Effective Data-Race Detection for the Kernel

John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, Kirk Olynyk

Microsoft Research

Symposium on Operating Systems Design and
Implementation (OSDI), October 2010

/13

Finding data races is hard
Analysing them is even harder
Races often indicate problems

Kernel code "“operates at a lower con-
currency abstraction” than user code

struct{
int status:4;
int pktRcvd:28;

e Finding data races is hard }ost;
@ Analysing them is even harder
@ Races often indicate problems Thread 1
o Kernel code “operates at a lower con- [St -status = 1;]
currency abstraction” than user code
Thread 2

[st.pktRcvd ++; j

@ Two operations that access main memory are called conflicting if

e the physical memory they access is not disjoint,
o at least one of them is a write, and
e they are not both synchronization accesses.
@ A program has a data race if it can be executed on a multiprocessor
in such a way that two conflicting memory accesses are performed
simultaneously (by processors or any other device).

Race Detection

Missed race No warning from detector

Benign race Race without negative effects on program behaviour

False race Error reported even though there is no race

Race Detection

Precision

Missed race No warning from detector
Benign race Race without negative effects on program behaviour

False race Error reported even though there is no race

v

Detection Techniques

Analyse source or byte code I
Instrument program and monitor execution I

.

Race Detection

Precision

Missed race No warning from detector
Benign race Race without negative effects on program behaviour

False race Error reported even though there is no race

Detection Techniques

Analyse source or byte code I

Happens-Before-Tracking

Record ordering of events and synchronisation operations

Examine lock set (held locks) during each data access

Data Collider

Detects data races in existing Windows kernel code (x86)
Independent of synchronisation protocols
Extra debugging information about the race (stack trace, “context information”)

Runtime overhead below 5 % due to sampling

Post-processing to prune and prioritise found races

Sampling Algorithm

@ Identify instructions that access data

@ Prune synchronisation instructions (volatile, hardware synchronisation instructions)
© Choose breakpoints uniformly from sampling set initially and after race detection
@ Periodically readjust according to number of fired breakpoints per second

= Effective at low sampling rates

Algorithm

~ N
AtPeriodicIntervals () {

// determine k based on desired
// memory access sampling rate
repeat k times {
pc = RandomlyChosenMemoryAccess ();
SetCodeBreakpoint (pc);
}

OnCodeBreakpoint (pc) {
// disassemble the instruction at pc
(loc, size, isWrite) = disasm(pc);

DetectConflicts (loc, size, isWrite);
// set another code break point

pc = RandomlyChosenMemoryAccess ();
SetCodeBreakpoint (pc);

Algorithm

DetectConflicts (loc, size, isWrite) {
temp = read(loc, size);

if (isWrite) {
SetDataBreakpointRW (loc, size);

} else {
SetDataBreakpointW(loc, size);

}

delay () ;

ClearDataBreakpoint (loc, size);

temp’ = read(loc, size);

if (temp '= temp’ || data breakpoint fired) {
ReportDataRace();

}

}
L Y,

Data Race Detection

Hardware Data Breakpoints (of x86)

@ Based on virtual addresses

@ IPI to update atomically on all cores
o Write — Trap on read/write

@ Read — Trap on write

Data Race Detection

Hardware Data Breakpoints (of x86)

@ Based on virtual addresses

@ IPI to update atomically on all cores
o Write — Trap on read/write

@ Read — Trap on write

Repeated Reads

@ No detection of conflicting reads or writes with same last value
@ Detect concurrent DMA writes
o Fallback when out of hardware data breakpoint

@ Workaround for different virtual addresses mapping to same physical address

Pruning Benign Races

Statistics Counters Counters that maintain low-fidelity statistical data
Safe Flag Updates Read a bit while a different bit is updated

Special Variables Races are expected, e.g. current time

= ~90% of detected data races are benign
= Still reported but deprioritised

Evaluation — Effectiveness

o [A]pplied DataCollider on several modules in the Windows operating system |[...]
class drivers, various PnP drivers, local and remote file system drivers, storage
drivers, and the core kernel executive itself

e [Blenign data races pruned heuristically and manually

10/13

Evaluation — Effectiveness

o [A]pplied DataCollider on several modules in the Windows operating system |[...]
class drivers, various PnP drivers, local and remote file system drivers, storage
drivers, and the core kernel executive itself

e [Blenign data races pruned heuristically and manually

Data Races Reported Count
Fixed 12
Confirmed and Being Fixed 13
Under Investigation 8
Harmless 5

Total 38

10/13

Evaluation — Overhead

[W]e repeatedly measured the time taken for the boot-shutdown sequence
for different sampling rates and compared against a baseline Windows
kernel running without DataCollider. These experiments where done on the
x86 version of Windows 7 running on a virtual machine with 2 processors
and 512 MB memory. The host machine is an Intel Core2-Quad 2.4 GHz
machine with 4 GB memory running Windows Server 2008.

11/13

Evaluation — Overhead

Runtime Overhead

[W]e repeatedly measured the time taken for the boot-shutdown sequence
for different sampling rates and compared against a baseline Windows
kernel running without DataCollider. These experiments where done on the
x86 version of Windows 7 running on a virtual machine with 2 processors
and 512 MB memory. The host machine is an Intel Core2-Quad 2.4 GHz
machine with 4 GB memory running Windows Server 2008.

0.30x
0.25x
0.20x
0.15x
0.10x
0.05x
0.00x
-0.05x

500 1000

Average Code Breakpoints Hit / Second

80

a
o

B
o

0.20x 0.30x

Runtime Overhead

11/13

Evaluation — Efficacy of Pruning

We enabled DataCollider while running kernel stress tests for 2 hours
sampling at approximately 1000 code breakpoints per second.

12 /13

Evaluation — Efficacy of Pruning

We enabled DataCollider while running kernel stress tests for 2 hours
sampling at approximately 1000 code breakpoints per second.

Data Race Category Count
Statistic Counter 52
Benign — Heuristically Pruned Safe Flag Update 29
Special Variable 5
Double-check locking 8
. Volatile 8
Benign — Manually Pruned Write Same Value 1
Other 1
Confirmed 5
Real N
Investigating 4
Total 113

12 /13

Conclusion

@ DataCollider detects and reports data races on x86

@ Use of hardware breakpoints and sampling for low overhead
@ Automatic pruning of most false positives
@ Suitable for existing (kernel) code

13/13

Conclusion

@ DataCollider detects and reports data races on x86

@ Use of hardware breakpoints and sampling for low overhead
@ Automatic pruning of most false positives

@ Suitable for existing (kernel) code

W
Discussion

@ Astonishingly simple approach

@ Evaluation of overhead using a virtual machine!?

@ volatile VS. synchronisation

13/13

