System Programming — Day 2

Rust

Nils Asmussen

09/24/2024

1/49

What is Rust?

A language empowering everyone

to build reliable and efficient software.

(rust-lang.org)

2/49

Why Another Language?

® We have plenty of languages to build reliably software:
® Java, C#, Go, Python, Ruby, ...
e All of these trade performance for safety

e All of them have a runtime (garbage collector, ...)

3/49

Why Another Language?

® We have plenty of languages to build reliably software:
® Java, C#, Go, Python, Ruby, ...
e All of these trade performance for safety

e All of them have a runtime (garbage collector, ...)

® We have plenty of languages to build efficient software:

® C, C++, D, Assembly, ...

® All of them trade safety for performance

3/49

Why Another Language?

® We have plenty of languages to build reliably software:
® Java, C#, Go, Python, Ruby, ...
e All of these trade performance for safety
@ All of them have a runtime (garbage collector, ...)

® We have plenty of languages to build efficient software:
® C, C++, D, Assembly, ...

® All of them trade safety for performance

® System programming requires efficiency/control and safety!

3/49

But Good Developers Don’t Need Safety!

4/49

https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/

But Good Developers Don’t Need Safety!

100%
90%
80%
70%
60%
50%

% of CVEs

40%
30%
20%
10%

0%
2006 2007 2008 2009 2010 2m 202 2013 204 205 2016 207 208

Patch Year

B Memery safety B Not memory safety

Source: https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/

https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/

But Good Developers Don’t Need Safety!

100%
90%
80%
70%
60%
50%

% of CVEs

40%
30%
20%
10%

2006 2007 ZOUFNQ 6’ =010 2m 202 2013 204 205 2016 207 208

0%

Patch Year

B Memery safety B Not memory safety

Source: https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/
4/49

https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/

It works!

Memory unsafe code and Memory safety vulnerabilities

W New memory unsafe code [l Memory safety vulns
100

% Total

2019 (10) 2020 (11) 2021 (12) 2022 (13)

Year (Android release)

Source: https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html?m=1
5/49

https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html?m=1

It works!

Memory unsafe code and Memory safety vulnerabilities New Native Code
B New memory unsafe code [l Memory safety vulns WRst WC C++
100 80
75 60
g w0 =
=
25 20
0
0 1 12 13
2019 (10) 2020 (1) 2021 (12) 2022 (13)

Android release
Year (Android release)

Source: https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html?m=1
5/49

https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html?m=1

General Idea of Rust

® C/C++ declare everything that is unsafe as “undefined behavior”

® That pushes the problem to the developer

® There is no way out: the developer has the control all the time

6/49

General Idea of Rust

® C/C++ declare everything that is unsafe as “undefined behavior”

® That pushes the problem to the developer

® There is no way out: the developer has the control all the time
® Rust provides safety without undefined behavior by default

® The developer can opt out by marking code as “unsafe”

® The developer only has the control if explicitly requested

6/49

General Idea of Rust

® C/C++ declare everything that is unsafe as “undefined behavior”

® That pushes the problem to the developer

® There is no way out: the developer has the control all the time
® Rust provides safety without undefined behavior by default

® The developer can opt out by marking code as “unsafe”

® The developer only has the control if explicitly requested
® Rust tracks ownership at compile time and thereby is

® memory safe

® data-race free

6/49

Agenda

Morning
® Getting started

® Ownership
® Basic features + exercise

® Structs and enums + exercise

7/49

Agenda

Morning
® Getting started

® Ownership

Basic features + exercise

Structs and enums + exercise

Afternoon
® Generics, traits, and error handling + exercise

® Unsafe, FFl, interior mutability + exercise

7/49

Repository

To get the slides and the exercises:

$ git clone https://github.com/Nils-TUD/sysprog-rust.git

8/49

Outline

@) Getting Started

9/49

Installation

® Please install the latest stable version of Rust

® Primary way: rustup (installer and version management)

® Some distributions (e.g., Arch) have a package for Rust or rustup
® Otherwise:

$ curl --proto '=https' --tlsv1.2 https://sh.rustup.rs -sSf > rup.sh
check if it's safe and use a fresh shell
$ sh rup.sh

10/ 49

Overview

® rustc is the Rust compiler; almost never invoked by the user
® cargo is Rust’s build system and package manager

® Cargo.toml describes what to build and its dependencies
® cargo downloads dependencies and builds everything automatically
® Every library/application is a crate

e Crates can be found on https://crates.io (or https://1lib.rs)

11/49

https://crates.io
https://lib.rs

Let’s Build Hello World!

$ cargo new hello
$ cd hello
$ cargo run

12/49

Outline

@ Ownership

13/49

Different Memory Management Approaches

® Many high-level languages use garbage collection to manage memory
@ Often not acceptable for OSes, bootloaders, VMMs, ...

14/ 49

Different Memory Management Approaches

® Many high-level languages use garbage collection to manage memory
@ Often not acceptable for OSes, bootloaders, VMMs, ...
® Many low-level languages let the developer manage memory explicitly

® Error prone and the main cause for memory-safety issues

14/ 49

Different Memory Management Approaches

® Many high-level languages use garbage collection to manage memory
@ Often not acceptable for OSes, bootloaders, VMMs, ...

® Many low-level languages let the developer manage memory explicitly
® Error prone and the main cause for memory-safety issues

® Rust uses Ownership

® No garbage collection, no manual allocation

® The compiler defines a set of rules and enforces them

14/ 49

Ownership Rules

@ Each value has a variable that’s called its owner.
@ There can only be one owner at a time.

© When the owner goes out of scope, the value will be dropped.

15/49

Ownership Rules — Examples

Valid example

{
let mut var = 4; // mutable variable
var += 1; // we are the owner
} // var is dropped

16/ 49

Ownership Rules — Examples

Valid example

{
let mut var = 4; // mutable variable
var += 1; // we are the owner
} // var is dropped

Invalid example

let mut var = 4;
let var_ref = &mut var; // mutable reference to modify ~var®
drop(var); // explicit drop

*var_ref = 5; // error (use after free)

16/ 49

Ownership Transfer and Borrowing

@ The owner of a value can transfer the ownership to someone else.

let var = String::from("hello”); // heap-allocated string
fn foo(name: String) { /* name is dropped */ }

foo(var); // transfer ownership to foo

17/ 49

Ownership Transfer and Borrowing

@ The owner of a value can transfer the ownership to someone else.

let var = String::from("hello”); // heap-allocated string
fn foo(name: String) { /* name is dropped */ }
foo(var); // transfer ownership to foo

@ Others can borrow a value from the owner.

let mut var = String::from("hello”); // mutable String

fn foo(name: &String) { /* use name %/ }

foo(&var); // let foo borrow var
var.push(' '); // we are the owner again

17/ 49

Outline

@) Basic Features

18/ 49

Data Types (1)

® Scalars
® Integers: u32, i64, usize,
® Floats: 32, f64
® Boolean: bool

® Character: char
® Structs

struct Foo {
fieldl: u32,
field2: String,

19/ 49

Data Types (2)

® Tuples
let mut tuple = (1, "foo", 42); // tuple length is fixed
tuple.0 += 1; // values are mutable
let (x, y, z) = tuple; // destructuring

® Arrays

let mut array: [u32; 2] = [1, 2]; // arrays have a fixed size
array[3] += 1; // runtime error (bounds checked)
let foo = [0; 12]; // array with 12 elements with value 0

20/ 49

Strings and Slices

let s = String::from("hello world"); i

// String ~= Vec<char> — value index value
ptr ——> h
let world = &s[6..11]; 1 2
en 11 1 e
// &str ~= &[char] capacity| 11 2 1
3 1
world 4 o
name |value 5
ptr P 6 w
len | 5 7 o
8 r
9 1
10 d

21/49

Strings and Slices

let s = String::from(”"hello world");
// String ~= Vec<char>

let world = &s[6..11];

// &str ~= &[char]

"hello world”
"world”
"hello”
"hello world”

&sl[o0..11] //
&s[6..] //
&s[..5] //
&s[..] /7

S

name |value index |value
ptr — 0 h
len 11 1 e
capacity| 11 2 1
3 1
world 4 o

name |value 5

ptr —f—» 6 w
len 5 7 o
8 r
9 1
10 d

21/49

Strings and Slices

let s = String::from(”"hello world");
// String ~= Vec<char>

let world = &s[6..11];

// &str ~= &[char]

"hello world”
"world”
"hello”
"hello world”

&sl[o0..11] //
&s[6..] //
&s[..5] //
&s[..] /7

let a = [1, 2, 3];
&al0..1] // = [1]

S

name |value index |value
ptr — 0 h
len 11 1 e
capacity| 11 2 1
3 1
world 4 o

name |value 5

ptr —f—» 6 w
len 5 7 o
8 r
9 1
10 d

21/49

Control Structures

o [f expressions
if condition { println!("foo"); } else { println!("bar"); }
let val = if condition { 4 } else { 5 };
® Loop
loop { 3
® While
while condition { }

® For

for i in 0..10 { }
for ¢ in "test".chars() { }

22/49

Functions

pub fn func_without_return_val(arg: u32) {
if arg > 0 {
return;

}
// do something

pub fn func_with_return_val(argl: usize, arg2: usize) -> usize {
// last expression is the return value
argl + arg2

23/49

Exercise 1 - String Operations

First exercise is in directory “words”

Fill in the implementation of the functions

Use the existing tests to verify your implementation:

$ cargo test

® Hint: use the standard library (https://doc.rust-lang.org/stable):

® str::chars
® char::is_uppercase
® str::split_whitespace

24 /49

https://doc.rust-lang.org/stable

Outline

9 Structs, Enums, and Closures

25/49

More on Structs

® Struct definitions

struct Rectangle {
width: u32,
height: u32,

26/49

More on Structs

® Struct definitions

struct Rectangle {

width: u32,
height: u32,
3
® Methods

impl Rectangle {
fn area(&self) -> u32
self.width * self.height

26/49

More on Structs

® Struct definitions ® Methods with mutable self
struct Rectangle { fn widen(&mut self, amount: u32) {
width: u32, self.width += amount;
height: u32, }
3
® Methods

impl Rectangle {
fn area(&self) -> u32
self.width * self.height

26/49

More on Structs

® Struct definitions

struct Rectangle {

width: u32,
height: u32,
3
® Methods

impl Rectangle {
fn area(&self) -> u32
self.width * self.height

® Methods with mutable self

fn widen(&mut self, amount: u32) {
self.width += amount;

}

® Methods that take ownership

fn flip(self) -> Rectangle {
Rectangle {
width: self.height,
height: self.width,

26 /49

Enums

® Simple enumeration (like in C++)

enum Animal {
Sheep,
Cow,

27/49

Enums

® Simple enumeration (like in C++)

enum Animal {
Sheep,
Cow,

}

® Enums with data (tagged union)

enum Message {
Open(String),
Read(usize, usize),

27/49

Enums

® Simple enumeration (like in C++)

enum Animal {
Sheep,
Cow,

}

® Enums with data (tagged union)

enum Message {
Open(String),
Read(usize, usize),

® Construction

Message: :Open(String::from("Hello!"));

Message: :Read (0, 1024);

27/49

Enums

® Simple enumeration (like in C++) ® Construction
enum Animal { Message: :Open(String::from("Hello!"));
Sheep, Message: :Read (0, 1024);
Cow,
} ® Matching
match msg {

® Enums with data (tagged union) Message: :Open(filename) => ...

enum Message { _ => println! ("Unsupported”),
Open(String), }
Read(usize, usize), if let Message::Read(pos, num) = msg {
} }

27/49

Closures: Basics

® Closures are anonymous functions that can be stored:

let adder = |x| { x += 1 };

28/49

Closures: Basics

® Closures are anonymous functions that can be stored:

let adder = |x| { x += 1 };

® Closures can also capture their environment:

fn foo() {
let y = 42;
let adder = |x| { x +=y };

28/49

Closures: Contract between Implementer and Consumer

Example

fn count<F: ...>(elems: &[u32], func: F) -> usize {
let mut count = 0;
for e in elems { if func(e) { count +=1; } }
count

29/49

Closures: Contract between Implementer and Consumer

Example

fn count<F: ...>(elems: &[u32], func: F) -> usize {
let mut count = 0;
for e in elems { if func(e) { count += 1; } }

count
}
Implementer Consumer
FnOnce | Move out v'; Mutate Can call only once
FnMut Move out x; Mutate Can call multiple times with unique access
Fn Move out x; Mutate x Can call multiple times, no restrictions

29/49

Closures: Contract between Implementer and Consumer

Example

fn count<F: FnMut(&u32) -> bool>(elems: &[u32], mut func: F) -> usize {
let mut count = 0;
for e in elems { if func(e) { count += 1; } }

count
}
Implementer Consumer
FnOnce | Move out v'; Mutate Can call only once
FnMut Move out x; Mutate Can call multiple times with unique access
Fn Move out x; Mutate x Can call multiple times, no restrictions

29/49

Exercise 2 — Command Line Book Collection

Second exercise is in directory “books”

Simple command line program that lets the user manage a collection of books

Fill in the missing parts (parsing, command execution)

For simplicity:
® |t’s okay to only support single-word book titles

® |f you see Option/Result: use unwrap/panic (we’ll add proper error handling later)

The following building blocks might be helpful:
® Iterator::collect
® Iterator::find
® Vec::push
® Vec::retain

30/49

Outline

6 Generics, Traits, and Error Handling

31/49

Basics of Generics

® Generics allow to define functions/structs/enums for a variety of concrete types:

fn foo<T>(arg: T) { /x ... x/ }

® Generics have no runtime overhead due to monomorphization:

fn foo<T>(arg: T) { /x ... x/ }

// is compiled to something like:
fn foo_u32(arg: u32) { /x ... *x/ }
fn foo_u6b4(arg: u64) { /*x ... x/ }

® Rust is strict about the requirements for type parameters
(based on traits, as we will see shortly)

32/49

Generic Types

® Generic function

fn head<T>(elems: &Vec<T>) -> &T {
&elems[0]

}
assert_eq! (xhead(&vec![1, 21), 1);

33/49

Generic Types

® Generic function

fn head<T>(elems: &Vec<T>) -> &T {
&elems[0]

3
assert_eq! (xhead(&vec![1, 21), 1);

® Generic struct

struct Rectangle<T> {
width: T,
height: T,
}
Rectangle { width: 1.2, height: 4.5 }

33/49

Generic Types

® Generic function ® Generic enum
fn head<T>(elems: &Vec<T>) -> &T { enum Option<T> {
8&elems[0] Some(T),
} None,
assert_eq! (xhead(&vec![1, 21), 1); }

® Generic struct

struct Rectangle<T> {
width: T,
height: T,
}
Rectangle { width: 1.2, height: 4.5 }

33/49

Generic Types

® Generic function ® Generic enum
fn head<T>(elems: &Vec<T>) -> &T { enum Option<T> {
&elems[0] Some(T),
3 None,
assert_eq! (xhead(&vec![1, 21), 1); 3}
® Generic struct ® Generic method
struct Rectangle<T> { impl<T: AddAssign> Rectangle<T> {
width: T, fn widen(&mut self, amount: T) {
height: T, self.width += amount;
3 3
Rectangle { width: 1.2, height: 4.5 } }

33/49

Trait Basics

® A trait defines a behavior that can be implemented by multiple types:

trait Shape {
fn area(&self) -> u32;

34/49

Trait Basics

® A trait defines a behavior that can be implemented by multiple types:

trait Shape {
fn area(&self) -> u32;
3

® Implementing a trait for a type:

impl Shape for Rectangle {
fn area(&self) -> u32 {
self.width * self.height

34/49

More on Traits (1)

® Using trait bounds:

fn to_vec<T: Clone>(slice: &[T]) -> Vec<T> {
let mut vec = Vec::new();
for e in slice { vec.push(e.clone()); }
vec

35/49

More on Traits (1)

® Using trait bounds:

fn to_vec<T: Clone>(slice: &[T]) -> Vec<T> {
let mut vec = Vec::new();
for e in slice { vec.push(e.clone()); }
vec

b

® Static vs. dynamic dispatch:

// one function for each type

fn static_dispatch<T: Shape>(sh: &T) { }

fn static_dispatch(sh: &impl Shape) { } // syntactic sugar
// one function for all types, dispatched at runtime

fn dynamic_dispatch(sh: &dyn Shape) { }

35/49

More on Traits (2)

® Derive attribute:

#[derive(Debug)]
struct Point {
Xx: u32,
y: u32,

36/49

More on Traits (2)

® Derive attribute:

#[derive(Debug)]
struct Point {
Xx: u32,
y: u32,

let p = Point { x: 0, y: 16 };
println!("p = {:?}", p); // prints "p = Point { x: @, y: 16 }"

36/49

Copy vs. Move Semantics

C++
® Copy semantics by default

e Copy constructor etc. is auto-implemented by compiler (opt out possible)

® Programmer can opt into move semantics by implementing move constructor etc.

37/49

Copy vs. Move Semantics

C++
® Copy semantics by default

® Copy constructor etc. is auto-implemented by compiler (opt out possible)

® Programmer can opt into move semantics by implementing move constructor etc.

Rust

® Move semantics by default: ownership is transferred
® Programmer can opt into copy semantics via #[derive(Copy)]
e If a type implements Copy, a flat copy is performed instead of ownership transfer

® Deep copies are explicit via clone (see Clone trait)

37/49

Error Handling

e Unrecoverable errors with panic!:

® Sometimes the best you can do
@ Can perform stack unwinding or not (set panic=abort)

® Provides a backtrace to the user

38/49

Error Handling

e Unrecoverable errors with panic!:

® Sometimes the best you can do
@ Can perform stack unwinding or not (set panic=abort)

® Provides a backtrace to the user
® Recoverable errors with Result:

enum Result<T, E> {
ok(T),
Err(E),

38/49

Error Handling Basics

Returning errors (simplified std: : fs::File: :open)

pub fn open(path: &str) -> Result<File, Error> {

if ... { return Err(Error::NotFound); }

39/49

Error Handling Basics

Returning errors (simplified std: : fs::File: :open)

pub fn open(path: &str) -> Result<File, Error> {

if ... { return Err(Error::NotFound); }

Handling errors

let mut file = std::fs::File::open("myfile.txt").expect("open failed");

39/49

Passing Errors Upwards

let mut file = std::fs::File::open(path)?;

// is equivalent to:

let mut file = match std::fs::File::open(path) {
Ok(file) => file,
Err(e) => return Err(e),

1

40/ 49

Passing Errors Upwards

let mut file = std::fs::File::open(path)?;

// is equivalent to:

let mut file = match std::fs::File::open(path) {
Ok(file) => file,
Err(e) => return Err(e),

1

fn read_file(path: &str) -> Result<String, Error> {
let mut file = std::fs::File::open(path)?;
let mut s = String::new();
file.read_to_string(&mut s)?;
Ok(s)

40/ 49

Option Instead of Nullpointers

® Similar to Result for errors, Rust uses Option for optional values:

enum Option<T> {
Some(T),
None,

41/49

https://doc.rust-lang.org/stable

Option Instead of Nullpointers

® Similar to Result for errors, Rust uses Option for optional values:

enum Option<T> {
Some(T),
None,

3

® Important methods on Result and Option

® unwrap: panic if None/Err
® expect: panic with message if None/Err

® *_or_else: transformation

41/49

https://doc.rust-lang.org/stable

Option Instead of Nullpointers

® Similar to Result for errors, Rust uses Option for optional values:

enum Option<T> {
Some(T),
None,

3

® Important methods on Result and Option

® unwrap: panic if None/Err
® expect: panic with message if None/Err

® *_or_else: transformation

® More at https://doc.rust-lang.org/stable

41/49

https://doc.rust-lang.org/stable

Exercise 3 — Proper Error Handling

Let’s add proper error handling to our books collection

Get rid of all panics/unwraps

Use Result and Option where appropriate
Hints:

® [ntroduce your own error enum

e Attach #[derive(Debug)] to your error enum
® Implement From<std::num: :ParseIntError> for your enum
® Implement Display for Book

42/ 49

Outline

@ Unsafe, FFI, Interior Mutability

43/ 49

Unsafe

® Rust allows you to enable additional features via unsafe

e Tells the compiler that you know what you’re doing
® Does not turn off safety checks, but allows you additionally to:

® Dereference raw pointers

® Call unsafe functions
e Unsafe code is typically used to build safe abstractions (Vec, String, ...)
® Example:

let mut_ptr = 0xB800@ as *mut u32; // VGA frame buffer
let const_ptr = OxDEAD_BEEF as *const u32;
unsafe { *mut_ptr = *const_ptr; }

44/ 49

FFl: Interfacing with Other Languages

® Rust can interface with other languages through the foreign function interface (FFI)
® Allows to call C functions from Rust:

extern "C" {
fn abs(input: i32) -> i32;

3
unsafe { abs(-2) };

45/ 49

FFl: Interfacing with Other Languages

® Rust can interface with other languages through the foreign function interface (FFI)
® Allows to call C functions from Rust:

extern "C" {

fn abs(input: i32) -> i32;
}
unsafe { abs(-2) };

® And to export Rust functions to C:

#[no_mangle]
extern "C" fn rust_double(arg: u64) -> u64 {
arg * 2

45/ 49

Interior Mutability

® The ownership model is sometimes too restrictive

® Interior mutability allows to mutate data with an immutable reference

46 / 49

Interior Mutability

® The ownership model is sometimes too restrictive

® Interior mutability allows to mutate data with an immutable reference
® How can that be safe?

® Cell: no reference to internal data; data is copied
® RefCell: track references at runtime

® Mutex: track references at runtime in a thread-safe way

46 / 49

Interior Mutability: UnsafeCell

// simplified implementation
pub struct UnsafeCell<T> { value: T }

impl<T> UnsafeCell<T> {
pub unsafe fn get_mut(&self) -> &mut T {
let mut_ptr = &self.value as *const T as *mut T;
unsafe { &mut *mut_ptr }

47/ 49

Interior Mutability: RefCell

Implemented based on UnsafeCell and Cell

Does not hand out “plain” references
Instead hands out the types Ref and RefMut:

® pub fn borrow(&self) -> Ref<T>
® pub fn borrow_mut(&self) -> RefMut<T>

Ref/RefMut hold a reference and provide access to the data

48/ 49

Exercise 4 — Cells

Final exercise is in directory “cells”

Book collection that is shared (stored in Rc)

Attributes of books should be changable

You need to:

® Implement the set_* methods

® Use Cell and RefCell as appropriate

49/ 49

	Getting Started
	Ownership
	Basic Features
	Structs, Enums, and Closures
	Generics, Traits, and Error Handling
	Unsafe, FFI, Interior Mutability

