates at a lower con-
currency abstraction” than user code

� �
struct {

int status :4;
int pktRcvd :28;

} st;� �
Thread 1� �

st. status = 1;� �
Thread 2� �

st. pktRcvd ++;� �

2 / 13

Motivation

Finding data races is hard
Analysing them is even harder
Races often indicate problems
Kernel code “operates at a lower con-
currency abstraction” than user code

� �
struct {

int status :4;
int pktRcvd :28;

} st;� �
Thread 1� �

st. status = 1;� �
Thread 2� �

st. pktRcvd ++;� �

2 / 13

Data Races

Two operations that access main memory are called conflicting if
the physical memory they access is not disjoint,
at least one of them is a write, and
they are not both synchronization accesses.

A program has a data race if it can be executed on a multiprocessor
in such a way that two conflicting memory accesses are performed
simultaneously (by processors or any other device).

3 / 13

Race Detection

Precision

Missed race No warning from detector

Benign race Race without negative effects on program behaviour

False race Error reported even though there is no race

Detection Techniques

Static
Analyse source or byte code

Dynamic

4 / 13

Race Detection

Precision

Missed race No warning from detector

Benign race Race without negative effects on program behaviour

False race Error reported even though there is no race

Detection Techniques

Static
Analyse source or byte code

Dynamic
Instrument program and monitor execution

4 / 13

Race Detection

Precision

Missed race No warning from detector

Benign race Race without negative effects on program behaviour

False race Error reported even though there is no race

Detection Techniques

Static
Analyse source or byte code

Dynamic

Happens-Before-Tracking
Record ordering of events and synchronisation operations

Lock Sets
Examine lock set (held locks) during each data access

4 / 13

Data Collider

Detects data races in existing Windows kernel code (x86)
Independent of synchronisation protocols
Extra debugging information about the race (stack trace, “context information”)
Runtime overhead below 5 % due to sampling
Post-processing to prune and prioritise found races

5 / 13

Sampling Algorithm

1 Identify instructions that access data
2 Prune synchronisation instructions (volatile, hardware synchronisation instructions)
3 Choose breakpoints uniformly from sampling set initially and after race detection
4 Periodically readjust according to number of fired breakpoints per second

⇒ Effective at low sampling rates

6 / 13

Algorithm
� �

AtPeriodicIntervals () {
// determine k based on desired
// memory access sampling rate
repeat k t imes {

pc = RandomlyChosenMemoryAccess ();
SetCodeBreakpoint (pc);

}
}� �� �
OnCodeBreakpoint (pc) {

// disassemble the instruction at pc
(loc , size , isWrite) = disasm (pc);

DetectConflicts (loc , size , isWrite);

// set another code break point
pc = RandomlyChosenMemoryAccess ();
SetCodeBreakpoint (pc);

}� �
7 / 13

Algorithm

� �
DetectConflicts (loc , size , isWrite) {

temp = read(loc , size);

i f (isWrite) {
SetDataBreakpointRW (loc , size);

} e l s e {
SetDataBreakpointW (loc , size);

}

delay ();

ClearDataBreakpoint (loc , size);
temp ’ = read(loc , size);

i f (temp != temp ’ || data breakpoint fired) {
ReportDataRace ();

}
}� �

7 / 13

Data Race Detection

Hardware Data Breakpoints (of x86)
Based on virtual addresses
IPI to update atomically on all cores
Write → Trap on read/write
Read → Trap on write

Repeated Reads
No detection of conflicting reads or writes with same last value
Detect concurrent DMA writes
Fallback when out of hardware data breakpoint
Workaround for different virtual addresses mapping to same physical address

8 / 13

Data Race Detection

Hardware Data Breakpoints (of x86)
Based on virtual addresses
IPI to update atomically on all cores
Write → Trap on read/write
Read → Trap on write

Repeated Reads
No detection of conflicting reads or writes with same last value
Detect concurrent DMA writes
Fallback when out of hardware data breakpoint
Workaround for different virtual addresses mapping to same physical address

8 / 13

Pruning Benign Races

Statistics Counters Counters that maintain low-fidelity statistical data
Safe Flag Updates Read a bit while a different bit is updated
Special Variables Races are expected, e.g. current time

⇒ ~ 90% of detected data races are benign
⇒ Still reported but deprioritised

9 / 13

Evaluation—Effectiveness

[A]pplied DataCollider on several modules in the Windows operating system [...]
class drivers, various PnP drivers, local and remote file system drivers, storage
drivers, and the core kernel executive itself
[B]enign data races pruned heuristically and manually

Data Races Reported Count

Fixed 12
Confirmed and Being Fixed 13
Under Investigation 8
Harmless 5

Total 38

10 / 13

Evaluation—Effectiveness

[A]pplied DataCollider on several modules in the Windows operating system [...]
class drivers, various PnP drivers, local and remote file system drivers, storage
drivers, and the core kernel executive itself
[B]enign data races pruned heuristically and manually

Data Races Reported Count

Fixed 12
Confirmed and Being Fixed 13
Under Investigation 8
Harmless 5

Total 38

10 / 13

Evaluation—Overhead
[W]e repeatedly measured the time taken for the boot–shutdown sequence
for different sampling rates and compared against a baseline Windows
kernel running without DataCollider. These experiments where done on the
x86 version of Windows 7 running on a virtual machine with 2 processors
and 512MB memory. The host machine is an Intel Core2-Quad 2.4 GHz
machine with 4GB memory running Windows Server 2008.

4.2.2. A Not-So-Benign Data Race

Figure 4 shows an erroneous data race. The function

AddToCache performs two non-atomic updates to the

flag variable. DataCollider produced an error report

with two threads simultaneously updating the flag at

location B. Usually, two instructions writing the same

values is a good hint that the data race is benign. How-

ever, the presence of the memory barrier indicated that

this report required further attention – the developer

was well aware of consequences of concurrency and the

rest of the code relied on crucial invariants on the flag

updates. When we reported this data race to the devel-

oper he initially tagged it as benign. On further discus-

sion, we discovered that the code relied on the invariant

that the CACHED bit is set after a call to AddToCache.

The data race can break this invariant when a concur-

rent thread overwrites CACHED bit when performing the

update at A, but gets preempted before setting the bit at

B.

4.2.3. How Fixed

While data races can be hard to find and result in mys-

terious crashes, our experience is that most are relative-

ly easy to fix. Of the 12 bugs, 3 were the result of miss-

ing locks. The developer could easily identify the lock-

ing discipline that was meant to be followed, and could

decide which lock to add without the fear of a deadlock.

6 data races were the fixed by using an atomic instruc-

tions, such as interlocked increment, to make a read-

modify-write to a shared variable. 2 bugs were a result

of unintended sharing and were fixed by making the

particular variable thread local. Finally, one bug indi-

cated a broken design due to a recent refactoring and

resulted in a design change.

4.3. Runtime Overhead

Users have an inherent aversion to dynamic analysis

tools that add prohibitive runtime overheads. The obvi-

ous reason is the associated wastage of test resources –

a slowdown of ten means that only one-tenth the

amount of testing can be done with a given amount of

resources. More importantly, runtime overheads intro-

duced by a tool can affect the real-time execution of the

void AddToCache() {

 // ...

 A: x &= ~(FLAG_NOT_DELETED);

 B: x |= FLAG_CACHED;

 MemoryBarrier();

 // ...

}

AddToCache();

assert(x & FLAG_CACHED);

Figure 4: An erroneous data race when the

AddToCache function is called concurrently.

Though the data race appears benign, as the con-

flicting accesses “write the same values,” the as-

sert can fail on some thread schedules.

Figure 5: Runtime overhead of DataCollider with in-

creasing sampling rate, measured in terms of the num-

ber of code breakpoints firing per second. The over-

head tends to zero as the sampling rate is reduced, in-

dicating that the tool has negligible base overhead.

Figure 6: The number of data races, uniquely identi-

fied by the pair of racing program locations, with the

runtime overhead. DataCollider is able to report data

race even under overheads under 5%

4.2.2. A Not-So-Benign Data Race

Figure 4 shows an erroneous data race. The function

AddToCache performs two non-atomic updates to the

flag variable. DataCollider produced an error report

with two threads simultaneously updating the flag at

location B. Usually, two instructions writing the same

values is a good hint that the data race is benign. How-

ever, the presence of the memory barrier indicated that

this report required further attention – the developer

was well aware of consequences of concurrency and the

rest of the code relied on crucial invariants on the flag

updates. When we reported this data race to the devel-

oper he initially tagged it as benign. On further discus-

sion, we discovered that the code relied on the invariant

that the CACHED bit is set after a call to AddToCache.

The data race can break this invariant when a concur-

rent thread overwrites CACHED bit when performing the

update at A, but gets preempted before setting the bit at

B.

4.2.3. How Fixed

While data races can be hard to find and result in mys-

terious crashes, our experience is that most are relative-

ly easy to fix. Of the 12 bugs, 3 were the result of miss-

ing locks. The developer could easily identify the lock-

ing discipline that was meant to be followed, and could

decide which lock to add without the fear of a deadlock.

6 data races were the fixed by using an atomic instruc-

tions, such as interlocked increment, to make a read-

modify-write to a shared variable. 2 bugs were a result

of unintended sharing and were fixed by making the

particular variable thread local. Finally, one bug indi-

cated a broken design due to a recent refactoring and

resulted in a design change.

4.3. Runtime Overhead

Users have an inherent aversion to dynamic analysis

tools that add prohibitive runtime overheads. The obvi-

ous reason is the associated wastage of test resources –

a slowdown of ten means that only one-tenth the

amount of testing can be done with a given amount of

resources. More importantly, runtime overheads intro-

duced by a tool can affect the real-time execution of the

void AddToCache() {

 // ...

 A: x &= ~(FLAG_NOT_DELETED);

 B: x |= FLAG_CACHED;

 MemoryBarrier();

 // ...

}

AddToCache();

assert(x & FLAG_CACHED);

Figure 4: An erroneous data race when the

AddToCache function is called concurrently.

Though the data race appears benign, as the con-

flicting accesses “write the same values,” the as-

sert can fail on some thread schedules.

Figure 5: Runtime overhead of DataCollider with in-

creasing sampling rate, measured in terms of the num-

ber of code breakpoints firing per second. The over-

head tends to zero as the sampling rate is reduced, in-

dicating that the tool has negligible base overhead.

Figure 6: The number of data races, uniquely identi-

fied by the pair of racing program locations, with the

runtime overhead. DataCollider is able to report data

race even under overheads under 5%

11 / 13

Evaluation—Overhead
[W]e repeatedly measured the time taken for the boot–shutdown sequence
for different sampling rates and compared against a baseline Windows
kernel running without DataCollider. These experiments where done on the
x86 version of Windows 7 running on a virtual machine with 2 processors
and 512MB memory. The host machine is an Intel Core2-Quad 2.4 GHz
machine with 4GB memory running Windows Server 2008.

4.2.2. A Not-So-Benign Data Race

Figure 4 shows an erroneous data race. The function

AddToCache performs two non-atomic updates to the

flag variable. DataCollider produced an error report

with two threads simultaneously updating the flag at

location B. Usually, two instructions writing the same

values is a good hint that the data race is benign. How-

ever, the presence of the memory barrier indicated that

this report required further attention – the developer

was well aware of consequences of concurrency and the

rest of the code relied on crucial invariants on the flag

updates. When we reported this data race to the devel-

oper he initially tagged it as benign. On further discus-

sion, we discovered that the code relied on the invariant

that the CACHED bit is set after a call to AddToCache.

The data race can break this invariant when a concur-

rent thread overwrites CACHED bit when performing the

update at A, but gets preempted before setting the bit at

B.

4.2.3. How Fixed

While data races can be hard to find and result in mys-

terious crashes, our experience is that most are relative-

ly easy to fix. Of the 12 bugs, 3 were the result of miss-

ing locks. The developer could easily identify the lock-

ing discipline that was meant to be followed, and could

decide which lock to add without the fear of a deadlock.

6 data races were the fixed by using an atomic instruc-

tions, such as interlocked increment, to make a read-

modify-write to a shared variable. 2 bugs were a result

of unintended sharing and were fixed by making the

particular variable thread local. Finally, one bug indi-

cated a broken design due to a recent refactoring and

resulted in a design change.

4.3. Runtime Overhead

Users have an inherent aversion to dynamic analysis

tools that add prohibitive runtime overheads. The obvi-

ous reason is the associated wastage of test resources –

a slowdown of ten means that only one-tenth the

amount of testing can be done with a given amount of

resources. More importantly, runtime overheads intro-

duced by a tool can affect the real-time execution of the

void AddToCache() {

 // ...

 A: x &= ~(FLAG_NOT_DELETED);

 B: x |= FLAG_CACHED;

 MemoryBarrier();

 // ...

}

AddToCache();

assert(x & FLAG_CACHED);

Figure 4: An erroneous data race when the

AddToCache function is called concurrently.

Though the data race appears benign, as the con-

flicting accesses “write the same values,” the as-

sert can fail on some thread schedules.

Figure 5: Runtime overhead of DataCollider with in-

creasing sampling rate, measured in terms of the num-

ber of code breakpoints firing per second. The over-

head tends to zero as the sampling rate is reduced, in-

dicating that the tool has negligible base overhead.

Figure 6: The number of data races, uniquely identi-

fied by the pair of racing program locations, with the

runtime overhead. DataCollider is able to report data

race even under overheads under 5%

4.2.2. A Not-So-Benign Data Race

Figure 4 shows an erroneous data race. The function

AddToCache performs two non-atomic updates to the

flag variable. DataCollider produced an error report

with two threads simultaneously updating the flag at

location B. Usually, two instructions writing the same

values is a good hint that the data race is benign. How-

ever, the presence of the memory barrier indicated that

this report required further attention – the developer

was well aware of consequences of concurrency and the

rest of the code relied on crucial invariants on the flag

updates. When we reported this data race to the devel-

oper he initially tagged it as benign. On further discus-

sion, we discovered that the code relied on the invariant

that the CACHED bit is set after a call to AddToCache.

The data race can break this invariant when a concur-

rent thread overwrites CACHED bit when performing the

update at A, but gets preempted before setting the bit at

B.

4.2.3. How Fixed

While data races can be hard to find and result in mys-

terious crashes, our experience is that most are relative-

ly easy to fix. Of the 12 bugs, 3 were the result of miss-

ing locks. The developer could easily identify the lock-

ing discipline that was meant to be followed, and could

decide which lock to add without the fear of a deadlock.

6 data races were the fixed by using an atomic instruc-

tions, such as interlocked increment, to make a read-

modify-write to a shared variable. 2 bugs were a result

of unintended sharing and were fixed by making the

particular variable thread local. Finally, one bug indi-

cated a broken design due to a recent refactoring and

resulted in a design change.

4.3. Runtime Overhead

Users have an inherent aversion to dynamic analysis

tools that add prohibitive runtime overheads. The obvi-

ous reason is the associated wastage of test resources –

a slowdown of ten means that only one-tenth the

amount of testing can be done with a given amount of

resources. More importantly, runtime overheads intro-

duced by a tool can affect the real-time execution of the

void AddToCache() {

 // ...

 A: x &= ~(FLAG_NOT_DELETED);

 B: x |= FLAG_CACHED;

 MemoryBarrier();

 // ...

}

AddToCache();

assert(x & FLAG_CACHED);

Figure 4: An erroneous data race when the

AddToCache function is called concurrently.

Though the data race appears benign, as the con-

flicting accesses “write the same values,” the as-

sert can fail on some thread schedules.

Figure 5: Runtime overhead of DataCollider with in-

creasing sampling rate, measured in terms of the num-

ber of code breakpoints firing per second. The over-

head tends to zero as the sampling rate is reduced, in-

dicating that the tool has negligible base overhead.

Figure 6: The number of data races, uniquely identi-

fied by the pair of racing program locations, with the

runtime overhead. DataCollider is able to report data

race even under overheads under 5%

11 / 13

Evaluation—Efficacy of Pruning

We enabled DataCollider while running kernel stress tests for 2 hours
sampling at approximately 1000 code breakpoints per second.

Data Race Category Count

Benign—Heuristically Pruned
Statistic Counter 52
Safe Flag Update 29
Special Variable 5

Benign—Manually Pruned

Double-check locking 8
Volatile 8
Write Same Value 1
Other 1

Real Confirmed 5
Investigating 4

Total 113

12 / 13

Evaluation—Efficacy of Pruning

We enabled DataCollider while running kernel stress tests for 2 hours
sampling at approximately 1000 code breakpoints per second.

Data Race Category Count

Benign—Heuristically Pruned
Statistic Counter 52
Safe Flag Update 29
Special Variable 5

Benign—Manually Pruned

Double-check locking 8
Volatile 8
Write Same Value 1
Other 1

Real Confirmed 5
Investigating 4

Total 113

12 / 13

Conclusion

Summary
DataCollider detects and reports data races on x86
Use of hardware breakpoints and sampling for low overhead
Automatic pruning of most false positives
Suitable for existing (kernel) code

Discussion
Astonishingly simple approach
Evaluation of overhead using a virtual machine!?
volatile vs. synchronisation

13 / 13

Conclusion

Summary
DataCollider detects and reports data races on x86
Use of hardware breakpoints and sampling for low overhead
Automatic pruning of most false positives
Suitable for existing (kernel) code

Discussion
Astonishingly simple approach
Evaluation of overhead using a virtual machine!?
volatile vs. synchronisation

13 / 13

