
MICHAEL ROITZSCH

Faculty of Computer Science Institute of Systems Architecture, Operating Systems Group

COMPLEX LAB
SYSTEMS PROGRAMMING
DAY 1: TOOLS AND BUILD SYSTEMS

Duty Roster

• start at 9.30 AM each morning
• end at latest 3.30 PM
• lunch break
• additional breaks on demand
• ask questions early and often
• feedback is very welcome

Topics

• Day 1:	 Tools and Build System
• Day 2:	 Rust for Systems
• Day 3:	 Assembler & Debugging
• Day 4:	 Multithreading
• Day 5:	 Underneath POSIX
• Day 6:	 C++ Basics & Beyond

Today’s Agenda

• programming without an IDE
• dissecting a compiler invocation
• various tools to inspect the results
• static and dynamic linking
• automating with make

Exercise 1: First Steps

• create a directory where you will file all course
material

• create a subdirectory in it named day1
• in there, create a subdirectory named exercise1
• in this subdirectory, create a file hello.c using a

text editor and enter the following code:
int main(void)  
{  
 printf(”Hello World\n”);  
}

• indicate when you are done

Exercise 1: First Steps

• change into the directory exercise1 and run
gcc hello.c

• run the created file
• What does the warning mean?
• edit hello.c to fix the warning
• recompile and run again
• change compiler command to create an

executable named hello

Exercise 2: Arguments

• change hello to take command line arguments
• hint: change main to
int main(int argc, char *argv[])  
{ … }

• print the first argument after the „Hello World“
default text

• make sure to check the number of arguments
(argc) before accessing the argv array

Exercise 2: Format Strings

• the % is special in printf strings
• placeholder where succeeding parameters are

inserted
• %s C-string
• %c single character
• %d signed decimal
• %u unsigned decimal
• %p pointer

• don’t do this:	 printf(argv[1]);
• instead, do this:	 printf(”%s\n”, argv[1]);

Exercise 3: Moving to C++

• create a new directory exercise3 next to
exercise1

• copy hello.c to exercise3/hello.cc and
open hello.cc in your editor

• convert the code to C++
• use std::cout instead of printf
• include <iostream> instead of <stdio.h>

• compile the file:
gcc -Wall -o hello hello.cc

Exercise 4: Dissecting g++

• pre-process
g++ -E -o hello.i hello.cc

• compile
g++ -S -g -o hello.s hello.i

• assemble
g++ -c -g -o hello.o hello.s

• link
g++ -o hello hello.o

Exercise 4: Dissecting g++

• compare object file of C++ source to object file of
C source

• check size of executable hello
• check output of nm hello
• call strip hello and check size of hello and
nm-output again

Making Friends with make

• make conditionally runs shell commands
• often used for build systems, can do a lot more
• automatically determines, which parts of a

program need to be recompiled
• speeds up development and prevents forgotten

recompiles
• a Makefile is a list of rules
target: prerequisites  
 commands

• by default, make executes the first rule of
Makefile, traditionally using target name all

Exercise 5: Using make

• delete the hello binary
• write a Makefile to create hello from hello.cc
• call make twice and make sure it does not

recompile
• hint: make only executes a target’s commands,

if the target does not exist or any of the
prerequisites is newer

Exercise 5: Using make

• modify the Makefile to treat warnings as errors
• Why does make not recompile?
• modify Makefile to fix

Exercise 5: Using make

• create a function name without parameters or
return value that prints your name

• call that function name from the main function in
the file hello.cc

• we don’t use command line arguments any more
• make and run hello

Exercise 5: Using make

• move the code of the function name into an own
source file name.cc

• only move the name function, main stays in
hello.cc

• in hello.cc, add the line void name();
instead

• modify Makefile to also compile and link
name.cc

• create one binary hello
• fix the errors and warnings and rerun make

Exercise 5: A Possible Solution

SRC = hello.cc name.cc  
OBJ = $(SRC:.cc=.o)  
 
hello: $(OBJ)  

g++ -o $@ $+  
 
%.o: %.cc Makefile  

g++ -Wall -Werror -c -o $@ $<

Header Files

• function declarations make a function and its
signature known within a scope

void name();  

• function definitions define what is done whenever
the function is invoked

void name()  
{  
 std::cout << “name” << std::endl;  
}

Header Files

• declarations provide the interface, definitions the
functionality

• header files are used to publish declarations
• the header file is included

• where the function is used, so the compiler
knows about it and can check the signature

• where the function is defined, to detect
mismatches between declaration and
definition

Exercise 6: Header Files

• write and use a header file name.hh for the
function name

• What is the difference between
#include <name.hh>  
and
#include "name.hh"

Exercise 7: Inline Functions

• for very small helper functions, the function call
overhead can be avoided by inlining

• make the name function an inline function by
moving its definition from name.cc to name.hh

• hint: prepend the definition with the
inline keyword

• What happens, if hello.cc includes name.hh
more than once?

• note: this is a sidetrack, we will come back to the
un-inlined version after this exercise

Exercise 8: More make Magic

• add a clean rule to remove generated files
• use dependencies to enable recompiles on header

changes
• find the g++ option to generate a dependency

file from a source file
• extend Makefile to generate dependency

files
• use them in the Makefile

Exercise 8: A Possible Solution

SRC = hello.cc name.cc  
OBJ = $(SRC:.cc=.o)  
DEP = $(SRC:.cc=.d)  
 
hello: $(OBJ)  

g++ -o $@ $+  
 
%.o: %.cc Makefile  

g++ -MMD -Wall -Werror -c -o $@ $<  
 
clean:  

rm -f $(OBJ) $(DEP) hello  
 
-include $(DEP)

Libraries

• common platform functions are used by virtually
every program

• code is packaged into libraries
• static and dynamic libraries
• static libraries

• are just archives of object files
• are linked with your own object files into a

binary at compile time
• not relevant at runtime
• are created with ar
• a symbol index is added with ranlib

Exercise 9: Static Library

• create a new directory exercise9
• copy your final hello.cc, name.cc, name.hh and
Makefile there

• turn name.cc into a static library libname.a
• bonus points for implementing recursive make
• create a subdirectory lib for name.*
• create a Makefile in that subdirectory to

create the static library
• modify the existing Makefile to also build in

the lib subdirectory

Exercise 9: Solution Snippet 2

SRC = hello.cc  
LIB = libname.a  
 
hello: hello.o $(LIB)  

g++ -o $@ $+  
 
$(LIB): name.o  

ar -cr $@ $+  
ranlib $@  

 
%.o: %.cc Makefile  

g++ -Wall -Werror -c -o $@ $<

Dynamic Libraries

• linked in two stages
• at compile time, the linker only verifies that all

symbols are available
• at runtime, the dynamic loader

• checks, what libraries the executable needs
• loads them into memory
• attaches them to the executable

• advantages:
saves disk space and memory due to sharing

• disadvantage:
longer application startup time

Exercise 10: Dynamic Library

• turn libname.a into a dynamic library
libname.so

• hint: g++ -shared might be interesting to you
• use -dynamiclib on macOS

• run ldd on your dynamically linked hello binary

Recap

• learned what a compiler does
• how to use header files
• static and dynamic libraries
• automating build commands with make
• subversion source code management
• tools: file, nm, objdump, strip, ldd

