6. Imprecise Computations

6.1. Ausgangspunkt

• Motivation

"Akzeptable" Qualität bei weichen Echtzeit-Anwendungen mit deterministischen Zeitschranken, insbesondere bei Überlast.

z.B. Bilddekodierung/-darstellung, Näherungsberechnungen Zielverfolgung

• Grundidee

(periodische) Task aufteilen in Pflichtteil – Wahlteil

Pflichtteil muß stets Deadline einhalten, Wahlteil nicht. Quantifizierung durch eine Fehlerfunktion (Gütefunktion).

Taskklassen

N-Tasks: möglichst kleiner mittlerer Fehler;

C-Tasks: in bestimmten Abständen muß Deadline erreicht werden.

6.2. Task-Modell

• Allgemeine Voraussetzungen und Bezeichnungen

 $T = \{ \tau_1, ..., \tau_n \}$ periodische Tasks

 $\tau_i = (\tau_{ij})_{j=1,2,...}$ $\tau_{ij}: j$ -ter Job von Task τ_i , i=1,...,n

 $\tau_i = (t_i, b_i)$ t_i : Periodenlänge

b_i: Ausführungszeit (konstant)

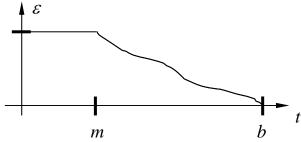
 m_i Mindestbearbeitungszeit für τ_{ij}

Periodenanfang = Bereitzeit, Periodenende = Deadline

• Fehlerfunktion und Einplanbarkeit

e: einer Task zur Verfügung stehende Zeit (eingeplante Zeit)

 $\varepsilon(e)$: Fehler bei e < b monoton fallende Funktion



Exakter Ablaufplan: $e = b \quad \forall \tau \in T$

Ausführbarer Ablaufplan: $e \ge m \quad \forall \tau \in T$

• Taskaufteilung

 $\tau_i = (t_i, b_i) \mapsto M_i = (t_i, m_i)$ Pflichtteil (mandatory part)

 $O_i = (t_i, b_i - m_i)$ Wahlteil (optional part)

Gleiche Bereitzeit und Deadline wie τ_i (Periodenanfang/-ende).

Pflichtteil muß stets Deadline erreichen; Wahlteil wird bei Deadline (Periodenende) abgebrochen (N-Tasks: erreichtes Ergebnis wird gewertet).

6.3. Admission und Scheduling von N-Tasks

• Aufgabe

M einplanen als "harte" Tasks, O als "weiche", so daß mittlerer Fehler nach Möglichkeit klein wird.

• Admission

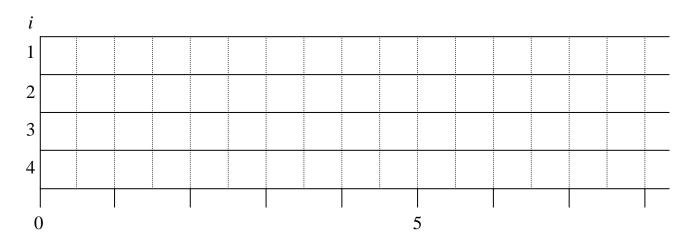
T wird zugelassen bei
$$\sum_{i=1}^{n} \frac{m_i}{t_i} \le n \cdot (\sqrt[n]{2} - 1).$$

• Scheduling von M-Jobs

2 Prioritätsklassen: "M-Priorität > O-Priorität" bzgl. ganz T. Scheduling von M-Jobs gemäß RMS.

Beispiel.

i	t_i	b_i	m_i	$U_i = \frac{b_i}{t_i}$	$u_i = \frac{m_i}{t_i}$	
1	2	1,0	0,5			
2	4	0,5	0,2			
3	5	0,5	0,1			
4	6	1,5	1,0			



• Scheduling von O-Jobs

LU least utilization first
$$v_i = \frac{b_i - m_i}{t_i}$$

Beispiel.

Es gilt: Bei linearer Fehlerfunktion und gleichlangen Perioden führt LU zu minimalem mittlerem Fehler.

Aber: nicht optimal bzgl. Fehler bereits bei ungleichen Periodenlängen!

• Dynamische Algorithmen für O-Jobs

LAT least attained time first = shortest elapsed time first
 Motivation: konvexe Fehlerfunktion

- -LST least slack time first slack = laxity
- **ED** earliest deadline
- SPL shortest period length
- **BIR** best incremental

6.4. Bewertung

• Fehlerfunktion

$$\varepsilon(e_{ij}) = \begin{cases} 1 & e_{ij} < m_i \\ \left(1 - \frac{e_{ij} - m_i}{b_i - m_i}\right)^d & e_{ij} \in [m_i, b_i] \\ 0 & e_{ij} > b_i \end{cases}$$

Treppenfunktion statt kontinuierlicher Fehlerfunktion: geringer Effekt.

• Vergleiche

- Identische Jobs

d=1: alle Algorithmen gleicher mittlerer Fehler. $U=\sum_{i=1}^n \frac{b_i}{t_i} \le 1$: exakt.

d = 2: LAT, LST, BIR besser.

d = 0.5 umgekehrt.

- Gleichlange Perioden

d = 1: LU optimal bzgl. Fehler, aber ED, SPL genauso gut.

d = 2: LAT, BIR teilweise besser.

Auch für d = 0.5.

– Harmonische Perioden

LU recht gut, ED deutlich schlechter!

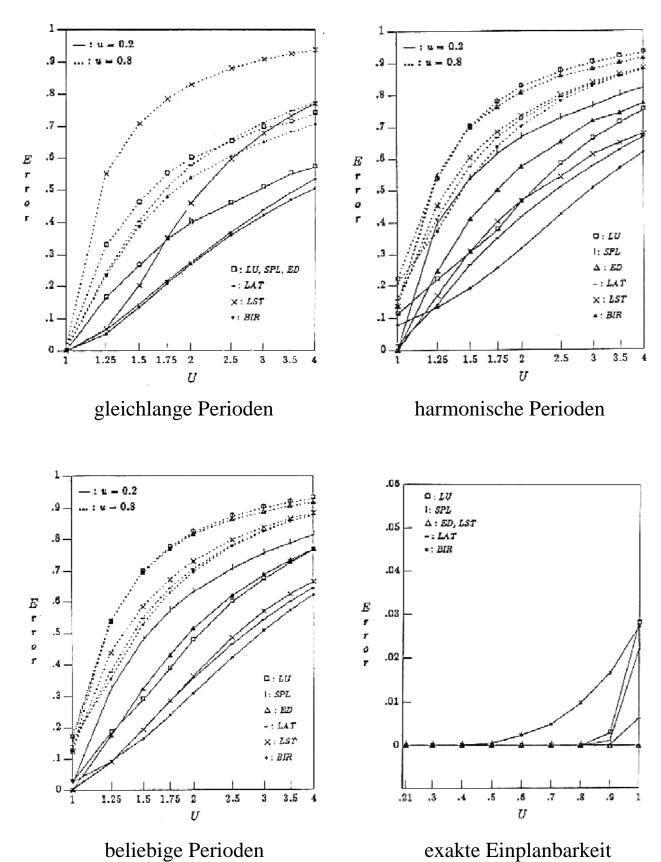
Allgemeiner Fall: ähnliches Verhalten.

• Exakte Einplanbarkeit

Für eine Taskmenge mit $U \le 1$ ist ED optimal bzgl. Einplanbarkeit mit Fehler 0 unter allen Algorithmen, die die Pflichtteile mit RMS einplanen.

Gilt auch für LST, für die anderen Algorithmen jedoch nicht.

Fehlerfunktion: d = 2



6.5. Admission und Scheduling von C-Tasks

• Fehlerfunktion

$$\varepsilon(e) = \begin{cases} 1 & e \in [0, b) \\ 0 & e \ge b \end{cases}$$

• Admission für $T = \{\tau_1,...,\tau_n\}$

- (1) $e_i \ge m_i \quad \forall i = 1,...,n$.
- (2) Für mindestens einen Job unter Q_i aufeinander folgenden Jobs von τ_i ist $e_i \ge b_i$.

Q_i: Qualitätsparameter (,,cumulation rate")

ullet Gleichlange Perioden p und einheitlicher Qualitätsparameter Q

Suche nach ausführbarem Ablaufplan äquivalent zu:

exakten Ablaufplan ohne Entzug (!) finden für die Wahlteile von T auf Q Prozessoren mit gemeinsamer Deadline $p - \sum_{i=1}^{n} m_i$.

 \rightarrow NP-vollständig! \rightarrow Heuristik.

• "Längenmonotoner Algorithmus"

- (1) Pflichtteile bearbeiten
- (2) Wahlteile fallend sortieren nach $b_i m_i$
- (3) Wahlteile in jeder Periode gemäß first-fit einplanen; vollständig bearbeitete Wahlteile danach "bis Q_i " übergehen!

6.6. Krititsche Systeme (mixed-criticality systems)

LI, H. and BARUAH, S. K.: An Algorithm for Scheduling Certifiable Mixed-Criticality Sporadic Task Systems. Proc. of RTSS 2010, pp. 183-192.

• Ausgangspunkt

- unterschiedliche Anforderungen von Tasks an Einhaltung der Deadlines (certification requirements)
- unrealistisch hohe worst-case-Zeiten

• Grundgedanke: Scheduling auf (mindestens) zwei Ebenen

H: Basis: berechnete WCET aufgrund pessimistischer Annahmen

Forderung: nur H-Tasks müssen einplanbar sein

N: Basis: beobachtete Zeiten aus intensiven Experimenten

(auch für H-Tasks!)

Forderung: H- und N-Tasks müssen einplanbar sein

Beispiel

 J_1 flight-crit., J_2 mission-crit., $r_i = 0$, $d_i = 10$, $e_1 = 6$, $e_2 = 5$.

Jobmodell

$$J_i = (L_i, A_i, D_i, C_i(1), C_i(2),...)$$
 mit

 L_i Sicherheitsstufe (criticality level); $L_i = 1,...,L_{max}$; steigend

 A_i Ankunftszeit

 D_i Deadline

 $C_i(L)$ WCET-Funktion von J_i , abhängig von Sicherheitsstufe L_i ; Annahmen: monoton wachsend mit L,

$$C_i(L) = C_i(L_i) \quad \forall L > L_i$$

• Aufgabe

Tasks so einplanen, daß gilt: jeder Job der Stufe L erreicht seine Deadline, wenn alle Jobs lediglich höchstens ihre Rechenzeit dieser Stufe L beanspruchen.

• Beispiel

			$C_i(N)$		
J_1	N	0	1 1 1	1	2
J_2	N	0	1	1	4
J_3	Н	0	1	2	4
J_4	Н	0	1	2	4

Stufe N / EDF:
$$J_1$$
 J_2 J_3 J_4

Stufe H & N: EDF:
$$J_1$$
 J_3 J_4

• J_4 – Stufe H

CMS:
$$J_3$$
 J_4

• J_1 – Stufe L

korrekt:
$$J_3$$
 nicht bei 1 beendet J_3 J_4

sonst:
$$J_4$$
 nicht bei 3 beendet

 J_3 | J_1 | J_4 | J_2

	J_3	J_1	J_4	1
sonst:	J_2	J_1	J_{A}	J_2

Problem ist bereits in 1-Prozessor-Systemen bei zwei Sicherheitsstufen und gemeinsamer Ankunftszeit NP-vollständig (unabhängig von Entziehbarkeit)!