
System Programming – Day 3
Rust

Nils Asmussen

09/20/2023

1 / 49

What is Rust?

A language empowering everyone
to build reliable and efficient software.

(rust-lang.org)

2 / 49

Why Another Language?

We have plenty of languages to build reliably software:
Java, C#, Go, Python, Ruby, . . .
All of these trade performance for safety
All of them have a runtime (garbage collector, . . .)

We have plenty of languages to build efficient software:
C, C++, D, Assembly, . . .
All of them trade safety for performance

System programming requires efficiency/control and safety!

3 / 49

Why Another Language?

We have plenty of languages to build reliably software:
Java, C#, Go, Python, Ruby, . . .
All of these trade performance for safety
All of them have a runtime (garbage collector, . . .)

We have plenty of languages to build efficient software:
C, C++, D, Assembly, . . .
All of them trade safety for performance

System programming requires efficiency/control and safety!

3 / 49

Why Another Language?

We have plenty of languages to build reliably software:
Java, C#, Go, Python, Ruby, . . .
All of these trade performance for safety
All of them have a runtime (garbage collector, . . .)

We have plenty of languages to build efficient software:
C, C++, D, Assembly, . . .
All of them trade safety for performance

System programming requires efficiency/control and safety!

3 / 49

But Good Developers Don’t Need Safety!

We a
re u

sin
g th

e w
ron

g to
ols!

Source: https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/

4 / 49

https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/

But Good Developers Don’t Need Safety!

We a
re u

sin
g th

e w
ron

g to
ols!

Source: https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/

4 / 49

https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/

But Good Developers Don’t Need Safety!

We a
re u

sin
g th

e w
ron

g to
ols!

Source: https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/
4 / 49

https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/

It works!

Source: https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html?m=1
5 / 49

https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html?m=1

It works!

Source: https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html?m=1
5 / 49

https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html?m=1

General Idea of Rust

C/C++ declare everything that is unsafe as “undefined behavior”
That pushes the problem to the developer
There is no way out: the developer has the control all the time

Rust provides safety without undefined behavior by default
The developer can opt out by marking code as “unsafe”
The developer only has the control if explicitly requested

Rust tracks ownership at compile time and thereby is
memory safe
data-race free

6 / 49

General Idea of Rust

C/C++ declare everything that is unsafe as “undefined behavior”
That pushes the problem to the developer
There is no way out: the developer has the control all the time

Rust provides safety without undefined behavior by default
The developer can opt out by marking code as “unsafe”
The developer only has the control if explicitly requested

Rust tracks ownership at compile time and thereby is
memory safe
data-race free

6 / 49

General Idea of Rust

C/C++ declare everything that is unsafe as “undefined behavior”
That pushes the problem to the developer
There is no way out: the developer has the control all the time

Rust provides safety without undefined behavior by default
The developer can opt out by marking code as “unsafe”
The developer only has the control if explicitly requested

Rust tracks ownership at compile time and thereby is
memory safe
data-race free

6 / 49

Agenda

Morning

Getting started

Ownership

Basic features + exercise

Structs and enums + exercise

Afternoon
Generics, traits, and error handling + exercise

Unsafe, FFI, interior mutability + exercise

7 / 49

Agenda

Morning

Getting started

Ownership

Basic features + exercise

Structs and enums + exercise

Afternoon
Generics, traits, and error handling + exercise

Unsafe, FFI, interior mutability + exercise

7 / 49

Repository

To get the slides and the exercises:

$ git clone https://github.com/Nils-TUD/sysprog-rust.git

8 / 49

Outline

1 Getting Started

2 Ownership

3 Basic Features

4 Structs, Enums, and Closures

5 Generics, Traits, and Error Handling

6 Unsafe, FFI, Interior Mutability

9 / 49

Installation

Please install the latest stable version of Rust

Primary way: rustup (installer and version management)

Some distributions (e.g., Arch) have a package for Rust or rustup

Otherwise:

$ curl --proto '=https' --tlsv1.2 https://sh.rustup.rs -sSf > rup.sh

check if it's safe and use a fresh shell

$ sh rup.sh

10 / 49

Overview

rustc is the Rust compiler; almost never invoked by the user
cargo is Rust’s build system and package manager

Cargo.toml describes what to build and its dependencies
cargo downloads dependencies and builds everything automatically
Every library/application is a crate
Crates can be found on https://crates.io (or https://lib.rs)

11 / 49

https://crates.io
https://lib.rs

Let’s Build Hello World!

$ cargo new hello

$ cd hello

$ cargo run

12 / 49

Outline

1 Getting Started

2 Ownership

3 Basic Features

4 Structs, Enums, and Closures

5 Generics, Traits, and Error Handling

6 Unsafe, FFI, Interior Mutability

13 / 49

Different Memory Management Approaches

Many high-level languages use garbage collection to manage memory
Often not acceptable for OSes, bootloaders, VMMs, . . .

Many low-level languages let the developer manage memory explicitly
Error prone and the main cause for memory-safety issues

Rust uses Ownership
No garbage collection, no manual allocation
The compiler defines a set of rules and enforces them

14 / 49

Different Memory Management Approaches

Many high-level languages use garbage collection to manage memory
Often not acceptable for OSes, bootloaders, VMMs, . . .

Many low-level languages let the developer manage memory explicitly
Error prone and the main cause for memory-safety issues

Rust uses Ownership
No garbage collection, no manual allocation
The compiler defines a set of rules and enforces them

14 / 49

Different Memory Management Approaches

Many high-level languages use garbage collection to manage memory
Often not acceptable for OSes, bootloaders, VMMs, . . .

Many low-level languages let the developer manage memory explicitly
Error prone and the main cause for memory-safety issues

Rust uses Ownership
No garbage collection, no manual allocation
The compiler defines a set of rules and enforces them

14 / 49

Ownership Rules

1 Each value has a variable that’s called its owner.

2 There can only be one owner at a time.

3 When the owner goes out of scope, the value will be dropped.

15 / 49

Ownership Rules – Examples

Valid example

{

let mut var = 4; // mutable variable

var += 1; // we are the owner

} // var is dropped

Invalid example

let mut var = 4;

let var_ref = &mut var; // mutable reference to modify `var`
drop(var); // explicit drop

*var_ref = 5; // error (use after free)

16 / 49

Ownership Rules – Examples

Valid example

{

let mut var = 4; // mutable variable

var += 1; // we are the owner

} // var is dropped

Invalid example

let mut var = 4;

let var_ref = &mut var; // mutable reference to modify `var`
drop(var); // explicit drop

*var_ref = 5; // error (use after free)

16 / 49

Ownership Transfer and Borrowing

1 The owner of a value can transfer the ownership to someone else.

let var = String::from("hello"); // heap-allocated string

fn foo(name: String) { /* name is dropped */ }

foo(var); // transfer ownership to foo

2 Others can borrow a value from the owner.

let mut var = String::from("hello"); // mutable String

fn foo(name: &String) { /* use name */ }

foo(&var); // let foo borrow var

var.push(' '); // we are the owner again

17 / 49

Ownership Transfer and Borrowing

1 The owner of a value can transfer the ownership to someone else.

let var = String::from("hello"); // heap-allocated string

fn foo(name: String) { /* name is dropped */ }

foo(var); // transfer ownership to foo

2 Others can borrow a value from the owner.

let mut var = String::from("hello"); // mutable String

fn foo(name: &String) { /* use name */ }

foo(&var); // let foo borrow var

var.push(' '); // we are the owner again

17 / 49

Outline

1 Getting Started

2 Ownership

3 Basic Features

4 Structs, Enums, and Closures

5 Generics, Traits, and Error Handling

6 Unsafe, FFI, Interior Mutability

18 / 49

Data Types (1)

Scalars
Integers: u32, i64, usize, . . .

Floats: f32, f64

Boolean: bool
Character: char

Structs

struct Foo {

field1: u32,

field2: String,

}

19 / 49

Data Types (2)

Tuples

let mut tuple = (1, "foo", 42); // tuple length is fixed

tuple.0 += 1; // values are mutable

let (x, y, z) = tuple; // destructuring

Arrays

let mut array: [u32; 2] = [1, 2]; // arrays have a fixed size

array[3] += 1; // runtime error (bounds checked)

let foo = [0; 12]; // array with 12 elements with value 0

20 / 49

Strings and Slices

let s = String::from("hello world");

// String ~= Vec<char>

let world = &s[6..11];

// &str ~= &[char]

21 / 49

Strings and Slices

let s = String::from("hello world");

// String ~= Vec<char>

let world = &s[6..11];

// &str ~= &[char]

&s[0..11] // = "hello world"

&s[6..] // = "world"

&s[..5] // = "hello"

&s[..] // = "hello world"

21 / 49

Strings and Slices

let s = String::from("hello world");

// String ~= Vec<char>

let world = &s[6..11];

// &str ~= &[char]

&s[0..11] // = "hello world"

&s[6..] // = "world"

&s[..5] // = "hello"

&s[..] // = "hello world"

let a = [1, 2, 3];

&a[0..1] // = [1]

21 / 49

Control Structures

If expressions

if condition { println!("foo"); } else { println!("bar"); }

let val = if condition { 4 } else { 5 };

Loop

loop { }

While

while condition { }

For

for i in 0..10 { }

22 / 49

Functions

pub fn func_without_return_val(arg: u32) {

if arg > 0 {

return;

}

// do something

}

pub fn func_with_return_val(arg1: usize, arg2: usize) -> usize {

// last expression is the return value

arg1 + arg2

}

23 / 49

Exercise 1 – String Operations

First exercise is in directory “words”

Fill in the implementation of the functions

Use the existing tests to verify your implementation:

$ cargo test

Hint: use the standard library (https://doc.rust-lang.org/stable):
str::chars

char::is_uppercase

str::split_whitespace

24 / 49

https://doc.rust-lang.org/stable

Outline

1 Getting Started

2 Ownership

3 Basic Features

4 Structs, Enums, and Closures

5 Generics, Traits, and Error Handling

6 Unsafe, FFI, Interior Mutability

25 / 49

More on Structs

Struct definitions

struct Rectangle {

width: u32,

height: u32,

}

Methods

impl Rectangle {

fn area(&self) -> u32 {

self.width * self.height

}

}

Methods with mutable self

fn widen(&mut self, amount: u32) {

self.width += amount;

}

Methods that take ownership

fn flip(self) -> Rectangle {

Rectangle {

width: self.height,

height: self.width,

}

}

26 / 49

More on Structs

Struct definitions

struct Rectangle {

width: u32,

height: u32,

}

Methods

impl Rectangle {

fn area(&self) -> u32 {

self.width * self.height

}

}

Methods with mutable self

fn widen(&mut self, amount: u32) {

self.width += amount;

}

Methods that take ownership

fn flip(self) -> Rectangle {

Rectangle {

width: self.height,

height: self.width,

}

}

26 / 49

More on Structs

Struct definitions

struct Rectangle {

width: u32,

height: u32,

}

Methods

impl Rectangle {

fn area(&self) -> u32 {

self.width * self.height

}

}

Methods with mutable self

fn widen(&mut self, amount: u32) {

self.width += amount;

}

Methods that take ownership

fn flip(self) -> Rectangle {

Rectangle {

width: self.height,

height: self.width,

}

}

26 / 49

More on Structs

Struct definitions

struct Rectangle {

width: u32,

height: u32,

}

Methods

impl Rectangle {

fn area(&self) -> u32 {

self.width * self.height

}

}

Methods with mutable self

fn widen(&mut self, amount: u32) {

self.width += amount;

}

Methods that take ownership

fn flip(self) -> Rectangle {

Rectangle {

width: self.height,

height: self.width,

}

}

26 / 49

Enums

Simple enumeration (like in C++)

enum Animal {

Sheep,

Cow,

}

Enums with data (tagged union)

enum Message {

Open(String),

Read(usize, usize),

}

Construction

Message::Open(String::from("Hello!"));

Message::Read(0, 1024);

Matching

match msg {

Message::Open(filename) => ...,

_ => println!("Unsupported"),

}

if let Message::Read(pos, num) = msg {

}

27 / 49

Enums

Simple enumeration (like in C++)

enum Animal {

Sheep,

Cow,

}

Enums with data (tagged union)

enum Message {

Open(String),

Read(usize, usize),

}

Construction

Message::Open(String::from("Hello!"));

Message::Read(0, 1024);

Matching

match msg {

Message::Open(filename) => ...,

_ => println!("Unsupported"),

}

if let Message::Read(pos, num) = msg {

}

27 / 49

Enums

Simple enumeration (like in C++)

enum Animal {

Sheep,

Cow,

}

Enums with data (tagged union)

enum Message {

Open(String),

Read(usize, usize),

}

Construction

Message::Open(String::from("Hello!"));

Message::Read(0, 1024);

Matching

match msg {

Message::Open(filename) => ...,

_ => println!("Unsupported"),

}

if let Message::Read(pos, num) = msg {

}

27 / 49

Enums

Simple enumeration (like in C++)

enum Animal {

Sheep,

Cow,

}

Enums with data (tagged union)

enum Message {

Open(String),

Read(usize, usize),

}

Construction

Message::Open(String::from("Hello!"));

Message::Read(0, 1024);

Matching

match msg {

Message::Open(filename) => ...,

_ => println!("Unsupported"),

}

if let Message::Read(pos, num) = msg {

}

27 / 49

Closures: Basics

Closures are anonymous functions that can be stored:

let adder = |x| { x += 1 };

Closures can also capture their environment:

fn foo() {

let y = 42;

let adder = |x| { x += y };

}

28 / 49

Closures: Basics

Closures are anonymous functions that can be stored:

let adder = |x| { x += 1 };

Closures can also capture their environment:

fn foo() {

let y = 42;

let adder = |x| { x += y };

}

28 / 49

Closures: Contract between Implementer and Consumer

Implementer Consumer
FnOnce Move out✓; Mutate✓ Can call only once
FnMut Move out x; Mutate✓ Can call multiple times with unique access
Fn Move out x; Mutate x Can call multiple times, no restrictions

29 / 49

Closures: Contract between Implementer and Consumer

Implementer Consumer
FnOnce Move out✓; Mutate✓ Can call only once
FnMut Move out x; Mutate✓ Can call multiple times with unique access
Fn Move out x; Mutate x Can call multiple times, no restrictions

Example

fn count<F: ...>(elems: &[u32], func: F) -> usize {

let mut count = 0;

for e in elems { if func(e) { count += 1; } }

count

}

29 / 49

Closures: Contract between Implementer and Consumer

Implementer Consumer
FnOnce Move out✓; Mutate✓ Can call only once
FnMut Move out x; Mutate✓ Can call multiple times with unique access
Fn Move out x; Mutate x Can call multiple times, no restrictions

Example

fn count<F: FnMut(&u32) -> bool>(elems: &[u32], mut func: F) -> usize {

let mut count = 0;

for e in elems { if func(e) { count += 1; } }

count

}

29 / 49

Exercise 2 – Command Line Book Collection

Second exercise is in directory “books”

Simple command line program that lets the user manage a collection of books

Fill in the missing parts (parsing, command execution)
For simplicity:

It’s okay to only support single-word book titles
If you see Option/Result: use unwrap/panic (we’ll add proper error handling later)

The following building blocks might be helpful:
Iterator::collect

Iterator::find

Vec::push

Vec::retain

30 / 49

Outline

1 Getting Started

2 Ownership

3 Basic Features

4 Structs, Enums, and Closures

5 Generics, Traits, and Error Handling

6 Unsafe, FFI, Interior Mutability

31 / 49

Basics of Generics

Generics allow to define functions/structs/enums for a variety of concrete types:

fn foo<T>(arg: T) { /* ... */ }

Generics have no runtime overhead due to monomorphization:

fn foo<T>(arg: T) { /* ... */ }

// is compiled to something like:

fn foo_u32(arg: u32) { /* ... */ }

fn foo_u64(arg: u64) { /* ... */ }

Rust is strict about the requirements for type parameters
(based on traits, as we will see shortly)

32 / 49

Generic Types

Generic function

fn head<T>(elems: &Vec<T>) -> &T {

&elems[0]

}

assert_eq!(*head(&vec![1, 2]), 1);

Generic struct

struct Rectangle<T> {

width: T,

height: T,

}

Rectangle { width: 1.2, height: 4.5 }

Generic enum

enum Option<T> {

Some(T),

None,

}

Generic method

impl<T: AddAssign> Rectangle<T> {

fn widen(&mut self, amount: T) {

self.width += amount;

}

}

33 / 49

Generic Types

Generic function

fn head<T>(elems: &Vec<T>) -> &T {

&elems[0]

}

assert_eq!(*head(&vec![1, 2]), 1);

Generic struct

struct Rectangle<T> {

width: T,

height: T,

}

Rectangle { width: 1.2, height: 4.5 }

Generic enum

enum Option<T> {

Some(T),

None,

}

Generic method

impl<T: AddAssign> Rectangle<T> {

fn widen(&mut self, amount: T) {

self.width += amount;

}

}

33 / 49

Generic Types

Generic function

fn head<T>(elems: &Vec<T>) -> &T {

&elems[0]

}

assert_eq!(*head(&vec![1, 2]), 1);

Generic struct

struct Rectangle<T> {

width: T,

height: T,

}

Rectangle { width: 1.2, height: 4.5 }

Generic enum

enum Option<T> {

Some(T),

None,

}

Generic method

impl<T: AddAssign> Rectangle<T> {

fn widen(&mut self, amount: T) {

self.width += amount;

}

}

33 / 49

Generic Types

Generic function

fn head<T>(elems: &Vec<T>) -> &T {

&elems[0]

}

assert_eq!(*head(&vec![1, 2]), 1);

Generic struct

struct Rectangle<T> {

width: T,

height: T,

}

Rectangle { width: 1.2, height: 4.5 }

Generic enum

enum Option<T> {

Some(T),

None,

}

Generic method

impl<T: AddAssign> Rectangle<T> {

fn widen(&mut self, amount: T) {

self.width += amount;

}

}

33 / 49

Trait Basics

A trait defines a behavior that can be implemented by multiple types:

trait Shape {

fn area(&self) -> u32;

}

Implementing a trait for a type:

impl Shape for Rectangle {

fn area(&self) -> u32 {

self.width * self.height

}

}

34 / 49

Trait Basics

A trait defines a behavior that can be implemented by multiple types:

trait Shape {

fn area(&self) -> u32;

}

Implementing a trait for a type:

impl Shape for Rectangle {

fn area(&self) -> u32 {

self.width * self.height

}

}

34 / 49

More on Traits (1)

Using trait bounds:

fn sum<T: AddAssign + Copy + Default>(nums: &Vec<T>) -> T {

let mut sum = T::default();

for n in nums { sum += *n; }

sum

}

Static vs. dynamic dispatch:

// one function for each type

fn static_dispatch<T: Shape>(sh: &T) { }

fn static_dispatch(sh: &impl Shape) { } // syntactic sugar

// one function for all types, dispatched at runtime

fn dynamic_dispatch(sh: &dyn Shape) { }

35 / 49

More on Traits (1)

Using trait bounds:

fn sum<T: AddAssign + Copy + Default>(nums: &Vec<T>) -> T {

let mut sum = T::default();

for n in nums { sum += *n; }

sum

}

Static vs. dynamic dispatch:

// one function for each type

fn static_dispatch<T: Shape>(sh: &T) { }

fn static_dispatch(sh: &impl Shape) { } // syntactic sugar

// one function for all types, dispatched at runtime

fn dynamic_dispatch(sh: &dyn Shape) { }

35 / 49

More on Traits (2)

Derive attribute:

#[derive(Debug)]

struct Point {

x: u32,

y: u32,

}

let p = Point { x: 0, y: 16 };

println!("p = {:?}", p); // prints "p = Point { x: 0, y: 16 }"

36 / 49

More on Traits (2)

Derive attribute:

#[derive(Debug)]

struct Point {

x: u32,

y: u32,

}

let p = Point { x: 0, y: 16 };

println!("p = {:?}", p); // prints "p = Point { x: 0, y: 16 }"

36 / 49

Copy vs. Move Semantics

C++
Copy semantics by default

Copy constructor etc. is auto-implemented by compiler (opt out possible)

Programmer can opt into move semantics by implementing move constructor etc.

Rust
Move semantics by default: ownership is transferred

Programmer can opt into copy semantics via #[derive(Copy)]

If a type implements Copy, a flat copy is performed instead of ownership transfer

Deep copies are explicit via clone (see Clone trait)

37 / 49

Copy vs. Move Semantics

C++
Copy semantics by default

Copy constructor etc. is auto-implemented by compiler (opt out possible)

Programmer can opt into move semantics by implementing move constructor etc.

Rust
Move semantics by default: ownership is transferred

Programmer can opt into copy semantics via #[derive(Copy)]

If a type implements Copy, a flat copy is performed instead of ownership transfer

Deep copies are explicit via clone (see Clone trait)

37 / 49

Error Handling

Unrecoverable errors with panic!:
Sometimes the best you can do
Can perform stack unwinding or not (set panic=abort)
Provides a backtrace to the user

Recoverable errors with Result:

enum Result<T, E> {

Ok(T),

Err(E),

}

38 / 49

Error Handling

Unrecoverable errors with panic!:
Sometimes the best you can do
Can perform stack unwinding or not (set panic=abort)
Provides a backtrace to the user

Recoverable errors with Result:

enum Result<T, E> {

Ok(T),

Err(E),

}

38 / 49

Error Handling Basics

Returning errors (simplified std::fs::File::open)

pub fn open(path: &str) -> Result<File, Error> {

...

if ... { return Err(Error::NotFound); }

...

}

Handling errors

let mut file = std::fs::File::open("myfile.txt").expect("open failed");

39 / 49

Error Handling Basics

Returning errors (simplified std::fs::File::open)

pub fn open(path: &str) -> Result<File, Error> {

...

if ... { return Err(Error::NotFound); }

...

}

Handling errors

let mut file = std::fs::File::open("myfile.txt").expect("open failed");

39 / 49

Passing Errors Upwards

let mut file = std::fs::File::open(path)?;

// is equivalent to:

let mut file = match std::fs::File::open(path) {

Ok(file) => file,

Err(e) => return Err(e),

};

fn read_file(path: &str) -> Result<String, Error> {

let mut file = std::fs::File::open(path)?;

let mut s = String::new();

file.read_to_string(&mut s)?;

Ok(s)

}

40 / 49

Passing Errors Upwards

let mut file = std::fs::File::open(path)?;

// is equivalent to:

let mut file = match std::fs::File::open(path) {

Ok(file) => file,

Err(e) => return Err(e),

};

fn read_file(path: &str) -> Result<String, Error> {

let mut file = std::fs::File::open(path)?;

let mut s = String::new();

file.read_to_string(&mut s)?;

Ok(s)

}

40 / 49

Option Instead of Nullpointers

Similar to Result for errors, Rust uses Option for optional values:

enum Option<T> {

Some(T),

None,

}

Important methods on Result and Option

unwrap: panic if None/Err
expect: panic with message if None/Err
*_or_else: transformation

More at https://doc.rust-lang.org/stable

41 / 49

https://doc.rust-lang.org/stable

Option Instead of Nullpointers

Similar to Result for errors, Rust uses Option for optional values:

enum Option<T> {

Some(T),

None,

}

Important methods on Result and Option

unwrap: panic if None/Err
expect: panic with message if None/Err
*_or_else: transformation

More at https://doc.rust-lang.org/stable

41 / 49

https://doc.rust-lang.org/stable

Option Instead of Nullpointers

Similar to Result for errors, Rust uses Option for optional values:

enum Option<T> {

Some(T),

None,

}

Important methods on Result and Option

unwrap: panic if None/Err
expect: panic with message if None/Err
*_or_else: transformation

More at https://doc.rust-lang.org/stable

41 / 49

https://doc.rust-lang.org/stable

Exercise 3 – Proper Error Handling

Let’s add proper error handling to our books collection

Get rid of all panics/unwraps

Use Result and Option where appropriate
Hints:

Introduce your own error enum
Attach #[derive(Debug)] to your error enum
Implement From<std::num::ParseIntError> for your enum
Implement Display for Book

42 / 49

Outline

1 Getting Started

2 Ownership

3 Basic Features

4 Structs, Enums, and Closures

5 Generics, Traits, and Error Handling

6 Unsafe, FFI, Interior Mutability

43 / 49

Unsafe

Rust allows you to enable additional features via unsafe

Tells the compiler that you know what you’re doing
Does not turn off safety checks, but allows you additionally to:

Dereference raw pointers
Call unsafe functions

Unsafe code is typically used to build safe abstractions (Vec, String, . . .)

Example:

let mut_ptr = 0xB8000 as *mut u32; // VGA frame buffer

let const_ptr = 0xDEAD_BEEF as *const u32;

unsafe { *mut_ptr = *const_ptr; }

44 / 49

FFI: Interfacing with Other Languages

Rust can interface with other languages through the foreign function interface (FFI)

Allows to call C functions from Rust:

extern "C" {

fn abs(input: i32) -> i32;

}

unsafe { abs(-2) };

And to export Rust functions to C:

#[no_mangle]

extern "C" fn rust_double(arg: u64) -> u64 {

arg * 2

}

45 / 49

FFI: Interfacing with Other Languages

Rust can interface with other languages through the foreign function interface (FFI)

Allows to call C functions from Rust:

extern "C" {

fn abs(input: i32) -> i32;

}

unsafe { abs(-2) };

And to export Rust functions to C:

#[no_mangle]

extern "C" fn rust_double(arg: u64) -> u64 {

arg * 2

}

45 / 49

Interior Mutability

The ownership model is sometimes too restrictive

Interior mutability allows to mutate data with an immutable reference

How can that be safe?
Cell: no reference to internal data; data is copied
RefCell: track references at runtime
Mutex: track references at runtime in a thread-safe way

46 / 49

Interior Mutability

The ownership model is sometimes too restrictive

Interior mutability allows to mutate data with an immutable reference
How can that be safe?

Cell: no reference to internal data; data is copied
RefCell: track references at runtime
Mutex: track references at runtime in a thread-safe way

46 / 49

Interior Mutability: UnsafeCell

// simplified implementation

pub struct UnsafeCell<T> { value: T }

impl<T> UnsafeCell<T> {

pub unsafe fn get_mut(&self) -> &mut T {

let mut_ptr = &self.value as *const T as *mut T;

unsafe { &mut *mut_ptr }

}

}

47 / 49

Interior Mutability: RefCell

Implemented based on UnsafeCell and Cell

Does not hand out “plain” references
Instead hands out the types Ref and RefMut:

pub fn borrow(&self) -> Ref<T>

pub fn borrow_mut(&self) -> RefMut<T>

Ref/RefMut hold a reference and provide access to the data

48 / 49

Exercise 4 – Cells

Final exercise is in directory “cells”

Book collection that is shared (stored in Rc)

Attributes of books should be changable
You need to:

Implement the set_* methods
Use Cell and RefCell as appropriate

49 / 49

	Getting Started
	Ownership
	Basic Features
	Structs, Enums, and Closures
	Generics, Traits, and Error Handling
	Unsafe, FFI, Interior Mutability

