

Faculty of Computer Science Institute for System Architecture, Operating Systems Group

Threads and what can be done about them

Till Smejkal Bjoern Doebel Michael Roitzsch

The plan

- Introduction to Threads
- PThreads (and also C++ threads)
- Threading problems
 - Race conditions
 - Deadlocks
- Advanced Concepts
 - Producer-consumer scenarios

Processes vs. Threads

Processes

- own an Address Space
- own Resources (files, shared memory areas)
- represent Security principals

Threads

- belong to a process
- share address space and resources with other threads
- run in parallel to other threads
- What is this good for?

Do things in the background

 Scenario: Download large file in a web browser and surf the web during the download.

*	5% of 1 file - Downloads	- 1 ×
	KNOPPIX_V5.1.0CD-2006-12-30-EN.iso	<u>Cancel</u>
	Pause 37.0 of 697.7 MB at 3022 KB/sec; 03:44 remain	
	All files downloaded to: Desktop	<u>C</u> lean Up

Distribute work

- In High Performance Computing (HPC), threads are used to perform the same computations (e.g., execute the same code) on different data.
 - use parallelism to speed up computation
 - makes sense for multi-processor or hyperthreaded machines

How do threads help?

CPU-bound applications:

- perform computations in parallel
- make use of multiple processor cores
- special libraries exist (OpenMP, MPI, ... not covered here, take an HPC course for this.)

I/O-bound applications:

- increase CPU utilization by running one thread while others are waiting for I/O to be completed
- even helps on a single CPU core

So this sounds great...

- But threading makes life harder:
 - Execution parallelism
 - Work on shared data

Rule #1 for writing multi-threaded programs:

Don't (ever!) make any assumptions about order of execution or timing behavior!

Thread libraries

- Typically hide low-level implementation details from the user.
- Expose a thread API with functions for
 - thread creation and destruction
 - synchronization mechanisms
 - thread-local storage
- Examples:
 - POSIX Threads (PThreads)
 - Windows Threads
 - C++11 threads

Faculty of Computer Science Institute for System Architecture, Operating Systems Group

Introduction to PThreads

What are PThreads?

- Standardized threading programming interface for UNIX (like) systems
- specified by IEEE POSIX 1003.1c standard
- implementations are referred to as POSIX threads, or short "pthread"
- several draft pthread standards, several implementations ...
- implemented with a pthread.h
- C programming types and function calls
- typically part of / in conjunction with the libc

pthread basics

- #include <pthread.h>
 - defines required structures and functions
- link with -pthread
- pthread_*()
 _ pthread_self(), pthread_create()
 pthread_equal(), pthread_join()
 ...
- Use man pages or (online) books!
 - man pthreads overview about pthreads
 - man pthread_create, ... detailed infos
 - http://www.llnl.gov/computing/tutorials/pthreads

pthread basics – who am I?!

- pthread_t
 - identifies thread within a process uniquely
- pthread_t pthread_self(void)
 - determine thread id of thread calling this function
 - to distinct (parallel) executing threads within a process
- pthread_equal (pthread_t tid1, pthread_t tid2)
 - to compare thread ids
 - don't use tid1 == tid2

Let's go – create a pthread ...

- tidp -> pointer to memory location where new thread id is to be stored
- startme -> function to be executed by new thread
- attr thread attributes (default NULL)
- arg -> optional argument (NULL)
- return value (int)
 - success == 0, otherwise contains an error code

Simple example

pthread basics - waiting for threads

- a thread can end its execution by
 - return from start routine (startme)
 - calling: void pthread_exit (void *ptr);
 - ptr is available to other threads waiting for it
 - Note: exit() terminates the process, pthread_exit()
 only the thread
- threads can wait for other threads' termination:

- blocks until thread tid terminates
- ptr contains value passed by thread_exit or by the return from start routine

Exercise 1

Create 8 threads

- assign to each thread a number, pass it over to the new thread
- the new threads have to print out their identifier
- at end of the thread execution return a value to the main thread
- let the main thread wait for termination of the 8 threads and print out the return values

Threads in C++11

- #include <thread>
- Type: std::thread
- On your system: wrapper around libpthread

```
void foo() { /* thread func */ }
int main(void) {
   std::thread my_thread(foo);
   my_thread.join();
}
```


Faculty of Computer Science Institute for System Architecture, Operating Systems Group

Synchronization

Exercise 2

Add new functions to the list implementation.

https://os.inf.tu-dresden.de/~tsmejkal/sysprog-threads.git/

- unsigned int List::count()
 - return the number of elements in the list by running through the list and counting them on- thefly
- unsigned int List::count_fast()
 - count the number of list elements in a separate field member
 - increment/decrement member during insert()/remove()
- What are the functions' complexities?

Exercise 3

- Scenario: Web server with multiple worker threads. HTTP requests arrive and are stored in a global request list.
 - Start N (1, 2, 5, 10, 30, ...) threads executing insert_thread() function.
 - In insert_thread() add M (10, 50, 100, ...) elements to your list.
 - Make N and M configurable (compile time constants or command line argument)
 - _ In main() wait for termination of all threads using pthread_join().
 - _ After all threads finished, print out the return values of List::count() and List::count_fast().
 - Run the program multiple times and compare the output to your expectations.

What went wrong?

One of the two race conditions in this code: void List::insert_head(int *e) { ListElement *next = new ListElement(e); next->set_next(_head); head = next;++_elem_count; LOAD _elem_count -> REGISTER EAX **REGISTER EAX** INC STORE EAX -> _elem_count

Doing things in parallel...

	count = 0;	
Thread 1	Thread 2	
LOAD count execution time STORE count	1 LOAD count INC register STORE count	0 1 1

Synchronization

- Sometimes threads executing in parallel need to communicate
 - prevent threads from writing the same data (serialize execution of critical sections)
 - tell other thread about current execution state (e.g., "I'm done with action A...")
- This is called synchronization and comes in many different flavors.

Mechanisms: Disabling Interrupts

 Synchronize by disabling interrupts so that the scheduler cannot be woken up by a timer interrupt:

```
asm("cli");
/* execute critical code */
asm("sti");
```

- Evil or stupid programmers may omit the STI instruction – no scheduling occurs ever again.
- That's why CLI/STI are privileged HW instructions and are only allowed in privileged (kernel) mode.
- In real-time systems you need to carefully pay attention to how long you disable interrupts.

Mechanisms: Lock variables

Do you see a problem here?

Atomic CMPXCHG

- stands for "compare-and-swap" or "compare and-exchange"
- hardware instructions of (modern) CPUS
- support for 8/16/32/64 bits atomic
- instruction consists of:
 - reading from a memory location
 - compare with a expected value
 - if compare is successful
 - write back a new value to memory location
 - if compare fails
 - don't write back the new value
 - return instead the value found at the memory location

What is cmpxchg good for?

- used to alter values in memory atomically
 - which could be read and written by concurrent threads
 - (on SMP machines you have also to add LOCK assembly in conjunction with cmpxchg)
- is a non-privileged command
- can be used by user applications
 - in contrast to cli/sti (disable/enable interrupts)
- can be used to implement locks

Spinlock with CMPXCHG

```
typedef unsigned long lock_t;
void lock(lock_t * lock) {
  lock_t _old = 0;
  lock_t = new = 1;
  do {
     /* retry until owner is set to 0 (not used)
      * and changing to 1 succeeds
  } while ( ! c_cmpxchg (lock, _new, _old) );
void unlock(lock_t * counter) {
  *counter = 0;
```


Usage of cmpxchg on x86 with gcc & gas

```
inline
      int c_cmpxchg (unsigned long *dest,
       unsigned long new_val, unsigned long cmp_val)
       unsigned long tmp;
         asm
             volatile
            (tmp) /* %0 EAX, return val */
            "=a"
            "r"
                 (new_val), /* %1 reg, new value */
            "0"
                 (cmp_val), /* %2 EAX, compare value */
            "m"
                 (*dest)/* %3 mem, destination operand */
            "memory", "cc" /* code changes content of memory,
                             and conditional clause register
        );
       return tmp == cmp_val;
```


Usage of cmpxchg on x86 with gcc & gas

```
inline
       int c_cmpxchg (unsigned long *dest,
         unsigned long new_val, unsigned long cmp_val
         unsigned long tmp;
                    _volatile_
           asm
              "lock cmpxchg %1,
                                  %3 \n\t"
             "=a"
                           /* %0
                                          urn val */
                   (tmp)
                                  EAX
             "r"
                   (new_val),
                                        %1 reg, new value */
              "0"
                    cmp val
                                        %2 EAX, compare value */
              "m"
                    *des*
                              %3 mem, destination operand */
                        'CC" /*
             "memo
                                        changes content of memory,
                                  code
                                  and conditional clause register
             rn tmp == cmp_val;
```


Spinlock with C11 atomics

```
#include <stdatomic.h>

void lock(atomic_flag *lock)
{
    do {} while (atomic_flag_test_and_set(lock));
}

void unlock(atomic_flag *lock)
{
    atomic_flag_clear(lock);
}
```

Exercise 4

- Use the lock() and unlock() functions to synchronize list insertion.
 - Design decisions:
 - Where to place the lock?
 - fine-grained locking -> one lock per ListElement
 - coarse-grained locking -> one lock per List
 - How to lock?
 - explicitly upon user request -> public lock()/unlock() functions
 - implicitly during insert -> private
 lock()/unlock() functions

Mechanisms: Mutexes / Semaphores

- Previous solution used busy waiting senselessly burn CPU cycles (but are also practical, e.g., in MP systems).
- Better:
 - find out that critical section is blocked
 - sleep until CS is free (queue of threads)
 - wake up next thread when leaving CS
- Semaphores provide exactly this behavior.
 - counter + wait queue
 - lock(): decrement counter if <=0, go to sleep</p>
 - unlock():
 - increment counter
 - wake up next thread in queue

PThread mutexes

- pthread_mutex_t : data type for mutexes
- int pthread_mutex_init(): initialize a mutex variable
- int pthread_mutex_lock() : sleep until locking succeeds
- int pthread_mutex_unlock(): as the name says int pthread_mutex_trylock(): try to grab
- lock, return with error on failure int pthread_mutex_destroy(): free all
- resources associated with mutex

Using mutexes

```
pthread_mutex_t mutex;
     main(void)
int
{
   pthread_mutex_init(&mutex, NULL);
   pthread_mutex_lock(&mutex);
   /* do critical work */
   pthread_mutex_unlock(&mutex);
   pthread_mutex_destroy(&mutex);
```


Other mechanisms

- In some cases (e.g., real-time) unbounded sleeping is not a good idea.
- Lock-free synchronization
 - don't use any locks for synchronization, therefore no possibility of deadlocks and livelocks
 - needs careful design
- Wait-free synchronization
 - lock-free mechanisms without sleeping

Mutexes in C++11

- #include <mutex>
- std::mutex (and derivatives)

```
std::mutex mtx;

void thread_func() {
    mtx.lock();
    // critical section
    mtx.unlock();
}
```

C++11: Never Forgetting to Unlock

• C++: RAII

std::lock_guard

```
std::mutex mtx;

void thread_func() {
    std::lock_guard<std::mutex> lock(mtx);
    // critical section (with branches
    // and multiple returns
} // release once lock goes out of scope
```


Exercise 5

- Copy your last solution to a new directory.
- Replace the spinlock-based implementation by one using mutexes.

Faculty of Computer Science Institute for System Architecture, Operating Systems Group

Deadlocks

Exercise 6

Download 3 (simple) examples

https://os.inf.tu-dresden.de/~tsmejkal/sysprog-deadlocks.git/

- understand code
- what goes wrong?
- fix it and tell us about the problem.
- download from ...
- uncompress, compile, execute
 - (shipped with Makefile)

- lock1 example
 - ok endless loop of dots
 - ok sometimes "thread XXXXX exits"
 - stops after some time printing dots, why?
- lock2 example
 - endless loop of messages:
 - got paper, got printer, print document
 - stops after some time, why?
- lock3 example
 - endless loop of dots
 - stops after some time, why?

Deadlocks - conclusion

- A situation where two or more competing actions are waiting for other actions to be finished. Never one of the actions will be finished because the actions are waiting for each other.
- reasons of deadlocks in the examples:
 - multiple locks are requested by different functions/threads in different order
 - forget to release locks (return before unlocking)
 - circular dependencies within thread
 - lock(lock1); lock(lock2); lock(lock1)
 - widespread in/over various functions)

C++11: Solving deadlocks?

 std::lock_guard / std::unique_lock to avoid forgetting to unlock

 std::lock(mtx1, mtx2, ...) → "locks the given lockable objects using a deadlock avoidance algorithm"

Livelocks

- In contrast to deadlocks, the threads/processes do something, however don't make progress with respect to a goal (in my words ...)
 - Better definitions in the literature ;-)

```
thread1: thread2: lock(&lock1); lock(&lock2); while (1) { while (1) { if (try_lock(&lock2)) do job_X else do job_1 do job_2 } do job_2 } do job_2 }
```

thread3: while (1) { if (job_X is finished) exit; else

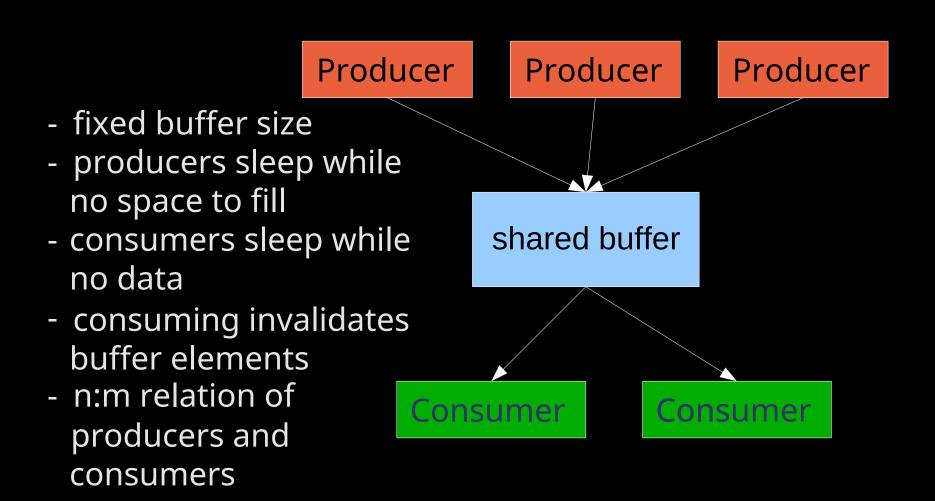
sleep(1);}

Faculty of Computer Science Institute for System Architecture, Operating Systems Group

Advanced Synchronization

So far, so good

- Up to now:
 - Thread creation
 - Waiting for thread completion
 - Synchronization with mutexes to circumvent race conditions
 - Careful design to avoid deadlocks.



More on Synchronization

- There are more scenarios where threads need to communicate:
 - client-server architectures (X.Org, microkernelbased OS) typically use network sockets or other OSprovided IPC mechanism
 - producer-consumer problem: keyboard and mouse drivers "produce" events into a shared buffer, terminal or window manager retrieves events from the buffer reader-writer problem: shared data is written by
 - writers while multiple readers read it in parallel -> need to avoid inconsistent data

Producer-Consumer Problem

Classical solution using semaphores

```
semaphore
           full(0);
semaphore empty(N);
element_t ringbuffer[N];
Producer
                       Consumer
down(empty);
                       down(full);
   produce
                          consume
                       up(empty);
up(full);
```

POSIX Semaphores

- provide system-global and process-local semaphores
- #include <semaphore.h>
- sem_t datatype
- sem_init() initialize semaphore with a value
- sem_wait() decrement counter, wait if 0 (semaphore_down)
- sem_post() increment counter, wakeup next waiting thread (semaphore_up)

Exercise 7

- Implement a consumer-producer solution using semaphores.
 - Use a ring buffer containing characters.
 - Producer thread writes characters from a string into the buffer.
 - Consumer thread reads string char-wise and prints it after encountering a terminating 0.

Condition variables

- Some people dislike semaphores, because they incorporate multiple concepts:
 - counter
 - synchronization
 - signaling of an event (counter reached a value greater than 0)
- No support for arbitrary signaling conditions.
- Condition variables: objects to synchronize upon
 - sleep on condvar until an event occurs
 - send signals to sleeping thread(s) of a condvar
 - manual checking for conditions

PThread condition variables

- pthread_cond_t
- pthread_cond_init()
- pthread_cond_wait() sleep until signal occurs
- pthread_cond_signal() wake up one sleeping thread
- pthread_cond_broadcast() wake up all sleeping threads

Using condvars

 pthread_cond_t <u>always</u> needs to be combined with a pthread_mutex_t (prevent race condition between sleeping and signalling)

```
    waiting for an event:
        pthread_mutex_lock(&mtx);
        while (! <condition>)
            pthread_cond_wait(&condvar, &mtx);
        pthread_mutex_unlock(&mtx);
```

signalling an event:
 if (<condition>)
 pthread_cond_signal(&condvar);

C++11: Condition Variables

#include <condition_variable>

```
std::condition_variable cv;
std::mutex mtx;
bool condition = false;

void waiter() {
   std::unique_lock<std::mutex> ul(mtx);
   cv.wait(ul, []{ return condition });
}
```

C++11: Condition Variables

#include <condition_variable>

```
std::condition_variable cv;
std::mutex mtx;
bool condition = false;

void creator() {
   std::unique_lock<std::mutex> ul(mtx);
   condition = true;
   cv.notify_all();
}
```


Exercise 8

- Rewrite your semaphore code using condition variables.
 - How many condvars do you need?
 - What are the wakeup conditions?