
Faculty of Computer Science Institute for System Architecture, Operating Systems Group

Threads and what can be done
about them
Bjoern Doebel
Michael Roitzsch

The plan

• Introduction to Threads

• PThreads (and also C++ threads)

• Threading problems
– Race conditions
– Deadlocks

• Advanced Concepts
– Producer-consumer scenarios

Processes vs. Threads

• Processes
– own an Address Space
– own Resources (files, shared memory
– represent Security principals

areas, ...)

• Threads
–
–

belong to a process
share address space and resources with other
threads
run in parallel to other threads–

• What is this good for?

Do things in the background

• Scenario: Download large file in a web
browser and surf the web during the
download.

Distribute work

• In High Performance Computing
threads are used to perform the
computations (e.g., execute the
on different data.

(HPC),
same
same code)

– use parallelism to speed up computation
– makes sense for multi-processor or hyperthreaded

machines

How do threads help?

• CPU-bound applications:
– perform computations in parallel
– make use of multiple processor cores
– special libraries exist (OpenMP, MPI, ... - not

covered here, take an HPC course for this.)

• I/O-bound applications:
– increase CPU utilization by running one thread while

others are waiting for I/O to be completed
– even helps on a single CPU core

So this sounds great...

• But threading makes life harder:
– Execution parallelism
– Work on shared data

Rule #1 for writing multi-threaded programs:

Don't (ever!) make any assumptions about
order of execution or timing behavior!

Thread libraries

• Typically hide low-level implementation
details from the user.

• Expose a thread API with functions
– thread creation and destruction
– synchronization mechanisms
– thread-local storage

Examples:
– POSIX Threads (PThreads)
– Windows Threads
– C++11 threads

for

•

Faculty of Computer Science Institute for System Architecture, Operating Systems Group

Introduction to PThreads

What are PThreads ?

• Standardized threading programming
interface for UNIX (like) systems

•
•

specified by IEEE POSIX 1003.1c standard
implementations are referred to as POSIX
threads, or short “pthread”

several draft pthread standards, several
implementations ...

•

implemented with a pthread.h
C programming types and function calls
typically part of / in conjunction with the libc

•
•
•

pthread basics

#include <pthread.h>•
– defines required structures and functions

link with• -pthread

pthread_*()•
pthread_self(), pthread_create()
pthread_equal(), pthread_join()
...

–
–
–

• Use man pages or (online) books!
– man pthreads – overview about pthreads
– man pthread_create, ... - detailed infos
– http://www.llnl.gov/computing/tutorials/pthreads

http://www.llnl.gov/computing/tutorials/pthreads
http://www.llnl.gov/computing/tutorials/pthreads
http://www.llnl.gov/computing/tutorials/pthreads
http://www.llnl.gov/computing/tutorials/pthreads
http://www.llnl.gov/computing/tutorials/pthreads
http://www.llnl.gov/computing/tutorials/pthreads
http://www.llnl.gov/computing/tutorials/pthreads
http://www.llnl.gov/computing/tutorials/pthreads
http://www.llnl.gov/computing/tutorials/pthreads
http://www.llnl.gov/computing/tutorials/pthreads
http://www.llnl.gov/computing/tutorials/pthreads
http://www.llnl.gov/computing/tutorials/pthreads
http://www.llnl.gov/computing/tutorials/pthreads
http://www.llnl.gov/computing/tutorials/pthreads
http://www.llnl.gov/computing/tutorials/pthreads
http://www.llnl.gov/computing/tutorials/pthreads

pthread basics – who am I ?!

pthread_t
– identifies thread within a process uniquely

•

pthread_t pthread_self(void)
– determine thread id of thread calling this function
– to distinct (parallel) executing threads within a

process

•

pthread_equal (pthread_t tid1,•
pthread_t tid2)
– to compare thread ids

don't use tid1 == tid2–

Let's go – create a pthread ...

int pthread_create (•
pthread_t * tidp,
pthread_attr_t * attr,
void * (*startme) (void *),
void * arg);

tidp -> pointer to memory location where new
thread id is to be stored
startme -> function to be executed by new thread
attr thread attributes (default NULL)
arg -> optional argument (NULL)
return value (int)
• success == 0, otherwise contains an

error code

–

–
–
–
–

Simple example

pthread_t ntid;

void * startme (void * arg) {
/* Put thread code here

}
*/

int main (int argc, char ** argv) {
int err;
err = pthread_create(&ntid, NULL, startme, NULL);
[...]

}

pthread basics - waiting for threads

• a thread can end its execution by
–
–
–
–

return from start routine (startme)
calling: void pthread_exit (void *ptr);
ptr is available to other threads waiting for it
Note: exit() terminates the process, pthread_exit()
only the thread

• threads can wait for other threads'
termination:

int pthread_join (pthread_t
void **

– blocks until thread tid terminates

tid,
ptr);

–

– ptr contains value passed by thread_exit
return from start routine

or by the

Exercise 1

• Create 8 threads
– assign to each thread

new thread
the new threads have

a number, pass it over to the

–
–

to print out their identifier
at end of the thread execution return a value to the
main thread
let the main thread wait for termination of the 8
threads and print out the return values

–

Threads in C++11

•
•
•

#include <thread>
Type: std::thread
On your system: wrapper around libpthread

void foo() { /* thread func */ }

int main(void) {
std::thread my_thread(foo);
my_thread.join();

}

Faculty of Computer Science Institute for System Architecture, Operating Systems Group

Synchronization

Exercise 2

• Add new functions to your list implementation.
unsigned int List::count()

– return the number of elements in the list by
running through the list and counting them on-
the-fly

unsigned int List::count_fast()

– count the number of list elements in a separate
field member

– increment/decrement member during
insert()/remove()

•

•

• What are the functions' complexities?

Exercise 3

• Scenario: Web server with multiple worker
threads. HTTP requests arrive and are stored
in
–

a global request list.
Start N (1, 2, 5, 10, 30, ...) threads executing
insert_thread() function.
In insert_thread() add M (10, 50, 100, ...) elements
your list.
Make N and M configurable (compile time constants or
command line argument)
In main() wait for termination of all threads using
pthread_join().
After all threads finished, print out the return values of
List::count() and List::count_fast().

to–

–

–

–

– Run the program multiple times and compare the output
to your expectations.

What went wrong?

One of the two race conditions in this code:

void
{

List::insert_head(int *e)

ListElement *next = new
ListElement(e);

next->set_next(_head);
_head = next;

}
LOAD _elem_count -> REGISTER EAX
INC REGISTER EAX
STORE EAX -> _elem_count

++_elem_count;

Doing things in parallel...

count = 0;
Thread 2Thread 1

LOAD count 0
1INC register

LOAD count
INC register
STORE count

0
1
1

STORE count 1

execution tim
e

Synchronization

• Sometimes threads executing in parallel need
to communicate
– prevent threads from writing the same data

(serialize execution of critical sections)
– tell other thread about current execution state (e.g.,

“I'm done with action A...”)

• This is called synchronization and comes in
many different flavors.

Mechanisms: Disabling Interrupts

• Synchronize by disabling interrupts so that
the scheduler cannot be woken up by a timer
interrupt:

asm(“cli”);

/* execute critical code */
asm(“sti”);

Evil or stupid programmers may omit the STI
instruction – no scheduling occurs ever again.
That's why CLI/STI are privileged HW instructions
and are only allowed in privileged (kernel) mode.
In real-time systems you need to carefully pay
attention to how long you disable interrupts.

–

–

–

Mechanisms: Lock variables

Globally: int cs_locked = 0;

In threads:
while (cs_locked == 1)

/* busy
;

wait */

cs_locked = 1; //
code
//

mark
*/
mark

locked
/* exec. critical
cs_locked = 0; unlocked

Do you see a problem here?

Atomic CMPXCHG

• stands for “compare-and-swap” or
and-exchange”
hardware instructions of (modern)
support for 8/16/32/64 bits
atomic instruction consists of:

“compare-

•
•
•

CPUs

–
–
–

reading from a memory location
compare with a expected value
if compare is successful
• write back a new value to memory location

if compare fails
• don't write back the new value
• return instead the value found at the

memory location

–

What is cmpxchg good for ?

• used to alter values in memory atomically
– which could be read and written by concurrent

threads
(on SMP machines you have also to add LOCK
assembly in conjunction with cmpxchg)

–

• is a non-privileged command

• can be used by user applications
– in contrast to cli/sti (disable/enable interrupts)

• can be used to implement locks

Spinlock with CMPXCHG

typedef unsigned long lock_t;

void lock(lock_t * lock) {
lock_t _old
lock_t _new
do {

/* retry

= 0;
= 1;

until owner is set to 0 (not used)
* and changing to 1 succeeds
*/

} while (! c_cmpxchg (lock, _new, _old));
}

void unlock(lock_t * counter) {
*counter = 0;

}

Usage of cmpxchg on x86 with gcc & gas

inline int c_cmpxchg (unsigned long *dest,
unsigned long new_val, unsigned long cmp_val)

{
unsigned long tmp;
 asm volatile (

"lock cmpxchg %1,
:

%3 \n\t"

"=a"
:
"r"
"0"
"m"
:

(tmp) /* %0 EAX, return val */

(new_val),
(cmp_val),
(*dest)/* %3

/*
/*

mem,

%1 reg, new value */
%2 EAX, compare value */
destination operand */

"memory", "cc" /* code changes content of memory,
and conditional clause register */

);
return tmp == cmp_val;

}

Usage of cmpxchg on x86 with gcc & gas

inline int c_cmpxchg (unsigned long *dest,
unsigned long new_val, unsigned long cmp_val)

{
unsigned long tmp;
 asm volatile (

"lock cmpxchg %1,
:

%3 \n\t"

"=a"
:
"r"
"0"
"m"
:

(tmp) /* %0 EAX, return val */

(new_val),
(cmp_val),
(*dest)/* %3

/*
/*

mem,

%1 reg, new value */
%2 EAX, compare value */
destination operand */

"memory", "cc" /* code changes content of memory,
and conditional clause register */

);
return tmp == cmp_val;

}

Spinlock with C11 atomics

#include <stdatomic.h>

void lock(atomic_flag *lock)
{

do {} while (atomic_flag_test_and_set(lock));
}

void unlock(atomic_flag *lock)
{

atomic_flag_clear(lock);
}

Exercise 4

Use the lock()
synchronize list

and unlock() functions
insertion.

to•

– Design decisions:
• Where to place the lock?

– fine-grained locking -> one lock per
ListElement

– coarse-grained locking -> one lock per List
How to lock?

– explicitly upon user request -> public
lock()/unlock() functions

– implicitly during insert -> private
lock()/unlock() functions

•

Mechanisms: Mutexes / Semaphores

• Previous solution used busy waiting –
senselessly burn CPU cycles (but are also
practical, e.g., in MP systems).
Better:
– find out that critical section is blocked
– sleep until CS is free (queue of threads)
– wake up next thread when leaving CS

Semaphores provide exactly this behavior.
– counter + wait queue
– lock(): decrement counter – if <=0, go to sleep
– unlock():

• increment counter
• wake up next thread in queue

•

•

PThread mutexes

•
•

pthread_mutex_t : data type for mutexes
int pthread_mutex_init() : initialize a mutex
variable
int pthread_mutex_lock() : sleep until locking
succeeds
int pthread_mutex_unlock() : as the name
says
int pthread_mutex_trylock() : try to grab
lock, return with error on failure
int pthread_mutex_destroy() : free all
resources associated with mutex

•

•

•

•

Using mutexes

pthread_mutex_t mutex;

int
{

main(void)

pthread_mutex_init(&mutex, NULL);

pthread_mutex_lock(&mutex);
/* do critical work */
pthread_mutex_unlock(&mutex);

pthread_mutex_destroy(&mutex);
}

Other mechanisms

• In some cases (e.g., real-time) unbounded
sleeping is not a good idea.
Lock-free synchronization•
– don't use any locks for synchronization,

no possibility of deadlocks and livelocks
– needs careful design

Wait-free synchronization
– lock-free mechanisms without sleeping

therefore

•

Mutexes in C++11

•
•

#include <mutex>
std::mutex (and derivatives)

std::mutex mtx;

void thread_func() {
mtx.lock();
// critical section
mtx.unlock();

}

C++11: Never forgetting to unlock

• C++: RAII

• std::lock_guard

std::mutex mtx;

void thread_func() {
std::lock_guard<std::mutex> lock(mtx);
// critical section (with branches
// and multiple returns

// release once lock goes} out of scope

Exercise 5

• Copy your last solution to a new directory.

• Replace the spinlock-based implementation
by one using mutexes.

Faculty of Computer Science Institute for System Architecture, Operating Systems Group

Deadlocks

Exercise 6

• Download 3 (simple) examples
– svn checkout http://svn.inf.tu-

dresden.de/repos/advsysprog/day4/exercise_deadlo
ck

–
–
–

understand code
what goes wrong?
fix it and tell us about the problem.

–
–

download from ...
uncompress, compile, execute
• (shipped with Makefile)

http://svn.inf.tu-
http://svn.inf.tu-
http://svn.inf.tu-
http://svn.inf.tu-
http://svn.inf.tu-
http://svn.inf.tu-
http://svn.inf.tu-
http://svn.inf.tu-
http://svn.inf.tu-
http://svn.inf.tu-

• lock1 example
– ok - endless loop of dots
– ok - sometimes “thread XXXXX exits”
– stops after some time printing dots, why ?

lock2 example
– endless loop of messages:

• got paper, got printer, print document
– stops after some time, why ?

lock3 example
– endless loop of dots
– stops after some time, why ?

•

•

Deadlocks - conclusion

• A situation where two or more competing
actions are waiting for other actions to be
finished. Never one of the actions will be
finished because the actions are waiting for
each other.

• reasons of deadlocks in the examples:
– multiple locks are requested by different

functions/threads in different order
forget to release locks (return before unlocking)
circular dependencies within thread
• lock(lock1); lock(lock2); lock(lock1)

– widespread in/over various functions)

–
–

C++11: Solving deadlocks?

• std::lock_guard / std::unique_lock
to avoid forgetting to unlock

• std::lock(mtx1, mtx2, …) → “locks the given
Lockable objects using a deadlock avoidance
algorithm”

Livelocks

• In contrast to deadlocks, the threads/processes
do something, however don't make
respect to a goal (in my words ...)

– Better definitions in the literature ;-)

progress in

thread1:
lock(&lock1);
while (1) {
if (try_lock(&lock2))

thread2:
lock(&lock2);

while (1) {
if (try_lock(&lock1))

do job_X
else

do job_2
}

do
else

do

job_X

job_1
}

thread3: while (1) { if (job_X is finished) exit; else sleep(1);}

Faculty of Computer Science Institute for System Architecture, Operating Systems Group

Advanced Synchronization

So far, so good

• Up to now:
– Thread creation
– Waiting for thread completion
– Synchronization with mutexes to circumvent race

conditions
– Careful design to avoid deadlocks.

More on synchronization

• There are more scenarios where threads need
to
–

communicate:
client-server architectures (X.Org, microkernel-
based OS) typically use network sockets or other
OS-provided IPC mechanism
producer-consumer problem: keyboard and mouse
drivers “produce” events into a shared buffer,
terminal or window manager retrieves events from
the buffer
reader-writer problem: shared data is written by
writers while multiple readers read it in parallel ->
need to avoid inconsistent data

–

–

Producer-consumer problem

-
-

fixed buffer size
producers sleep while
no space to fill
consumers sleep while
no data
consuming invalidates
buffer elements

-

-

- n:m relation of
producers and
consumers

ConsumerConsConsumer

shared buffer

ProducerProducerProducer

Classical solution using semaphores

semaphore
semaphore
element_t

full(0);
empty(N);
ringbuffer[N];

Producer Consumer

/* produce */ /* consume */

up(empty);up(full);

down(full);down(empty);

POSIX Semaphores

• provide system-global and process-local
semaphores
#include <semaphore.h>•

•
•
sem_t datatype

sem_init() - initialize semaphore
value

with a

sem_wait() - decrement counter, wait if 0
(semaphore_down)
sem_post() - increment counter, wakeup next
waiting thread (semaphore_up)

•

•

Exercise 7

• Implement a consumer-producer solution
using semaphores.
– Use a ring buffer containing characters.
– Producer thread writes characters from a string into

the buffer.
– Consumer thread reads string char-wise and prints

it after encountering a terminating 0.

Condition variables

• Some people dislike semaphores, because
they incorporate multiple concepts:
– counter
– synchronization
– signaling of an event (counter reached a value

greater than 0)
No support for arbitrary signaling conditions.
Condition variables: objects to synchronize
upon

•
•

–
–
–

sleep on condvar until an event occurs
send signals to sleeping thread(s) of a condvar
manual checking for conditions

PThread condition variables

•
•
•

pthread_cond_t
pthread_cond_init()
pthread_cond_wait() - sleep until signal
occurs
pthread_cond_signal() - wake up one
sleeping thread
pthread_cond_broadcast() - wake up all
sleeping threads

•

•

Using condvars

• pthread_cond_t always needs to be combined
with a pthread_mutex_t (prevent race
condition between sleeping and signalling)

• waiting for an event:
pthread_mutex_lock(&mtx);
while (! <condition>)

pthread_cond_wait(&condvar,
pthread_mutex_unlock(&mtx);

&mtx);

• signalling an event:
if (<condition>)

pthread_cond_signal(&condvar);

C++11: Condition Variables

• #include <condition_variable>

std::condition_variable
std::mutex mtx;

cv;

bool condition = false;

void waiter() {
std::unique_lock<std::mutex> ul(mtx);
cv.wait(ul, []{ return condition });

}

C++11: Condition Variables

• #include <condition_variable>

std::condition_variable
std::mutex mtx;

cv;

bool condition = false;

void creator() {
std::unique_lock<std::mutex>

cv.notify_all();

ul(mtx);
condition = true;

}

Exercise 8

• Rewrite your semaphore code using
condition variables.
– How many condvars do you need?
– What are the wakeup conditions?

