
A New System Architecture for
Heterogeneous Compute Units

Dissertation zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)

Vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

Eingereicht von
M.Sc. Nils Asmussen
geboren am 31.01.1984

in Schleswig

Betreuender Hochschullehrer: Prof. Dr. Hermann Härtig
Technische Universität Dresden

Gutachter: Prof. Dr. Timothy Roscoe
ETH Zürich

Fachreferent: Prof. Dr. Christof Fetzer
Technische Universität Dresden

Statusvortrag: 31.01.2017
Abgabe: 20.11.2018
Verteidigung: 10.05.2019

15. Juli 2019

Contents

List of Figures 7

List of Tables 9

1 Introduction 11
1.1 Motivation . 11

1.1.1 Increasing Heterogeneity . 11
1.1.2 Future Hardware Platforms . 13
1.1.3 Problems of Current OS Designs 14

1.2 Approach . 14
1.3 Contributions . 16

2 Related Work 19
2.1 Operating Systems . 19
2.2 Hardware Components . 22

3 Isolation and Communication 25
3.1 Motivation . 25
3.2 Threat Model . 26
3.3 Overview and Comparison . 26

3.3.1 Privilege Levels . 27
3.3.2 Isolation . 27
3.3.3 Communication . 28
3.3.4 Role of the Kernel . 29
3.3.5 Trusted Computing Base . 29

3.4 Data Transfer Unit . 30
3.4.1 Integration . 30
3.4.2 Endpoints . 30
3.4.3 Commands . 31
3.4.4 Receiving Messages . 32
3.4.5 Replying to Messages . 33
3.4.6 Credit System . 33
3.4.7 Command Abortion . 34
3.4.8 Discussion . 34

3.5 The Operating System M3 . 35
3.5.1 System Calls . 36
3.5.2 Capabilities . 36
3.5.3 Virtual PEs . 37
3.5.4 Gates . 38
3.5.5 Memory Management . 39

3

Contents

3.5.6 Endpoint Multiplexing . 39
3.5.7 Discussion . 40

3.6 Interplay . 41
3.7 Evaluation . 42

3.7.1 Prototype Platforms . 42
3.7.2 System Call and IPC Performance 43
3.7.3 Power Consumption and Chip Area 45

3.8 Summary . 47

4 Operating-System Services 49
4.1 Motivation . 49
4.2 Services . 50

4.2.1 Service and Session . 50
4.2.2 Service Protocol . 50

4.3 File Protocol . 51
4.3.1 Design Goals . 51
4.3.2 The Protocol . 52
4.3.3 File Multiplexing . 53

4.4 File System . 53
4.4.1 Overview . 53
4.4.2 Data Organization . 54
4.4.3 File Session . 54
4.4.4 Metadata Session . 55
4.4.5 Limitations . 56

4.5 Pipe . 56
4.5.1 Overview . 56
4.5.2 Data Access . 56

4.6 Virtual File System . 57
4.6.1 Files and File Systems . 57
4.6.2 Selective Inheritance . 58

4.7 Discussion . 59
4.7.1 File System Access Control . 59
4.7.2 M3FS for Storage Devices . 59
4.7.3 POSIX Compatibility . 60

4.8 Evaluation . 60
4.8.1 File System Read/Write/Copy 60
4.8.2 File Fragmentation . 62
4.8.3 Pipe . 62

4.9 Summary . 63

5 Virtual Memory 65
5.1 Motivation . 65
5.2 Goals . 65
5.3 Overview . 67
5.4 Related Work . 68
5.5 Integration . 69
5.6 Uniform Addressing . 70
5.7 Data Transfers . 71
5.8 Address Translation . 72

5.8.1 PE-Type B . 73

4

Contents

5.8.2 PE-Type C . 75
5.9 Virtual-Memory Management . 77

5.9.1 Overview . 77
5.9.2 Mapping Capabilities . 78
5.9.3 Page Table Entries . 79
5.9.4 Pager . 79
5.9.5 Message Passing . 81

5.10 Interplay . 81
5.11 Revisiting the TCB . 83
5.12 Discussion . 84

5.12.1 The VMA in Existing OSes . 84
5.12.2 Caches in Type B PEs . 84
5.12.3 Page Faults in Type B PEs . 85
5.12.4 Cache Coherency . 86

5.13 Evaluation . 86
5.13.1 Measurement Setup . 86
5.13.2 Revisiting System Calls . 87
5.13.3 Revisiting File Systems and Pipes 87
5.13.4 TLB Misses and Page Faults . 88
5.13.5 VPE::run and VPE::exec . 90

5.14 Summary . 91

6 Autonomous Accelerators 93
6.1 Motivation and Related Work . 93
6.2 Accelerator Types . 94

6.2.1 Memory Access . 94
6.2.2 Implementation Paradigm . 95

6.3 Goals . 96
6.4 Overview . 97

6.4.1 Accelerator Usage . 97
6.4.2 VPEs for Accelerators . 98

6.5 Request-Processing Accelerators . 99
6.5.1 Integration . 99
6.5.2 Interruptibility . 99
6.5.3 Usage . 100

6.6 Stream-Processing Accelerators . 101
6.6.1 Integration . 101
6.6.2 Direct Data Exchange . 102
6.6.3 Shell Extension . 102

6.7 Evaluation . 103
6.7.1 Accelerator Logic . 103
6.7.2 Request-Processing Accelerators 103
6.7.3 Stream-Processing Accelerators 105

6.8 Summary . 107

7 Context Switching 109
7.1 Motivation . 109
7.2 Related Work . 110
7.3 Overview . 110
7.4 Context-Enabled Communication . 111

5

Contents

7.4.1 VPE-aware Communication . 112
7.4.2 Message Forwarding . 112
7.4.3 VPE Migration . 113
7.4.4 Computing vs. Idling . 113
7.4.5 Gang Scheduling . 113
7.4.6 Revisiting Command Abortion 114

7.5 RCTMux Implementation . 114
7.5.1 General-Purpose Cores . 115
7.5.2 Accelerators . 115

7.6 Revisiting the TCB . 116
7.6.1 How Powerful is RCTMux? . 116
7.6.2 Is the Privileged CPU Mode Required? 116

7.7 Evaluation . 117
7.7.1 Communication with Suspended VPEs 117
7.7.2 Non-communicating Applications 119
7.7.3 Communicating Applications 119

7.8 Summary . 122

8 Evaluation 123
8.1 Experimental Setup . 123

8.1.1 Evaluation Platform . 123
8.1.2 Systrace Infrastructure . 124

8.2 Performance . 124
8.2.1 Standalone Applications . 124
8.2.2 Pipelines of Applications . 126

8.3 Scalability . 127
8.3.1 Standalone Applications . 128
8.3.2 Pipelines of Applications . 129
8.3.3 Web Server . 130

8.4 Efficiency . 130
8.4.1 Single Application Instances . 131
8.4.2 Multiple Application Instances 132
8.4.3 System Efficiency . 133

8.5 Autonomous Image Processing . 134
8.6 Accelerator Sharing . 136
8.7 Software Complexity . 137

9 Conclusion and Future Work 139
9.1 Conclusion . 139
9.2 Extensions and Future Work . 142

Acknowledgements 145

Glossary 147

Bibliography 151

6

List of Figures

1.1 Potential future platform . 13
1.2 The key ideas of the new system architecture 15

3.1 System overview . 26
3.2 PE internals . 30
3.3 Capability system . 36
3.4 VPE state diagram . 37
3.5 Modules of the CU-specific helper . 38
3.6 DTU-based interactions in the producer-consumer example 41
3.7 Schematic depiction of the Tomahawk platform 42
3.8 Syscall and IPC performance on Linux, NOVA, and M𝟑 44
3.9 Power consumption for message transfers and RPC scenarios 46

4.1 Client and server interaction . 50
4.2 The file protocol . 52
4.3 M𝟑FS’ data structures . 54
4.4 Overview of the VFS in form of a UML class diagram 57
4.5 M𝟑FS’ performance in read, write, and copy 61
4.6 Pipe performance . 63

5.1 Abstract integration concept of CUs with caches 67
5.2 Detailed depiction of the integration of different PE types 69
5.3 Overview of the DTU’s XferUnit . 72
5.4 The internals of the MMU in the DTU of PE-type B 73
5.5 Address translation in PE-type C . 75
5.6 Modules of the CU-specific helper . 76
5.7 Overview of the virtual-memory management 77
5.8 The data structures of the pager . 80
5.9 The sequence of events for a RDMA read from virtual memory 82
5.10 Different PE-type B configurations . 85
5.11 System call performance on the different PE types 87
5.12 File system and pipe performance on different PE types 88
5.13 TLB miss and page fault handling performance 89
5.14 Performance comparison of fork and VPE::run 90
5.15 Performance comparison of vfork+exec and VPE::exec 91

6.1 Stream processing versus request processing 96
6.2 Overview of the accelerator integration 97
6.3 The integration of request-processing accelerators 99
6.4 The integration of stream-processing accelerators 101

7

List of Figures

6.5 Performance and autonomy of request-processing accelerators 104
6.6 Performance and autonomy of stream-processing accelerators 106

7.1 Overview of components and interfaces for context switching 111
7.2 Modules of the CU-specific helper . 115
7.3 RCTMux in accelerators . 115
7.4 Overhead of communication with running and suspended VPEs 118
7.5 Context switching overhead for non-communicating applications . . . 119
7.6 Context switching overhead for communicating applications 120
7.7 Context switching overhead for communicating apps on a single PE . . 121
7.8 Kernel load with context-switched communicating applications 122

8.1 Performance comparison to Linux using standalone applications 125
8.2 Performance comparison to Linux using a pipeline between two apps . 127
8.3 Parallel efficiency of standalone applications 129
8.4 Parallel efficiency of application pipelines and scalability of nginx . . . 130
8.5 Performance of standalone apps with a varying number of user PEs . . 131
8.6 Performance of app pipelines with a varying number of user PEs 131
8.7 Parallel efficiency of standalone apps and app pipelines 132
8.8 System efficiency with optimal number and placement of OS servers . 134
8.9 Runtime and required CPU time for accelerator chains 135
8.10 Context switching overhead for accelerators 136

8

List of Tables

2.1 Comparison of first-class support of different CU types 20

3.1 Comparison with the traditional system architecture 27
3.2 Chip area of a PE with DTU . 46

8.1 Complexity of software components . 137

9

Chapter 1

Introduction

The ongoing trend to more and more heterogeneous systems forces us to rethink the
design of systems [33, 35, 132]. GPUs have entered almost all devices today, starting
from mobile phones over desktop machines to high performance computers, FPGAs
are deployed because of their performance, energy efficiency, and flexibility [45, 108],
and custom accelerators are added to increase the performance and energy efficiency
even further [69, 91, 101]. However, current operating systems (OSes) represent non-
CPU components such as accelerators as devices, arguably second-class citizens. For
example, devices have no access to OS services such as file systems or network stacks.
This limitation and the increasing importance of accelerators spawned several research
projects to improve the integration of accelerators by, for example, enabling access to OS
services. However, all existing solutions known to me such as GPUfs [133], GPUnet [75],
and PTask [124] for GPUs or BORPH [135] and ReconOS [26] for FPGAs are specific to
a single type of accelerator. In this work, I am investigating the consequences of a new
system architecture that is based on a uniform hardware interface for all compute units,
ranging from complex general-purpose cores to fixed-function accelerators, with the
goal to represent all compute units as first-class citizens.

1.1 Motivation

This section motivates my work in detail by starting with the development towards
increasingly heterogeneous systems, followed by the platforms we can expect in the
future based on this development. Finally, I explain the shortcomings of current OS
designs to properly support these platforms.

1.1.1 Increasing Heterogeneity

From the invention of the first microprocessor at the beginning of the 1970’s to about
2006, system designers had a “free lunch” [139]. In every generation, the size of transis-
tors decreased, which allowed to increase the clock frequency without increasing the
overall power consumption. The ability to keep the power density constant is known
as Dennard scaling [46] and enabled substantial performance improvements without
requiring any change to the architecture or software. Dennard scaling broke down
at about 2006 due to thermal and power constraints and caused processor designers
to transition to multi-core architectures [51, 141]. In contrast to the increasing clock
frequency, the increasing core count requires software changes to actually turn the
increased performance potential into performance gains for applications. However,

11

Chapter 1 – Introduction

since not all software can be parallelized and also due to diminishing returns, academia
and industry already entered the next era: the era of specialization.

Specialization is motivated by the ever increasing performance demands of applica-
tions and the efficiency requirements on mobile devices or data centers. Specializing a
core or using an accelerator for a specific workload allows to both improve the perfor-
mance and reduce the energy requirements [28, 68, 69, 91, 118, 153, 154]. Furthermore,
it is expected that the increasing dark silicon problem will be an additional driver for
specialization. Dark silicon is the portion of a circuit that cannot be powered due to
thermal or power constraints [51]. The amount of dark silicon increases with every
processor generation due to the end of Dennard scaling and current studies expect that
50 % of the chip area for 8 nm technology nodes will be dark [51, 64]. One approach to
make better use of dark silicon is to specialize and integrate accelerators for various
application domains [141]. For example, it is imaginable to build a chip that consists
of multiple islands with various different compute units in each island and only a few
compute units being active at a time, depending on the application. In summary, special-
ization is motivated by performance gains, efficiency improvements, and dark silicon
and will lead to increasingly heterogeneous systems. The following lists the different
types of heterogeneity that are already used in practice or explored in research.

Heterogeneous general-purpose cores One form of heterogeneity is the integra-
tion of cores with the same instruction set architecture (ISA), but different performance
or energy characteristics into one system. An example is the ARM big.LITTLE plat-
form that consists of two clusters that contain multiple powerful or energy efficient
cores, respectively. Future processors might also employ heterogeneous ISAs to fur-
ther improve the performance and energy efficiency. As has been shown by Venkat et
al. [146], mixed-ISA systems, consisting of ARM Thumb, x86-64, and Alpha cores in this
case, outperform single-ISA systems by 21 % and improve the energy efficiency by 23 %.
Upcoming and more deviating ISAs such as Microsoft’s E2 architecture [117] or the
Mill architecture [13] might increase the motivation to build mixed-ISA systems even
further. For example, the Mill architecture promises to run general-purpose code at
comparable performance as out-of-order cores, but with the energy efficiency of digital
signal processors (DSPs).

GPUs and FPGAs Most systems nowadays, ranging from mobile devices to high per-
formance computers, possess a graphics processing unit (GPU). GPUs are increasingly
used not only to accelerate graphics rendering, but also for general-purpose workloads,
because many workloads benefit from the massive parallelism that GPUs offer. For ex-
ample, GPUs have been used to accelerate machine learning [145], database engines [71],
and computational fluid dynamics [92]. Field-programmable gate arrays (FPGAs) are
increasingly deployed, because they allow to achieve even higher performance than
GPUs [45, 108], while being more flexible than custom accelerators.

Custom accelerators Since custom accelerators are built specifically for a particular
application domain or workload, they are less flexible than FPGAs, but offer typically
higher performance at lower energy requirements. Due to these advantages and the
increasing motivation to specialize, many custom accelerators have been designed
by academia [86, 91, 144, 153, 154] and industry [69, 101]. For example, Wu et al.
presented a data streaming framework that outperforms software by 7.8× with only
4.3 % of the power [153]. Google showed that its tensor processing units (TPUs) for the

12

Section 1.1 – Motivation

x86

x86GPU

DRAM

ARM

Xtensa
NN
Accel

FFT
Accel

FPGA NVM

Figure 1.1: Potential future platform

inference phase of neural networks increases the performance per socket 30-fold and
the performance per watt 80-fold over a contemporary CPU [69].

Programmable peripheral devices Peripheral devices such as solid state disks (SSDs)
and network interface cards (NICs) are typically programmable today. In other words,
these devices contain general-purpose cores that are used to provide complex features
like single-root input/output virtualization (SR-IOV) or the flash translation layer on
SSDs. Due to the programmability these devices become more similar to CPUs, which
spawned research projects that explored how they can be used to perform near-data
computing [48, 57, 73, 127].

Other forms of heterogeneity Besides the described increasing heterogeneity of
compute units, research is being done on heterogeneous memories [87, 102], because dif-
ferent types of memories provide different advantages and disadvantages. For example,
SRAM is faster and smaller than DRAM, while non-volatile memory is slower, but persis-
tent. Furthermore, research projects like the Center for Advancing Electronics Dresden
(cfAED) explore different materials to build processors such as silicon nanowires [44],
carbon nanotubes [100], or organic electronics [94]. Therefore, future processors might
not only use different ISAs and accelerators, but also different materials to build these
components.

1.1.2 Future Hardware Platforms

Due to the strong motivation outlined in the previous section, I expect very heteroge-
neous platforms in the future. Figure 1.1 illustrates an exemplary future platform based
on the current trend and based on the platforms that are already proposed and built
in both academia [40, 41, 147] and industry [80, 123]. Various heterogeneous compute
units (CUs) are integrated into one system and connected by an interconnect (e.g., a
network-on-chip). The CUs may, for example, be fixed-function accelerators for fast
Fourier transformation (FFT) or neural networks (NN), reconfigurable logic such as
FPGAs, GPUs, specialized Xtensa cores, and complex general-purpose ARM or x86 cores.
Furthermore, future platforms might contain heterogeneous memories such as DRAM
and non-volatile memory (NVM) that are integrated close to the CUs (e.g., by using
3D-stacked memory) to enable low-latency access to the data. Note that Figure 1.1 is

13

Chapter 1 – Introduction

a schematic representation and does not imply that all CUs and memories are on the
same chip. For example, the FPGA might be off-chip, but reachable via interconnect.

1.1.3 Problems of Current OS Designs

Considering future platforms like the one depicted in Figure 1.1 and the design of current
OSes reveals a large gap. Current mainstream OSes such as Linux, BSD, and Windows
are built for homogeneous and CPU-centric systems. As a consequence, these OSes run a
shared kernel on all CPU cores and require that these cores provide different CPU modes
(user and kernel mode), a memory management unit (MMU), and other architectural
features. In consequence, the OS kernel can only run on homogeneous general-purpose
cores, potentially with different performance characteristics. Several research projects
such as Barrelfish [35], Popcorn Linux [33], and K2 [88] explore the support of mixed-ISA
systems to remove this limitation based on the multikernel concept.

Another property of current OSes, inherent to their CPU-centric design, is that ac-
celerators are treated as devices. IOMMUs can be used to prevent untrusted accelerators
(or devices) from causing harm to other system components. However, the mechanisms
that allow threads on the CPU to access OS services such as file systems, network stacks,
and pipes are not available for accelerators. Additionally, accelerators cannot directly
communicate with each other using the OSes inter-process communication mechanisms.
In short, devices and therefore accelerators are second-class citizens, because the con-
cepts and mechanisms that are available for threads on the CPUs cannot be used by
accelerators. At the same time, accelerators become increasingly similar to CPUs and
therefore demand the same functionality. The second-class handling of accelerators
spawned several research projects that explore how the integration of one specific
accelerator can be improved. For example, GPUfs [133], GPUnet [75], and PTask [124]
improve the integration of GPUs, whereas BORPH [135] and ReconOS [26] focus on
FPGAs. However, the degree of heterogeneity in future platforms suggests that island
solutions are not sufficient.

In summary, current OS designs have difficulties to exploit the full potential of
the expected future platforms that consist not only of multiple heterogeneous general-
purpose cores, but employ also various accelerators. Accelerators do typically not
provide the required architectural features to run an OS kernel, because their advantages
over general-purpose cores stem also from their architectural differences. Current OSes
can be extended by new concepts to improve the integration of a specific accelerator,
as has been shown by approaches such as GPUfs [133] or BORPH [135]. However, the
trend to more heterogeneous systems raises the question whether there should be a
strong separation between CPUs and accelerators, because both are used to perform
computations based on input data and produce output data. Therefore, the question
that I am addressing in this thesis is:

Can we design a system that handles all types of compute units as first-class
citizens and in a uniform way?

1.2 Approach

In this work, I am investigating the consequences of a new system architecture based on
a uniform hardware interface for all compute units (CUs) to integrate all types of CUs as
first-class citizens. The first-class support enables all types of CUs to access OS services,

14

Section 1.2 – Approach

PE

CU DTU

PE

CU DTU

PE

CU DTU

PE

CU DTU

(a) Uniform interface

Kernel PE

Kern DTU

User PE

App DTU

User PE

App DTU

User PE

Serv DTU

(b) Remote control

Kernel PE

Kern DTU

User PE

App DTU

User PE

App DTU

User PE

Serv DTU

(c) Direct communication

Figure 1.2: The key ideas of the new system architecture

allows all CUs to directly communicate with each other, adds context switching support
to all types of CUs, and allows accelerators to operate autonomously.

The system architecture I propose and analyze in this work is based on a hardware/OS
co-design and builds upon the following key ideas, illustrated in Figure 1.2:

1. adding a uniform interface to all CUs,
2. controlling the applications on these CUs remotely, and
3. using direct communication between applications.

The uniform interface is provided by a new hardware communication component
that is integrated next to each CU. The hardware component is called data transfer
unit (DTU) and the combination of CU and DTU is called processing element (PE), as
depicted in Figure 1.2. The DTU should on the one hand have minimal requirements
on the CU to maximize the freedom for CU designers when specializing their CU. On
the other hand, it needs to offer the functionality that 1) keeps the management of very
heterogeneous CUs simple and 2) allows to treat all CUs as first-class citizens. Thus, the
internal interface between CU and DTU (the different shapes in Figure 1.2a) depends
on the CU, whereas the external interface (red lines) is uniform. As shown in this work,
the required functionality for 1) and 2) is message passing and RDMA-like memory
access (remote direct memory access).

Controlling applications remotely is also motivated by the CU’s heterogeneity. Since
not all CUs can be expected to provide the architectural features (e.g., different CPU
modes and an MMU) to run an OS kernel, I decided to explore an OS design that executes
the kernel on a dedicated kernel PE (red in Figure 1.2b) without any applications on this
PE. Instead, applications and servers run on the remaining user PEs (green), remotely
controlled by the kernel. Combined with the DTU as a communication device, this
approach allows to integrate arbitrary CUs as first-class citizens.

Since applications now run on bare-metal without an OS kernel on the same PE, I
use a different approach for communication between applications and also for commu-
nication with the kernel. Both communications are performed via the DTU’s message
passing and/or RDMA feature. Each application has a communication channel to the
kernel (blue line in Figure 1.2c), which is set up by the kernel at application start. This
channel can be used by the application to request the creation of other communication
channels (red line), which can only be done by the kernel PE. After a channel has been
established, applications can communicate directly without involving the kernel PE,
which is beneficial for both performance and scalability.

Note that a unified interface at the hardware level, in contrast to a software-based
abstraction layer, enables an easy interaction between all CUs. For example, even

15

Chapter 1 – Introduction

non-programmable CUs can use the DTU to communicate with all other CUs in the
system. In contrast, using different ways to communicate at the hardware level with
a software-based abstraction layer on top requires accelerators that cannot use the
abstraction layer to implement all these communication types in hardware.

1.3 Contributions

The main contribution of my work is the description, prototypical implementation,
and evaluation of the new system architecture, which is based on a uniform hardware
interface for all CUs. The following lists the contributions in more detail.

Uniform interface for all CUs The uniform interface in my system architecture is
the data transfer unit (DTU) next to each compute unit (CU), which has two main goals.
First, it acts as an abstraction layer for the CU’s heterogeneity to unify the management
of the hardware by the OS. Second, the uniform interface allows to integrate all types
of CUs as first-class citizens by providing message passing and RDMA-like memory
access. I show in Chapter 3 how the DTU can be designed to meet these goals and at the
same time support arbitrary types of CUs. Supporting arbitrary CU types mandates to
minimize the architectural requirements. For example, the message-passing feature of
the DTU should not require virtual-memory support to keep a communication private
between two communication partners or require exception support to handle corner
cases in software. Additionally, I reuse existing hardware components such as general-
purpose cores, accelerators, caches, memories, interconnects, etc. without mandating
modifications to ensure that my approach is practical. In other words, I only add a new
hardware component and change the way existing components are connected, but do
not require, for example, to add instructions to existing cores.

Spatial isolation between CUs In a time in which almost every computing device
gets connected to the Internet, security becomes increasingly important [62, 67]. At the
same time, untrusted code and untrusted intellectual property blocks (e.g., accelerators)
need to be supported, which requires systems to prevent unauthorized data access
and manipulation of data. Even with only trusted CUs, it cannot be expected that all
CUs in future platforms provide the architectural features for spatial isolation. For
these reasons, I describe in Chapter 3 how the DTU in my system architecture adds an
additional layer of protection that spatially isolates different CUs from each other.

Access to OS services for all CU types Accelerators work on data, just like threads
on the CPU. The data will typically be stored in a file or is received from the network or
is produced by a program. Thus, access to OS services enables the accelerator to load
data from these sources and store data to these sinks. I describe in Chapter 4 how OS
services can be provided based on the DTU and its communication capabilities to enable
the access to OS services by arbitrary CUs.

Virtual-memory support Virtual memory is important to spatially isolate applica-
tions and use the system’s memory efficiently. Some types of CUs such as general-
purpose cores typically employ a memory management unit (MMU) to support virtual
memory, whereas other CUs such as accelerators lack this support. I show in Chapter 5
how a DTU-based system architecture can reuse the MMU in existing general-purpose
cores and also how virtual-memory support can be provided for accelerators.

16

Section 1.3 – Contributions

Autonomous accelerators As mentioned above, accelerators offer substantial en-
ergy savings over general-purpose cores. Unfortunately, accelerators need to be assisted
today due to the second-class handling of accelerators [132]. For example, the TPUs
described in Google’s paper burden their controlling CPU with 11 % to 76 % load just to
operate the TPU [69]. For that reason, the system cannot fully benefit from these savings,
if accelerators need to be continuously assisted by the typically power-hungry CPU.
Additionally, if the CPU does not need to assist the accelerator, the CPU can perform
other work in the meantime and does not become the bottleneck with an increasing
number of accelerators. I show in Chapter 6 how accelerators can access OS services
and thereby work autonomously and demonstrate how fine-grained interruptibility of
accelerators can be combined with the autonomous operation. Additionally, I demon-
strate how accelerators can communicate with each other without assistance by the
CPU, based on the DTU’s communication capabilities.

Context switching With my system architecture, communication between applica-
tions is primarily based on the DTU and bypasses the kernel. This leads to performance
improvements as will be shown in the evaluation and has been shown by other ap-
proaches with kernel-bypassing communication [96] as well. However, context switch-
ing support is difficult if the kernel is not involved in communications, but required to
use CUs efficiently. I explain in Chapter 7 how kernel-bypassing communication can be
combined with context switching and also how context switching can be supported on
all types of CUs, including accelerators.

Prototype implementation and evaluation To determine the feasibility of my
system architecture, I implemented a prototype of both the DTU and the operating
system that manages the hardware based on the DTU. I built the DTU in software for
gem5 [38], a simulation platform for computer-architecture research. Additionally, the
DTU has been implemented in silicon based on a cooperation with Benedikt Nöthen
from the Vodafone Chair Mobile Communication Systems. The silicon implementation is
based on the Tomahawk platform [28, 58, 106], which is a heterogeneous multiprocessor
system-on-chip (MPSoC) designed at TU Dresden and primarily intended for mobile
communication applications. The OS prototype is called M𝟑 for microkernel-based
system for heterogeneous manycores. In Chapter 8, I evaluate the performance of the
new system architecture, its scalability with the number of PEs, the efficiency when
sharing PEs, and the benefits if accelerators are handled as first-class citizens. The DTU
model for gem51, the OS prototype2, and the benchmark infrastructure3 are available as
open source to enable follow-up works and reproductions of the results.

Due to the overall complexity of the system architecture, consisting of several compo-
nents in both hardware and software, I describe the system architecture by starting
with a simplified platform and by extending it in multiple steps. After comparing my
approach to related works in Chapter 2, Chapter 3 and Chapter 4 introduce the basic
architecture and the OS service design based on Tomahawk-like platforms that consist of
multiple processing elements (PEs), each containing a simple general-purpose core and

1https://github.com/TUD-OS/gem5-dtu
2https://github.com/TUD-OS/M3
3https://github.com/TUD-OS/M3-bench

17

https://github.com/TUD-OS/gem5-dtu
https://github.com/TUD-OS/M3
https://github.com/TUD-OS/M3-bench

Chapter 1 – Introduction

a dedicated scratchpad memory for code and data. Additionally, applications are pinned
on dedicated PEs and run on these PEs until their completion. These simplifications
allow me to focus first on the most important properties of my system architecture
without being distracted by details and complexity. Chapter 5 extends the simplified plat-
form by caches and virtual-memory support to enable arbitrarily complex applications.
Chapter 6 further extends the platform by describing the integration of accelerators with
focus on their autonomous operation. Finally, Chapter 7 introduces context switching
that enables applications to share PEs.

To strengthen the understanding of the reader, all chapters evaluate the basic proper-
ties of the concepts introduced in the chapter using micro-benchmarks and by focusing
on a single aspect of the system. Chapter 8 evaluates the described system architecture
as a whole and in more realistic settings. The basic system architecture and OS-service
design described in Chapter 3 and Chapter 4, respectively, are based on the publication at
ASPLOS’16 [31]. The autonomous execution of accelerators (Chapter 6) in combination
with context switching (Chapter 7) has been published at USENIX ATC’19 [30].

18

Chapter 2

Related Work

This chapter discusses the differences and relations to other works that are similar to
my system architecture regarding the operating system, called M𝟑, and the DTU. The
related work on more specific aspects of my system architecture will be discussed in
later chapters.

2.1 Operating Systems

The primary goal of this thesis is to integrate all types of compute units (CUs) as first-
class citizens. The first-class integration of all CUs consists of the ability to access OS
services, direct communication between CUs, context switching support, and spatial
isolation for security and robustness reasons. When exploring related OS work, we
find different approaches to shrink the gap between CPUs and accelerators, resulting
in different degrees of first-class support for accelerators. I summarize the first-class
support for various different CU types in Table 2.1 and compare my approach to others
at the end of this section. Note that “Core w/o OS” denotes a general-purpose core
in Table 2.1, potentially with instruction extensions to accelerate a specific workload,
but without the architectural features to run an OS kernel (e.g., without different CPU
modes). “HW accel” stands for a fixed-function hardware accelerator.

Traditional OSes Traditional OSes such as Linux, Windows, or L4 [85] have a CPU-
centric OS design and therefore handle all accelerators as devices, that is, second-class
citizens. Additionally, these OSes are built for homogeneous general-purpose cores
and therefore run a shared kernel on all CPU cores and require the CPU’s architectural
features to isolate the kernel from applications. For example, these OSes require multiple
CPU modes (user and kernel mode) and a memory management unit (MMU) to prevent
malicious applications from harming other applications or the OS kernel. Hence, current
OSes have difficulties to support heterogeneous instruction set architectures (ISAs),
because each ISA requires a different kernel binary, implements the aforementioned
architectural features in different ways, and has potentially a different word size, a
different endianess, and so on. Additionally, supporting accelerators as first-class citizens
is difficult, because accelerators typically do not have the architectural features to run
an OS kernel.

Multikernel approaches Baumann et al. [35] introduced the multikernel model with
the idea to divert from the shared-kernel OS design and treat the underlying hardware as
a distributed system. The current implementation, called Barrelfish, runs an independent

19

Chapter 2 – Related Work

Hom.
GPC

Het.
ISA

Core
w/o
OS

GPU FPGA HW
accel

Linux, Windows, L4 ✔ x x x x x
Barrelfish ✔ ✔ x x x x
Popcorn Linux, K2 ✔ (✔) x x x x
Helios ✔ ✔ (✔) x x x
Gdev, GPUfs, GPUnet ✔ x x ✔ x x
ReconOS, BORPH, OS4RS ✔ x x x ✔ (✔)
M𝟑 ✔ (✔) ✔ (✔) (✔) ✔

Table 2.1: First-class support of different CU types, ranging from homogeneous general-
purpose cores to fixed-function hardware accelerators for different OS designs and OS
extensions. Check marks denote that first-class support has been demonstrated, whereas
check marks in parenthesis indicate that the current design should be able to support
the CU type, but the support has not been demonstrated so far. Crosses denote that
the current design does not support the CU type and therefore a different design or
extension is required.

kernel on every core and replicates the global OS state across all cores as needed. The
kernel is responsible to enforce protection by isolating applications via address spaces
and to protect capabilities from applications. On top of the kernel, Barrelfish uses a so
called monitor that is responsible for inter-core coordination such as the synchronization
of the replicated OS state. This structure allows Barrelfish to support non-coherent and
mixed-ISA systems comparatively easily, because all cores are handled by independent
kernels. For example, Cosh [36] has shown how I/O abstractions such as files and pipes
can be provided using Barrelfish as the foundation, if the hardware platform consists of
multiple coherence domains. Barrelfish/DC [155] showed how the distributed nature
of this approach can be taken one step further by decoupling kernels and cores. This
allows, for example, to hot plug CPUs and live-update kernels. Barrelfish’s support
of mixed-ISA systems has been demonstrated for heterogeneous ARM [55] and x86
platforms [24, 99]. How Barrelfish can support CUs as first-class citizens that do not
have the architectural features to run an OS kernel such as GPUs, FPGAs, or hardware
accelerators has not been covered in publications.

Similar to Barrelfish, Popcorn Linux [33] explores how non-coherent or mixed-ISA
systems can be supported by building upon the multikernel model. In contrast to Bar-
relfish’s small-kernel-per-core approach to enforce protection, Popcorn Linux extends
the Linux kernel to support multiple kernel instances. These instances synchronize their
state via message passing and therefore do not rely on global cache coherency or shared
memory. For example, each kernel instance can run in a separate coherence domain.
To hide the complexity of the underlying platform from applications, Popcorn Linux
provides distributed shared memory transparently for applications. As for Barrelfish,
the support of mixed-ISA systems has not yet been shown, to the best of my knowledge.
K2 [88] also uses multiple Linux instances to support multiple coherence domains in
mobile platforms. The authors show that their approach enables substantial energy
savings by combining high-performance cores with low-power cores and retains the
programmability of existing OSes. In contrast to Popcorn Linux, K2 uses distributed
shared memory for both the kernels and applications. Since both Popcorn Linux and K2
extend Linux, accelerators are handled as devices, just as in Linux.

20

Section 2.1 – Operating Systems

Reducing the architectural requirements NIX [32], based on Plan 9 [115], does
not target heterogeneous systems, but relaxes the requirement on executing a kernel on
every core by introducing application cores. In contrast to still existing time sharing cores,
application cores do not execute a kernel to prevent OS noise. OS noise is the interference
with the application caused by the OS (e.g., by interrupt handling). Application cores
can still access OS services by communicating via message passing with a time sharing
core, similar to FlexSC [136]. Although NIX can support cores that are not able to
execute a kernel, the communication in NIX is based on shared memory and isolation
requires MMUs on all cores. Helios [105], a derivative from Singularity [52], reduces the
requirements one step further by using software-based isolation instead of address space
protection. This approach requires neither anMMU nor different CPUmodes. According
to the authors, it only requires a timer device, an interrupt controller, exceptions, and at
least 32MiB of memory. Based on satellite kernels, Helios has shown that heterogeneous
ISAs can be supported. However, Helios restricts applications to managed programming
languages such as C#.

A single accelerator type as first-class citizen Several research projects explore
the extension of existing OSes for a single accelerator type. PTask [124] proposed a
dataflow-based programming model for GPUs that simplifies the offloading of compute-
intensive tasks to GPUs. Since the tasks in the dataflow graphs are known to the OS,
the OS can provide system-wide guarantees such as fairness or performance isolation.
Gdev [72] makes GPUs first-class citizens by providing applications access to the GPU
in terms of virtual GPUs that are scheduled by the OS and that can establish shared
memory via a POSIX-like API. Additionally, Gdev allows the OS itself to use the GPU as
well. For example, the OS can use the GPU to accelerate the encryption and decryption
operations of an encrypted file system. GPUfs [133] showed how a POSIX-like file
system API can be designed for GPUs that enables GPU programs to access the host file
system. GPUfs uses a buffer cache in GPU memory to handle reads and writes locally
and uses remote procedure calls to the CPU on buffer-cache misses. Due to the parallel
nature of GPUs, GPU programs perform file system calls at warp-granularity1. Similarly,
GPUnet [75] presented a socket API that allows GPU programs to establish connections
and exchange packets over the network. To avoid the complexity of packet processing
on the GPU, GPUnet uses RDMA-capable NICs that are responsible for all low-level
packet processing and deliver the payload directly to the GPU.

ReconOS [26] provides a unified multithreaded programming model for both soft-
ware threads and hardware threads on FPGAs. ReconOS uses a delegate thread in
software to execute OS calls on behalf of hardware threads. BORPH [135] goes one
step further and represents an FPGA design as a Linux process by extending Linux
accordingly. These hardware processes have access to the OS based on message passing
between the CPU and the FPGA. Similarly to ReconOS, BORPH uses a dedicated soft-
ware thread to support file I/O by hardware processes. OS4RS [107] represents FPGA
designs as Linux processes as well and uses a hardware abstraction layer (HAL) to
allow communication between software and hardware processes in a transparent way.
The HAL bridges the gap between the different ways to communicate among software
processes and hardware processes. In contrast to ReconOS, BORPH, and OS4RS, M𝟑

does not employ a dedicated software thread or a HAL to bridge the gap between FPGA
designs and existing software interfaces, but introduces new interfaces that are suitable
for both software and hardware and enables accelerators to operate autonomously.

1A warp is a group of threads on Nvidia GPUs that executes the same code in lockstep.

21

Chapter 2 – Related Work

OS support for peripheral devices Many modern peripherals such as NICs and
solid state disks (SSDs) are programmable, which spawned several research projects on
near-data computing [48, 57, 73, 127]. For example, Willow [127] introduced SSD Apps
that run on the SSD to perform near-data computing directly on the SSD or provide
a block device interface for a conventional file system. An application on the CPU
can communicate with an SSD App via remote procedure calls. FlexNIC [73] allows to
offload packet processing tasks such as multiplexing and filtering to the NIC based on a
special programming language. Omnix [132] introduced the idea to take this approach
one step further by designing an OS for omni-programmable systems containing NICs for
near-network computing, SSDs for near-data computing, and GPUs. Omnix extends OS
abstractions such as tasks and I/O to GPUs and near-X accelerators by taking advantage
of hardware virtualization support (SR-IOV) in near-X accelerators and using IOMMUs
for protection. LegoOS [128] introduced the splitkernel that splits the OS into multiple
monitors, similarly to a multikernel. Each monitor is responsible for a specific resource
and runs on the corresponding hardware component. For example, the memory monitor
could run on the memory controller and manage the physical memory, whereas the
storage monitor manages and runs on the storage device.

Comparison The key difference between my work and the other approaches is that
my work does not try to get the best out of existing hardware, but uses a hardware/OS
co-design to investigate how the hardware/software interface should be designed for
upcoming heterogeneous systems. My system architecture uses a uniform hardware
interface for all types of CUs, the data transfer unit (DTU), and equips the DTU with
communication endpoints that can be controlled externally. This approach allows the
OS to establish communication channels to OS servers, which provides all CUs access
to file systems or network stacks. Additionally, CUs are spatially isolated by controlling
their communication channels to other CUs. In contrast, the other discussed approaches,
except Helios, use the CU’s architectural features (different CPU modes and the MMU)
to isolate processes on general-purpose cores and typically rely on IOMMUs to control
the access to physical memory for devices and accelerators. With my approach, the CUs
do not need specific architectural features, which enables the support of arbitrary CUs
as first-class citizens, as shown in Table 2.1. As a proof of concept, I show how the CU
types on both ends of the spectrum can be supported: general-purpose cores on the one
end with all architectural features to run an OS kernel and fixed-function accelerators
on the other end that have none of these features and do not even execute software.

2.2 Hardware Components

My system architecture is based on the DTU as a uniform interface for all CUs. The
DTU is used for cross-CU communication and spatial isolation between CUs. There
are several hardware components that share similarities with the DTU, which can be
grouped into three categories: components for memory translation and protection,
components for message passing, and technologies for RDMA-like memory access.

Memory translation and protection At first, memory management units (MMUs)
and memory protection units (MPUs) are related to the DTU. MMUs and MPUs are
typically tightly integrated with the core architecture and used for memory translation
and/or protection, controlled by the OS kernel on the same core. More recently, IOM-
MUs have been introduced to add translation and protection for I/O devices. Several

22

Section 2.2 – Hardware Components

approaches also use IOMMUs to control the memory accesses of accelerators such as
Omnix [132], the heterogeneous system architecture (HSA) [7, 123], and the coherent
accelerator processor interface (CAPI) [15, 138].

Due to the increasing popularity of network-on-chips (NoCs) and the use of MMU-
less CUs in such a NoC, various proposals [42, 53, 116] have been made on how to control
the CUs’ access to the NoC. For example, Fiorin et al. [53] introduced the data protection
unit (DPU), which is added next to each CU, similar to the DTU. The DPU controls
memory accesses that are sent to the NoC based on a permission table in the DPU,
which allows to define the access to physical memory in a per-CU and page-granular
fashion. Porquet et al. [116] proposed the NoC-MPU, which extends on this idea by
implementing the permission table as a hierarchical, two-level table stored in memory
and by caching recent translations in the NoC-MPU.

The main difference between these hardware components and the DTU is that
MMUs, MPUs, IOMMUs, DPUs, and NoC-MPUs are built for memory translation and/or
protection. The purpose of the DTU is to add a uniform interface to all CUs and provide
the required features to handle all CUs as first-class citizens. In particular, this includes
the ability to perform secure and efficient message passing between CUs.

Message passing Besides approaches for memory accesses, various work [27, 63, 82,
95, 113, 151] has been done on (user-level) message passing. For example, Alpert et
al. [27] describe protected message passing in userland on the Shrimp multi-computer.
Protection is thereby based on the processor’s virtual-memory support. Similarly, the
MAGIC component in the FLASH multiprocessor [63, 82], is designed as a processor
that executes software to allow the implementation of a variety of protocols like cache
coherency. MAGIC requires an OS kernel on every core for secure user-level message
passing. The Tilera manycore architectures use processor extensions to provide tile-to-
tile communication based on register accesses [151]. For example, DLibOS [96] takes
advantage of this feature by placing the network stack and applications on separate tiles
and using the low-latency and kernel-bypassing communication to significantly improve
network latency and throughput. In summary, all approaches rely on processor-specific
features like virtual memory and/or an OS kernel on the sending/receiving CU for
special cases. Since my goal is to integrate arbitrary CUs into the system, the DTU has
to work independent of the CU. In other words, the DTU needs to execute all operations
without involving the CU or an OS kernel.

RDMA and P2P DMA The DTU supports the access of other CUs’ memories or
memory modules such as DRAM in a way that is akin to remote direct memory ac-
cess (RDMA) and peer-to-peer DMA (P2P DMA). RDMA is a feature of network interface
controllers (NICs) such as InfiniBand controllers [8] or Ethernet controllers [16], which
allows to access the memory of a remote machine without involving the OS on either
side. Memory access via the DTU is similar, but performed within one machine – for
example between an accelerator and a CPU core. P2P DMA enables peripheral devices
to communicate directly via PCI express, bypassing main memory and the CPU. For
example, recent GPUs support P2P DMA via GPUDirectRDMA [3] from Nvidia or
DirectGMA [19] from AMD, which allows to transfer network packets directly from
the NIC to the GPU’s memory [75] or to transfer data directly from the SSD to the
GPU [37]. Similarly, Si et al. [131] have shown that Xeon Phi co-processors can directly
communicate with co-processors on other machines via InfiniBand without involving
the host CPU. For that reason, the DTU’s memory access feature is conceptually similar

23

Chapter 2 – Related Work

to P2P DMA, but not only used for peripheral devices. Instead, the feature is used for all
types of CUs and memories in my system architecture.

24

Chapter 3

Isolation and
Communication

This chapter starts the description of the proposed system architecture by focusing
on spatial isolation and communication between compute units (CUs). As explained
in the introduction, the first chapters are based on a simple platform that integrates
memory elements (MEs) containing DRAM and multiple processing elements (PEs)
into a network-on-chip (NoC). Each PE consists of a simple general-purpose core as
the CU, a scratchpad memory (SPM) for code and data, and a data transfer unit (DTU).
The operating system (OS) runs each program on a dedicated PE without interruption
from its start until its termination. Despite these simplifications, this chapter already
considers the requirements of, for example, accelerators for the design of the DTU and
the OS. The following chapters will gradually extend the system, as indicated by the
picture on the top right at the beginning of each chapter.

3.1 Motivation

Integrating CUs that do not have the architectural features to run an OS kernel (e.g., a
core without different CPU modes) as first-class citizens requires means to communicate
with the CU that runs an OS kernel or an OS server. Furthermore, all CUs should be
able to directly communicate with each other without involving the OS on the critical
path. To keep the system manageable despite the growing heterogeneity, as outlined in
Chapter 1, I decided to introduce a uniform communication interface for all CUs, called
data transfer unit (DTU). The important point to support all types of CUs is to design
the DTU in a CU-independent way, as I will describe in this chapter.

In a time in which almost every computing device gets connected to the Internet,
security becomes increasingly important [62, 67]. Therefore, the different components
of a system should be spatially isolated1 from each other to prevent that components
can access or manipulate foreign code or data. For example, without spatial isolation
a malicious program could read confidential information from another program (e.g.,
cryptographic keys) ormanipulate the data of another program to cause crashes orwrong
results. Some CUs such as many general-purpose cores employ a memory management
unit (MMU) to achieve spatial isolation between different software components on
this CU by executing them in different address spaces. However, other CUs such as
simple accelerators do not contain an MMU [116]. Furthermore, integrating untrusted
third-party accelerators into the system demands an enforcement of spatial isolation by

1Other forms of isolation such as temporal or performance isolation are not considered in this work.

25

PE

Core

SPMDTU

PE

Core

SPMDTU

PE

SPMDTU

PE

Accelerator

SPMDTU

PE

Core

$$DTU

PE

$$DTU

PE

DTU

PE

DTU

DRAM
MMU

Accelerator

ME

SPM$$

App App

Server

Client

Chapter 3 – Isolation and Communication

trusted components [109]. For these reasons, I use the DTU as an additional layer of
protection to enforce spatial isolation between CUs.

3.2 Threat Model

For the isolation concept described in this chapter, I assume that an attacker wants
to compromise the confidentiality, integrity, or availability of the system or parts of
the system. I assume that the attacker controls the CU, including its memory such as
SPM, and uses software or hardware to perform these attacks. However, I assume that
the DTU, the network-on-chip, and the kernel PE are trustworthy. Attacks based on
physical access to the system are not considered in this work. More specifically:

Confidentiality The goal of confidentiality is that every CU (hardware and software)
can only access its own data and data to which access was granted. For example,
it should not be possible to read confidential information such as cryptographic
keys from other CUs.

Integrity Similarly, integrity has the goal that every CU can only modify its own data
and data to which write access was granted. For example, it should not be possible
to manipulate other applications’ data to cause crashes or wrong results.

Availability Finally, availability has the goal to prevent denial-of-service attacks on
other CUs. For example, it should not be possible for a client to prevent other
clients from getting serviced by flooding the server with messages.

Achieving these goals requires not only to control the access to memory, but also to
control the exchange of messages. Otherwise, an illegitimate message to a server could
allow the sender to access confidential information or manipulate data.

3.3 Overview and Comparison

Kernel PE

SPMDTU

User PE

SPMDTU

User PE

SPMDTU
DRAM

ME

Kernel App

Server

Figure 3.1: System overview

Before diving into the details of the DTU and
the operating system M𝟑, this section provides an
overview of the system architecture and compares
it to the traditional system architecture. The key
idea of my system architecture, depicted in Fig-
ure 3.1, is to introduce the DTU as a uniform inter-
face for all CUs. The DTU can be used to communi-
cate between different processing elements (PEs),
each consisting of a CU, a DTU, and a local mem-
ory (SPM in this chapter). The kernel PE runs the
M𝟑 kernel without any application on this PE. In
contrast, M𝟑 runs the applications and servers on
the remaining user PEs. Each application/server
has a communication channel to the kernel (blue
lines in Figure 3.1), which is set up by the kernel at application start. This channel is
used for system calls to, among others, create new communication channels to other
applications or memories (red lines), which can only be done by the kernel PE. After a
communication channel has been established, the communication is performed directly
without involving the kernel PE.

26

Section 3.3 – Overview and Comparison

Traditional M𝟑

Privilege levels User/kernel mode User/kernel PEs
Isolation Memory management unit DTU
Communication System call DTU
Role of the kernel Resource access, communication Channel creation
TCB Kernel and all CUs Kernel PE and DTUs

Table 3.1: Comparison with the traditional system architecture

Due to the large differences between this system architecture and traditional system
architectures, the following compares their most important properties. A short overview
is given in Table 3.1. Note that the purpose of the comparison is not the criticism of
traditional system architectures. Instead, the comparison is intended to improve the
reader’s understanding of the proposed system architecture.

3.3.1 Privilege Levels

Most general-purpose cores today have at least two CPU modes. For example, the x86
architecture supports four CPU modes, called protection rings. Ring 0 is intended for the
OS kernel, ring 1 and 2 for OS services, and ring 3 for user applications. The different
rings allow the OS kernel to isolate itself from OS services and applications. For example,
parts of the virtual address space can be configured as only accessible from ring 0 and
the security-critical instructions are only allowed in ring 0. In other words, unprivileged
software is distinguished from privileged software by the CPU mode.

M𝟑’s system architecture also distinguishes different privilege levels. However, as
the kernel runs on a dedicated PE, privilege is determined on a PE-basis, leading to kernel
PEs and user PEs. Whether a PE is privileged or not is defined by its DTU. A privileged
DTU can freely establish communication channels to other DTUs and between other
DTUs. Like in traditional systems, which start in the privileged CPU mode, all DTUs
are initially privileged. The kernel will downgrade the privilege level of the user PEs’
DTUs during boot.

3.3.2 Isolation

The goal of spatial isolation is to keep errors and exploits of vulnerabilities local to one
component. Traditional systems achieve spatial isolation by multiple CPU modes and
virtual address spaces provided by memory management units (MMUs). In other words,
isolation is based on the CU’s architectural features, hence called CU-based isolation in
the following.

In the targeted platforms with very heterogeneous CUs, including simple accelera-
tors, it cannot be assumed that all CUs provide these features. For that reason, I introduce
another level of isolation, called NoC-level isolation, which restricts the interactions
between PEs. Since all interaction is based on the DTU, the DTU enforces isolation and
thereby achieves confidentiality and integrity between PEs. For example, NoC-level
isolation prevents that an unauthorized CU can send a message to a server and thereby
gain access to confidential information or manipulate data. As mentioned in the previous
section, only the kernel PE can establish communication channels between DTUs. Thus,
user PEs are isolated by default and the kernel can selectively allow communication. In
other words, access to PE-external resources is restricted, whereas PE-internal resources

27

Chapter 3 – Isolation and Communication

can freely be used by the software running on that PE (e.g., privileged instructions).
For that reason, NoC-level isolation can also be combined with CU-based isolation.
For example, if a CU provides the required features, it can run a full-fledged operating
system such as L4 or Linux.

3.3.3 Communication

The communication between applications in traditional systems, called inter-process
communication (IPC), comes in various flavors. For the comparison, I focus on message
passing as for example provided by UNIX-like OSes or used in microkernel-based OSes
such as L4. In both cases, all communication involves the OS kernel. That is, for
each message, the application performs a system call and the kernel is responsible for
checking the application’s permissions and delivering the message to the recipient.

In contrast to traditional systems, applications on M𝟑 communicate directly with
each other via the DTU, bypassing the kernel. In other words, after the communication
channel has been set up by the kernel, the kernel is no longer involved in the com-
munication. The DTU provides so-called endpoints (EPs) for communication channels.
Each EP can be configured to a send EP, receive EP, or memory EP. Message passing
is connection oriented and point-to-point between a send EP and a receive EP. The
kernel creates a message-passing channel by configuring an EP at the sender’s DTU
as a send EP that is connected to a receive EP at the recipient’s DTU. Each send EP is
connected to exactly one receive EP, whereas each receive EP can receive messages from
multiple send EPs. Such a communication channel allows the sender to send messages
to the recipient, whereas the recipient can only reply to those messages (once). This
communication model is inspired by L4, where remote procedure calls are the dominant
form of communication.

Messages consist of a header and a payload. The DTU loads the payload as specified
by the sending CU from memory and prepends a header containing meta information
like the length of the payload. Afterwards, the DTU sends the message over the NoC to
the receiving DTU, which will store it into the receive buffer of the receive EP. Receiver
buffers are allocated by the kernel before the configuration of receive EPs. Traditional
kernels typically use a queue to handle multiple outstanding messages for a single
recipient. M𝟑 uses no queue at sender side, but queues multiple messages in the receiver
buffer at recipient side. To use a receive buffer securely for multiple senders without
involving the OS kernel in the communication, M𝟑 uses a credit system. The credit
system informs the sender how many messages can still be sent via a send EP and also
prevents denial-of-service attacks by enforcing that limit. The credit system ensures
availability of the kernel and also servers by enabling them to control the frequency
and quantity of messages their clients can send.

The DTU’s send operation is synchronous in the sense that the send is “in progress”
until the message has been successfully stored in the receive buffer or the sending
failed with an error (e.g., caused by insufficient credits). In other words, after the send
operation finished successfully, the sender knows that the message has been delivered
to the recipient. However, the recipient might not have processed it yet. On L4, the call
operation (a combination of send and reply) is synchronous as well, because the kernel
blocks the sender until the recipient has processed the message and sent the reply. The
call operation is not synchronous on M𝟑, because the M𝟑 kernel is not involved in the
communication. For that reason, the sender is free to perform other work between the
send and the reply operation. However, for simplicity most APIs in M𝟑 perform calls
synchronously by waiting for the reply after the send operation.

28

Section 3.3 – Overview and Comparison

In contrast to a send EP, which links to a receive EP, a memory EP has no EP as its
counterpart, but refers to a contiguous and byte-granular piece of memory in a specific
PE or memory element (ME). If it refers to a PE, it is comparable to RDMA, because the
CU of that PE is not involved in the access.

3.3.4 Role of the Kernel

The role of the kernel depends on the OS design. Monolithic kernels are responsible for
(almost) all resources and services of the system, such as process management, memory
management, file systems, network stacks, and drivers. In microkernel-based OSes, the
kernel has only the required abstractions and mechanisms to let userland components
provide the actual functionality of the OS. I decided to design M𝟑 as a microkernel-based
OS, because of the advantages in security and reliability [61, 62, 77]. For that reason, M𝟑

shares more similarities with microkernels such as L4 or MINIX [65]. Most importantly,
all kernels are responsible for the security-critical actions in the system. In microkernel-
based system, security-critical decisions are typically done in userland, and the kernel
is responsible for enforcing these decisions. The enforcement is sometimes delegated to
hardware. For example in traditional systems, page tables are manipulated by the kernel,
but enforced by hardware. In my system architecture, DTU endpoints are configured by
the kernel, but enforced by the DTU. In both L4 and M𝟑, capabilities are used to manage
the permissions in the system, which allows to delegate the decision making to user
components. Due to these similarities, I also use the term “kernel” for the entity that
runs on the kernel PE.

Besides these similarities, there are significant differences. As mentioned in the
previous section, the L4 kernel is involved in every communication. In monolithic
systems, almost all resources are accessed via system calls. In other words, whereas
traditional kernels are typically involved in the resource accesses and the communication,
the M𝟑 kernel is only required for the creation of communication channels, providing
access to resources. Additionally, the M𝟑 kernel is not entered via interrupt or exception,
but is continuously running2 and waiting for system calls in form of messages.

3.3.5 Trusted Computing Base

A common concept in security research is the trusted computing base (TCB) [84], which
consists of all components (hardware, firmware, and software) the security of the system
depends on. Since the CU-based isolation is achieved with the features of the CU, the
TCB always contains the CU and often the entire hardware platform. With NoC-level
isolation, not all CUs are part of the TCB, because isolation is based on the DTU.

Let us consider an example to better understand the differences. Suppose we have
three CUs (CU1 to CU3) and two applications, running on CU1 and CU2. To meet our
security goals, we need to enforce that these applications can communicate with each
other, but not with other applications in the system. The traditional system architecture
would run a kernel on each CU (e.g., the multikernel Barrelfish [35]), responsible for
the enforcement of our restriction. This implies that all CUs and the kernels are in the
TCB. With NoC-level isolation, the kernel runs on CU3 and establishes a communication
channel between CU1 and CU2, usable via the DTU. Thus, the TCB contains the kernel
and CU3, all DTUs and the NoC. CU1 and CU2 are not in the TCB3, because they can
neither change the communication channel nor create new channels. The NoC is in

2The CU is put into a low power mode while waiting for a message.
3CUs still need to be electrically sound (e.g., not contain short circuits).

29

Chapter 3 – Isolation and Communication

the TCB as well, because it transfers security-critical information between PEs and is
thus able to compromise security. Note also that, NoC-level isolation still requires the
application running on CU1 to trust CU1 to deliver its service. However, an application
on a different CU does not need to trust CU1.

3.4 Data Transfer Unit

In this section, I will describe the DTU in detail, focusing on isolation and communication.
Later chapters will extend on that by adding support for virtual memory and context
switching. One of the main points for the design decisions explained in the following is
that the DTU needs to work independently of the CU. For example, the DTU cannot
raise an exception in the CU to handle corner cases, because the CU might be a simple
accelerator that does not even execute software.

3.4.1 Integration

The DTU is integrated next to each CU with a CU-dependent internal interface. In partic-
ular, the internal interface depends on the way memory is accessed. This chapter starts
with a simple general-purpose core that executes a single stream of instructions and
has a dedicated scratchpad memory (SPM) that is accessed without address translation
and without caches. The following chapters will extend this to support fixed-function
accelerators as CUs on the one end of the spectrum and CUs with complex cache hier-
archies and virtual memory on the other end. I will also discuss later how CUs with
multiple cores or hardware multithreading can be supported.

PE

Core DTU

SPM

Figure 3.2: PE internals

Figure 3.2 depicts the type of PE we consider in this
chapter in more detail. The core, SPM, and DTU are con-
nected via a crossbar (thick line). The DTU is accessed
via memory mapped I/O (MMIO) and handles the commu-
nication with the NoC. The crossbar receives all memory
requests from the core and sends it to the DTU or SPM,
depending on the destination address. Similarly, the DTU
can access the SPM, for example, to load a message it should
send or to store a received message. The core, SPM, and
NoC are reused without any modification.

3.4.2 Endpoints

The DTU has a number of endpoints (EPs) to establish communication channels, which
can be configured to three different EP types: send EPs and receive EPs are used for
message passing, whereas memory EPs are used for RDMA-like memory access. Each EP
is represented by a DTU register and can be configured (at runtime) to one of these EP
types. Depending on the type, the EP register holds information such as the receiver of
sent messages, the receive buffer address and size, the remotememory address and access
permissions, etc. In other words, the EPs define the access to PE-external resources. EPs
are therefore similar to hardware capabilities, as for example used in CHERI [152]. In
the current implementation, each EP register is 192 bit large, starting with 3 bit for the
EP type, followed by 189 bits whose meaning depends on the EP type.

30

Section 3.4 – Data Transfer Unit

Memory Endpoint

A memory EP grants access to a byte-granular and contiguous region in PE-external
memory. A memory EP stores the id of the element (processing element or memory
element) in which the region resides, the base address of the region, the region size in
bytes, and the access permissions (read or write). Due to the similarity to RDMA, read
and write requests via memory EP are also called RDMA reads and RDMA writes.

Send Endpoint

A send EP allows to send messages to exactly one receive EP and holds the PE number
of the recipient, the receive EP number, and the maximum message size supported
by the receive EP. Additionally, it contains a so-called label. The idea was originally
introduced by KeyKOS [60] with the name numeric tag, which is a value chosen by the
recipient when the communication channel is created and unforgeable by the sender
to securely identify the sender. Typically, the recipient sets it to the address of the
object that corresponds to the sender, so that no additional lookup in a hash table or a
similar data structure is necessary to find the object needed for the requested operation.
Finally, the send EP contains the number of credits, which is explained in more detail in
Section 3.4.6.

Receive Endpoint

A receive EP can receive messages from multiple send EPs and send replies to the
received messages, as explained in more detail in Section 3.4.5. The messages are stored
in the SPM in a so-called receive buffer. A receive buffer is organized in fixed-size slots,
whose size is chosen during the creation of the receive EP. The receive buffer is allocated
by the M𝟑 kernel to ensure that it resides in pinned memory. In the platform considered
in this chapter, receive buffers reside in untranslated SPM and are therefore pinned by
design. The motivation for pinned receive buffers is explained in Section 5.9.5 after the
platform has been extended by memory support. The receive EP holds the address of
the receive buffer, the number of slots and the size of each slot. Additionally, it stores
a read and write position and a bitmap for occupied slots and unread slots to receive
message and fetch messages, which will be explained in Section 3.4.4.

3.4.3 Commands

The DTU supports two types of commands: internal commands and external commands.
Internal commands allow the CU to use the EPs, that is, the established communication
channels. External commands cannot by used by the CU. Instead, RDMA write requests
to the external command registers are required. As RDMA writes demand a correspond-
ing memory EP, the kernel decides who is allowed to use external commands at which
PEs. Currently, only the kernel itself uses them.

Internal Commands

The CU can use internal commands to trigger an action in the DTU. To keep the DTU
simple, the current implementation supports only one command at a time. The DTU
offers the following command registers: COMMAND, EPID, DATA_ADDR, DATA_SIZE, OFFSET,
REPLY_EPID, and REPLY_LABEL.

31

Chapter 3 – Isolation and Communication

The CU writes the command id to COMMAND to trigger the command with given id.
Afterwards, it polls the same register to wait for its completion. This is acceptable in
this case, because all commands require only a couple of cycles. The other registers are
used to supply the DTU with additional information, depending on the command. The
most important internal commands are:

SEND: Send the message stored at DATA_ADDR with DATA_SIZE bytes via the send EP
EPID and let the recipient reply to REPLY_EPID with label REPLY_LABEL.

REPLY: Send the message stored at DATA_ADDR with DATA_SIZE bytes as a reply to the
message at OFFSET with receive EP EPID.

READ: Read DATA_SIZE bytes from offset OFFSET of the region given by memory EP
EPID into DATA_ADDR.

WRITE: Write the DATA_SIZE bytes at DATA_ADDR to offset OFFSET of the region given
by memory EP EPID.

FETCH: Store the address of the next unread message in receive EP EPID into register
OFFSET and mark it as read. If there is no unread message, store 0 into OFFSET.

The DTU ensures that the CU adheres to the restrictions given by the EP. For
example, the offset and size of the data to read needs to be contained in the memory
region that is defined by the memory EP. Similarly, the size of the message to send
cannot exceed the maximum message size set in the send EP. If one of these restriction
is violated, the DTU refuses to execute the command and stores a corresponding error
code to the register COMMAND. Note that in contrast to the address of the receive buffer
that is stored in the receive EP, the buffer for the commands SEND, REPLY, READ, and
WRITE is specified via the DATA_ADDR register when executing the command. The reason
is that messages can be received at any point in time, whereas the CU decides when to
execute a command. Additionally, in contrast to receive buffers, no restrictions have
to be enforced on the buffer for aforementioned commands. Since the buffer’s address
belongs to the address space of the current activity on the CU, any address can be
specified. For example, messages are typically placed on the stack.

External Commands

The purpose of external commands is to enable the kernel to control PEs remotely. For
example, the kernel needs to be able to invalidate EPs, as will be explained in more
detail in Section 3.5.6. External commands are triggered by writing the command to
execute to the EXT_CMD register of the remote DTU. As all external commands require
more background to understand them, I will introduce them together with the concept
that requires an external command.

3.4.4 Receiving Messages

Whenever the DTU receives a message from the NoC, it needs a place in the SPM to store
the message. Since the CU might be a simple fixed-function accelerator, this has to be
done without involving the CU, that is, the DTU cannot delegate the placement decision
to the CU. For that reason, the receive EP contains all information that is required to
make the decision autonomously. Furthermore, it is important that replies to received
messages can be sent in any order and other messages can be handled in the meantime.
For example, a request to a file system server might require to contact the storage driver
to load data from the storage device. As this might take some time, the file system server

32

Section 3.4 – Data Transfer Unit

should be able to handle other requests in the meantime and reply to the client’s request
afterwards.

To fulfill these requirements, receive EPs maintain a bitmap for occupied slots and
unread slots, a read position and a write position. The write position indicates the last
slot where a message has been placed, while the read position indicates the last slot
from which a message has been fetched. The occupied bitmap stores which slots are
in use, whereas the unread bitmap stores which slots have not been fetched yet. To
find a free slot in the receive buffer, the DTU walks in round-robin fashion over the
occupied bitmap, starting at the slot behind the write position, and using the first slot
that is not occupied. Similarly, the FETCH command starts at the slot behind the read
position, returns the first slot that is unread to the CU and marks it read. Replying to a
message or using the ACK_MSG command clears the bit in the occupied bitmap.

This concept allows the DTU to make the placement decision autonomously, while
passing the messages in the order they arrived to the CU (to prevent starvation) and
allowing the CU to defer the reply to a message. The disadvantage is that the number of
messages per receive buffer is limited to the size of the bitmaps (32 at the moment). I
think this limitation is acceptable, because multiple receive EPs can be used to increase
the limit and, ultimately, many clients will require multiple PEs anyway to keep up
with the potentially high request rate. Increasing the size of the bitmaps leads to larger
endpoints and thus an increased DTU size. Alternatively, the larger bitmaps can be
stored in the SPM to keep the DTU small at the cost of slightly slower message handling.

3.4.5 Replying to Messages

Replying to received messages is an essential feature, because many applications use
the request-response communication pattern, such as client-server scenarios. This can
be done with an additional communication channel in the other direction: 𝐷𝑇𝑈𝐴 has a
send EP to a receive EP on 𝐷𝑇𝑈𝐵 and 𝐷𝑇𝑈𝐵 has a send EP to a receive EP on 𝐷𝑇𝑈𝐴.
However, EPs are a scarce resource and servers often have many clients, whereas clients
are often only connected to a few servers. Thus, reducing the number of EPs required
on the server side is important. In many client-server scenarios, the server does not
need a communication channel to the client that allows it to initiate a communication.
Instead, being able to reply to received messages is sufficient.

Since multiple send EPs can be connected to the same receive EP, replying to one
of the received messages requires to know the destination of that reply, that is, the
sender of the message. This information is part of the message header, which is added
by the sending DTU. To keep the trusted computing base small, I decided to store this
security-critical information not in the SPM with the message (or later, in the cache
hierarchy), but in DTU-internal memory, called header table. The header table is per
DTU instead of per EP and each receive EP stores its starting offset in the header table
to store the headers of received messages. To reply to a message, the CU specifies the
address of the message to reply to and the DTU sends the reply to the PE and receive
EP as specified in the corresponding entry of the header table.

3.4.6 Credit System

Messages are exchanged between applications without involving the kernel. Addi-
tionally, the CU at the recipient is not involved to store the message. This raises two
questions:

1. how does an application know whether a recipient has sufficient space?

33

Chapter 3 – Isolation and Communication

2. how can we stop applications from flooding others with messages?

To solve these problems, the DTU uses a credit system, similar to Intel QuickPath [10].
The idea is to let the recipient hand out credits to its senders, decrease the credits on
sent messages and increase them again on received replies. In other words, the credit
system can be used for flow control between sender and receiver.

Since the receive buffers have fixed-size slots for messages, the credits are given in
messages (e.g., 2 credits allow to send 2 messages). The credits are stored in the send
EP. If the send EP has no credits left, the DTU denies to send the message. Otherwise,
the credits are decreased by one and the message is sent. The reply to this message
increases the number of credits by one again. Typically, the recipient will not hand
out more credits than the number of message slots in the receive buffer to guarantee
message delivery if a client has credits. However, as the DTU will simply drop messages
if the receive buffer is full, it is also possible to hand out more credits if the scenario can
tolerate message drops.

3.4.7 Command Abortion

As discussed in Section 3.3.5, a malicious CU (including its caches or SPM) can neither
change existing channels nor create new channels. However, it can prevent a successful
communication. For example, if PE1 sends a message to PE2, the DTU in PE2 needs to
store the message into PE2’s SPM. Thus, the DTU sends a write request to the SPM. If
the SPM is malicious and does never send a response to the DTU, the SEND command
issued by PE1 will never complete, which renders PE1’s DTU unusable. For that reason,
the DTU needs to offer a way to abort a running command in case the communication
partner does not cooperate.

The DTU uses the special command register ABORT to allow the abortion of the
current command. The DTU supports two abort modes: hard and soft. The former
aborts the current command immediately. The latter expects a timeout in register ABORT
and delays the abort until the timeout expired if and only if the current command is SEND
or REPLY. The rational is that each message has to be received exactly once, whereas
memory accesses can be repeated. Both abort modes are only performed in the local
DTU, that is, the communication partner is not notified of the abort. Furthermore, both
modes write the abort error code to the register COMMAND in case a command has been
aborted. If so, the communication channel should not be used anymore (the message
might have been delivered successfully or not). Hard aborts are intended in case the
communication partner does not cooperate. Soft aborts are used if the communication
channel should stay valid (e.g., on context switches as described in Chapter 7). Note also
that aborted SEND commands still reduce the credits of the send endpoint and aborted
REPLY commands deny further replies to the same message. This prevents that the abort
can be abused to circumvent the credit system or the reply-once guarantee.

3.4.8 Discussion

Although the design of the DTU is constrained by the goal to be independent of the CU,
there are design alternatives and extensions of which I discuss the most important ones.

DTU Sharing

As pointed out earlier, for the sake of simplicity I currently assume that the CU executes
a single stream of instructions. Modern processors typically employ multiple cores and

34

Section 3.5 – The Operating System M3

multiple hardware threads per core to make the best use of the resources. Although it is
possible to add a DTU for each hardware thread, it might be a better trade-off to share a
DTU among multiple hardware threads. The DTU can be extended to employ a register
file (EP registers, command registers etc.) per hardware thread in the DTU, but share
the logic and buffers. This approach decreases the performance slightly, but reduces the
required chip area and is transparent for the CU.

Message Headers in Memory

An alternative to the header table in the DTU is to load the header from the message
in memory (the receive buffers store messages including their headers). This requires
additional protection to prevent that the CU can change the header to, for example,
send a message to a different PE: 1) message headers need to be read-only and 2) receive
buffers cannot overlap. The latter is required, because otherwise a malicious application
could let another PE send carefully crafted messages into receive buffer A, that overlaps
with receive buffer B in such a way that message payloads from receive buffer A are
interpreted as message headers for receive buffer B.

Relying on the headers in memory leads to a smaller DTU, because it removes
the DTU-internal memory for the header table (2 KiB for 128 headers in the current
implementation). The downside is that it moves the memory (SPM, caches, DRAM, . . .)
into the trusted computing base (TCB) of the entire system. In case of complex general-
purpose cores, where separating the caches from the core is difficult, it effectively moves
the entire CU into the TCB. Furthermore, storing headers in memory requires a concept
to make the message headers read-only without relying on the CU’s memory protection
features. In the collaboration with Benedikt Nöthen on Tomahawk 4 [58], we stored
the headers in memory and introduced a DTU register that defines an address as the
barrier between writable and read-only memory. The kernel will set it remotely, place
all receive buffers above that address and make sure that they do not overlap. Since we
placed the DTU between CU and SPM, the DTU received all memory requests from the
CU and simply ignored write requests to addresses above the barrier. For simplicity, we
put the entire receive buffers in read-only memory instead of just the message headers.

Due to the low memory requirement of the header table when considering todays
CUs, the reduced TCB size, and the simplicity (no additional protection needed), the
DTU described in this thesis stores the header table in the DTU.

Endpoints in Memory

Similarly to the message headers in memory, as just discussed, the EPs can also be stored
in memory instead of in the DTU. This has comparable consequences: On the one hand,
it makes the number of EPs configurable at runtime, removing the need to multiplex
them (see Section 3.5.6), and reduces the size of the DTU. On the other hand, additional
protection is required and the memory becomes a part of the TCB.

3.5 The Operating System M𝟑

The last section described the DTU as the foundation for isolation and communication.
I will now move from hardware to software and demonstrate how the OS uses this
foundation to achieve isolation and communication. The name of the OS is M𝟑 for
microkernel-based system for heterogeneous manycores. Alternatively, the abbrevia-
tion M𝟑 can be seen as L4 ±1, because some ideas are taken from the L4 microkernel

35

Chapter 3 – Isolation and Communication

family [77, 83, 137]. I decided to design M𝟑 as a microkernel-based OS, because of the
advantages in security and reliability [61, 62, 77]. For that reason, the M𝟑 kernel only
provides basic abstractions and mechanisms and implements the actual functionality of
the OS via servers running on user PEs.

3.5.1 System Calls

System calls in traditional systems are performed by executing a special instruction (for
example, SYSCALL on x86-64) that switches from the unprivileged CPU mode into the
privileged CPU mode. The kernel will typically save the CPU registers first, handle the
system call, and restore the registers again before returning to user space. The system
call number and its arguments are typically passed in registers or in memory.

On M𝟑, system calls are performed by sending a message from the user PE to
the kernel PE. This approach is comparable to FlexSC [136], which handles system
calls asynchronously on a separate core. The message contains both the system call
number and its arguments. As PEs are isolated by default, system calls require an
established communication channel. This channel is set up by the kernel before starting
the application. The kernel configures EP0 as a send endpoint with a receive endpoint
at the kernel’s DTU as the destination. Furthermore, EP1 is configured as a receive
endpoint to receive the replies from the kernel. The credits of EP0 are set to allow one
system call at a time. To perform a system call, the application uses the DTU’s SEND
command with EP0 and sets REPLY_EPID to 1 for receiving the reply4. Note also that M𝟑

uses the same mechanism for system calls as for IPC, which allows to easily interpose
the system call channel.

3.5.2 Capabilities

0 2 0 2
1VPE 1 VPE 2

Kernel

VPE 2VPE 1

VPE SGate RGate VPE

Figure 3.3: Capability system

Inspired by L4, the M𝟑 kernel uses capabilities to man-
age the access of applications to resources. A capability
is thereby a pair, consisting of a pointer to the resource
and permissions for this resource. Like L4, M𝟑 supports
different kinds of capabilities. However, at this point,
I will only talk about object capabilities. The introduc-
tion of virtual memory in Chapter 5 will add mapping
capabilities, which are comparable to L4’s memory ca-
pabilities. Each object capability refers to a kernel ob-
ject. Examples for kernel objects are send and receive
gates for message passing (see Section 3.5.4), memory
gates for memory access (also explained in Section 3.5.4), endpoint objects to activate
gates, and virtual processing elements (VPEs). VPEs are explained in more detail in the
next section, but can be roughly compared to processes. Each VPE has its own capability
space.

As shown in Figure 3.3, capabilities are stored in the address space of the kernel and
are thus inaccessible from applications. When performing system calls, applications
use capability selectors (green in Figure 3.3) to reference capabilities (yellow) in their
own capability space. Thus, capability selectors are comparable to file descriptors in
UNIX-like OSes. Since multiple capabilities can point to the same kernel object (red),

4Specifying a different endpoint is fine, too. If it is no receive endpoint or has not enough space, the
DTU will simply drop the reply, only hurting the application itself.

36

Section 3.5 – The Operating System M3

all kernel objects are reference counted. Capabilities can be created, exchanged, and
revoked via system call:

Creation The kernel offers a system call for each type of kernel object, which creates
both a new kernel object and a capability that points to it. The capability will be
stored in the capability space of the requesting VPE at the specified selector.

Exchange Capabilities can be exchanged between VPEs in two forms: delegate and
obtain. The former copies a range of capabilities from the requesting VPE to a
specified VPE. The latter works in the other way around.

Revoke At any point in time, capabilities can be revoked, that is, deleted. Revocation
is done recursively: if VPE1 has delegated a capability to VPE2 and VPE2 to VPE3
and VPE1 revokes its capability, the capabilities are revoked from all three VPEs.

The ability to revoke capabilities recursively requires the kernel to store the chains of
exchanges. Similar to other capability-based OSes, M𝟑 uses a so-called mapping database,
which stores capabilities in a tree, according to the chains of exchanges. Revoking a
capability will revoke the entire subtree.

3.5.3 Virtual PEs

The M𝟑 kernel uses the abstraction virtual processing element (VPE) to manage the
access to user PEs. A VPE is a resource container and an execution context and hence
a combination of a process and a thread in traditional OSes. This decision has been
made for simplicity and because M𝟑 does currently not support multiple execution
contexts within one resource container. If this support is added, execution contexts will
be separated from VPEs and represented by an own kernel object. A VPE is created
for a specific type of user PE. Each VPE has its own address space (consisting of the
SPM and DTU) and capability space, isolating VPEs by default. For now, we assume
that each VPE has its own PE and VPEs are neither preempted, nor migrated. That is,
VPEs are assigned to a specific PE at creation and run on this PE until their completion.
Chapter 7 will introduce context switching to share PEs between multiple VPEs. In
contrast to traditional OSes, the kernel does not maintain any CU-specific data for the
VPE such as the register state. Instead, the kernel is only concerned about the VPE’s
DTU and controls it remotely via RDMA requests. The name virtual PE has been chosen,
because a VPE provides the illusion that an entire PE, consisting of CU, memory, and
DTU, belongs to the owner of the VPE.

Lifecycle

DEAD

INIT RUNstart()

exit()

Figure 3.4: VPE state diagram

Each VPE has a state, which is manipulated by the
kernel according to the state diagram depicted in
Figure 3.4. Upon creation, the VPE is in the state
INIT and has an empty capability space (except
for a capability for the own VPE, a capability for
the own memory, and one endpoint capability for
each endpoint, present at fixed positions in each
capability space). This is in contrast to the fork-
exec model used in UNIX-like OSes, where a new
process starts with the same resources as its parent.
As in L4, this is motivated by the principle of least authority (POLA), which is easier to
achieve by selectively granting permissions instead of selectively removing permissions.

37

Chapter 3 – Isolation and Communication

Creating a VPE provides the creator (the parent) with a VPE capability, a memory
gate capability for the entire address space of the VPE, and one endpoint capability for
each endpoint (see Section 3.5.4). This moves the potentially complex task of application
loading into user space (except for the first VPE, comparable to “init” on UNIX, which is
simple to load). During the INIT state, the parent typically delegates the capabilities to
the child that are required for its operation. Afterwards, the parent loads the desired
application into the child VPE via the memory capability and uses the start system call,
which causes a transition to the RUN state. Finally, the exit system call of the child VPE
leads to a transition to the DEAD state. The parent can use a system call to wait for this
event. Note also that the application loading step is optional to use the same API for
non-programmable PEs, which will be discussed in more detail in Chapter 6.

CU-specific Helper

CU-specific helper

RCTMux VMA

Figure 3.5: Modules of the CU-
specific helper

Since the kernel is running on a different PE and con-
trols the user PEs remotely, the kernel requires a small
helper on each user PE to run software on this PE. This
small piece of software is called CU-specific helper. As
each VPE has its own instance of the CU-specific helper,
the kernel loads it onto the target PE at the creation
of a VPE. At this point, the CU-specific helper is only
responsible to initialize the CU (e.g., the CPU regis-
ters) and to wait for the kernel’s signal to transfer control to a just loaded applica-
tion. As shown in Figure 3.5, the CU-specific helper contains two modules, which
will be described in more detail in later chapters. The remotely controlled time mul-
tiplexer (RCTMux) is responsible for context switching, whereas the virtual-memory
assistant (VMA) is used to support virtual memory.

Application Loading

Based on the memory gate capability received upon VPE creation, M𝟑 currently offers
two ways to load an application into a VPE: run and exec. run takes a function as an
argument and executes it asynchronously in the child VPE. Thus, the code and data of
the parent is cloned, similar to fork, but without the capabilities. The parent VPE is free
to perform other tasks while the child VPE executes. Due to the cloning of the state, run
is primarily intended for PEs with compatible ISAs. However, compiler techniques for
cross-ISA migration [47] can relax this requirement. Since we are currently considering
PEs with SPM, all code and data is copied eagerly. On PEs with virtual-memory support,
introduced in Chapter 5, demand loading is used.

As onUNIX-like OSes, exec expects the path of the program to execute and command
line arguments. exec loads code and data of the specified program from the file system
into the VPE. Analogously to run, this is done eagerly for PEs with SPM and via demand
loading in case virtual memory is supported. In contrast to exec on UNIX, M𝟑’s exec is
not used to replace the program in the own VPE, but in a different VPE. Thus, like run,
it is asynchronous and allows the caller of VPE::exec to perform other tasks during
the runtime of the executed program.

3.5.4 Gates

As described in the last section, VPEs are isolated by default. The kernel provides
mechanisms to establish communication channels between VPEs, if desired. There are

38

Section 3.5 – The Operating System M3

two types of communication channels: message passing channels and memory access
channels. Both channels are used via the DTU and are represented as kernel objects,
called gates. Gates come in three forms:

1. receive gates to receive messages,
2. send gates to send messages to a receive gate, and
3. memory gates to access PE-external memory.

To use a gate, the VPE has to ask the kernel to configure an endpoint of the DTU. This
procedure, called activation, is done via an RDMA write from the kernel’s DTU to the
endpoint registers of the target DTU. In other words, the kernel writes to the MMIO
region of the corresponding endpoint in the target DTU. Afterwards, the VPE can use
the communication channel by executing the corresponding DTU command (SEND for
send gates, READ or WRITE for memory gates, and FETCH or REPLY for receive gates).
Section 3.6 provides an example of how gates are used for communication.

As mentioned in the previous section, activating a gate requires an endpoint capa-
bility, which denotes the DTU endpoint that should be configured. Every VPE has an
endpoint capability for each of its DTU endpoints, which allows the VPE to activate
gates on its own endpoints. Additionally, parents receives endpoint capabilities for their
child VPEs and endpoint capabilities can be exchanged with other VPEs. Hence, VPEs
can activate gates for other VPEs. This is important for non-programmable PEs, which
require established communication channels at start, and will for example be used by
OS services, as explained in Chapter 4.

3.5.5 Memory Management

In the current implementation, the M𝟑 kernel is responsible for the physical memory
management (DRAM). As the management can become more complex in the future to,
for example, support non-uniform memory-access (NUMA) architectures, this responsi-
bility should later be moved to userland, similarly as in L4. The M𝟑 kernel offers the
create_mgate system call that allocates physical memory and creates a memory gate
for the allocated memory. Additionally, the derive_mem system call is offered to derive
a new memory gate capability from an existing one and restrict the new memory gate
to a subset of the memory and the permissions.

3.5.6 Endpoint Multiplexing

Endpoints (EPs) are a scarce resource in the current implementation as they are hardware
registers (see Section 3.4.8). To support more communication channels than the available
EPs, M𝟑 supports multiplexing of the EPs among gates. For security reasons, EPs can
only be configured by the kernel, so this needs to be done via system call. However, the
kernel cannot simply reconfigure an EP due to the credit system. Let us assume that
the VPE wants to replace one send gate with another one and the send EP used for the
current send gate has outstanding credits, that is, has lost credits by sending a message
and is still waiting to get them back. This leads to two problems:

1. If the credits arrive after the send EP has been reused for a new gate, the new
gate would receive the credits, because only the EP id is used as identification.

2. Reading the current number of credits and reconfiguring the EP is not atomic. If
the credits are received in between, the kernel stores the wrong number of credits
and the already received credits are lost.

39

Chapter 3 – Isolation and Communication

To solve these problems, I decided to let the kernel use an external command (see
Section 3.4.3) to invalidate an EP. This command atomically checks whether no credits
are missing and if so, invalidates the EP. Otherwise, an error is reported to the kernel.
The first problem is solved, because outstanding credits are impossible and the second
problem is solved, because invalid EPs cannot receive credits anymore. The downside is
that send EPs cannot be reconfigured if credits are outstanding.

Memory EPs can be multiplexed without any further measures. Multiplexing receive
EPs is possible by invalidating its send EPs first, but not yet supported in the current
implementation.

3.5.7 Discussion

The design of M𝟑, running the kernel on a dedicated PE and remotely controlling the
user PEs, is different from traditional OSes. This has advantages and disadvantages:

• As the kernel does not run on all CUs supporting heterogeneous CUs becomes
easier. In particular, the DTU as the common interface of all CUs allows the kernel
to (mostly) ignore the differences of the CUs and only take care of the DTUs and
their communication channels.

• Applications do not share resources like CPU registers, caches and TLBs with the
kernel. First, not sharing these resources can lead to performance improvements,
because CPU registers do not need to be saved and restored on system calls and the
kernel does not evict applications’ cache lines and TLB entries. Second, resource
sharing can lead to covert channels, which threaten the system security.

• Recently discovered security flaws in most modern general-purpose cores that
use speculative execution (e.g., Meltdown [89], Spectre [78], and Foreshadow-
NG [149]), raise the question whether we should still base our system’s security
on the proper enforcement of the different CPU modes by such complex cores.
Instead, outsourcing this responsibility to a simple hardware component like the
DTU looks promising to increase the security of our systems.

• Furthermore, as no application is running on the kernel PE, the kernel does not
need different CPU modes, support context switching, or use paging to isolate
itself. Instead, the only hardware feature that a kernel needs to support is the
DTU to communicate with the applications and control them from the outside.
This simplifies the kernel and creates opportunities such as implementing the
kernel on an FPGA instead of running it on a general-purpose core.

• The kernel does not necessarily benefit from the same hardware features (instruc-
tion extensions, number of functional units, memory architecture etc.) as the
application. Giving the kernel and applications different PEs allows to accelerate
both in the best possible way.

• One downside of this approach is less system utilization, because one PE is
dedicated to the kernel and thus not usable by applications. However, it is expected
that the power consumption and heat generation will be the limiting factors in
the future [59, 142]. That is, even if an OS could fully utilize all PEs at all times,
physical limits will prevent the OS from doing so.

• The direct communication between applications is beneficial for performance
and scalability. However, it has the downside that the kernel does not know what

40

Section 3.6 – Interplay

Kernel

Parent

Child

Mem

1 2 3 5 6 7 15 17

9 10

1715

10

1715

10
...

time

Figure 3.6: DTU-based interactions in the producer-consumer example

the applications are doing (e.g., computing or idling). We will experience this
problem in the design of context switching in Chapter 7.

3.6 Interplay

After the description of the DTU and M𝟑, this section gives an example to provide
a better understanding of the interplay between hardware and software on the one
hand, and applications and the kernel on the other hand. Let us look at the following
producer-consumer example (simplified):

1 RecvGate rgate = RecvGate :: create ();
2 SendGate sgate = SendGate :: create(rgate);
3 MemGate mgate = MemGate :: create (512 * 1024);
4
5 VPE consumer = VPE:: create ();
6 consumer.delegate(rgate , mgate);
7 consumer.run([&rgate , &mgate] {
8 while(true) {
9 msg = rgate.receive ();
10 mgate.read (...);
11 }
12 });
13
14 while(true) {
15 mgate.write (...);
16 msg = ...
17 sgate.send(msg);
18 }

Figure 3.6 illustrates the interactions between the participating components when
running the producer-consumer example. The gray horizontal bars represent activity
of the corresponding component. The numbers in circles refer to the line numbers
in the code and all arrows represent DTU-based communications. The dotted arrows
are memory accesses, whereas the solid arrows represent message exchanges. As can
be seen, the first three lines issue system calls to create the three gates (1 , 2 , and
3). The send gate is created for the receive gate, allowing to send messages to the
receive gate. The memory gate will be used to exchange the data between producer and
consumer. Afterwards, we create a child VPE that acts as the consumer (5) and delegate
the receive and memory gate to that VPE (6). The method VPE::run executes the
given function (a C++ lambda in the example) on the VPE asynchronously. VPE::run
first copies the program state into the child VPE, leading to the memory transfers in

41

Chapter 3 – Isolation and Communication

line 7 . In line 9 , the receive gate is implicitly activated via system call to configure an
endpoint for message receptions5. Afterwards, the parent VPE writes to the memory
gate in line 15 and sends a message to the child VPE in line 17 . Since both gates were
not activated yet, activate system calls are performed on their first usage. As soon as the
child VPE has received the message, it reads from the memory gate leading to another
activate system call (10). Afterwards, all gates are activated, so that the kernel is no
longer involved in the communication. In other words, after the setup phase, both VPEs
interact autonomously and the kernel is idling.

3.7 Evaluation

This section evaluates the basic attributes of the described architecture. Application-level
benchmarks and other benchmarks that evaluate the system as a whole will follow in
Chapter 8. Before starting with the evaluation, the following section shortly introduces
the used prototype platforms and provides the details on the evaluation platform.

3.7.1 Prototype Platforms

M𝟑 runs on different prototype platforms, which all have their individual advantages
and disadvantages as described in the following.

Xtensa LX4

SPM DTU

PEPE

PE

PE

PE

DRAM

R
Mem
Ctrl.

RR

R

R R

Figure 3.7: Schematic depiction of
the Tomahawk platform

Tomahawk The first prototype platform is Tom-
ahawk [28], which is a heterogeneous multipro-
cessor system-on-chip (MPSoC) designed at TU
Dresden and primarily intended formobile commu-
nication applications. As illustrated in Figure 3.7,
Tomahawk consists of multiple PEs integrated into
a NoC and a memory controller that provides ac-
cess to an external DRAM. Each PE contains an
Xtensa LX4 general-purpose core, a scratchpad
memory (SPM) for instructions and data, and a
DTU. The Tomahawk platform is therefore com-
parable to the platform considered in this chapter.
This platform was interesting for my work, because the Xtensa cores lack the required
architectural features (e.g., multiple CPU modes and a memory management unit) to
run a traditional OS kernel, similar to accelerators. Tomahawk exists as custom silicon
in, among others, version 2 [106] and version 4 [58]. The PEs in Tomahawk 2 contain
no full DTU, but a simple DMA unit that allows transfers between PEs and between PEs
and DRAM. Tomahawk 4 contains a DTU6 similar to the one described in this thesis,
designed by Benedikt Nöthen and myself.

gem5 Due to the large effort that comes with a silicon implementation, I used simula-
tion to study the more advanced aspects of this system architecture. I chose gem5 [38],
which is a widely spread platform for computer-architecture research. gem5 is an ideal
candidate for my work, because of its modularity and flexibility that allowed me to
explore new ways of combining existing hardware components like general-purpose

5Since both VPEs execute independently, the parent might also execute line 15 first. In any case,
activating the send gate in line 17 blocks until the associated receive gate has been activated.

6The DTU is called iDMA (intelligent direct memory access) controller in the Tomahawk 4 publication.

42

Section 3.7 – Evaluation

cores, caches, and memories. Additionally, gem5 supports multiple CPU models, mem-
ory back-ends, and execution modes that allow for a trade-off between simulation speed
and accuracy. In particular, gem5 supports a cycle-accurate out-of-order CPU model
and detailed cache models that enable accurate performance measurements. Although
gem5 supports multiple instruction set architectures (ISAs) such as x86, ARM, MIPS, and
ALPHA, gem5 does currently not support mixed-ISA systems. To evaluate my system
architecture on gem5, I implemented a DTU model based on an early prototype by
Christian Menard, and integrated fixed-function accelerators.

Linux Due to the slow simulation speed of gem5 and because some parts of M𝟑 are
independent of the underlying platform, I use Linux as another prototype platform. On
Linux, each PE is represented as a Linux process and the DTU is emulated in software
based on UNIX domain sockets. Linux is valuable for early prototyping and debugging
(e.g., by running a program on one PE in Valgrind [104]), but not suitable for performance
measurements due to the slow communication primitive. The simulation of potential
future platforms natively on top of Linux has been published on the third workshop on
Systems for Future Multicore Architectures (SFMA’13) [29].

Evaluation Platform For the evaluation in this work, except for the power and chip
area measurements in the following, I chose gem5 as the evaluation platform instead
of Tomahawk. The reason is that the simple DMA unit in Tomahawk 2 requires to
emulate a significant portion of the DTU’s functionality in software. The emulation
leads to unrealistic performance results for DTU-based operations. Tomahawk 4 does
not require software emulation, but is unfortunately not usable for non-trivial scenarios
due to a hardware bug in the network-on-chip or DTU. In contrast, the gem5-based
prototype platform allows accurate performance simulations and supports all features
of M𝟑 such as virtual memory and accelerators. Furthermore, the flexibility of gem5
enables the evaluation of many different system configurations.

On gem5, M𝟑 supports both x86-64 and ARMv7. However, the x86-64 support is
more complete and gem5 does not support mixed-ISA systems. Since M𝟑 achieves
comparable results on both ISAs and to prevent a distraction from the important points
in this work by a comparison of ISAs, I decided to only show the results for x86-64.

3.7.2 System Call and IPC Performance

I start by comparing the performance of two basic operations on M𝟑 to existing systems:
system calls and communication between processes (VPEs on M𝟑). The performance
is compared to Linux and NOVA [137]. NOVA is a microkernel/-hypervisor of the L4
family. I compare the performance of system calls on all three OSes. However, as Linux
is a monolithic kernel, inter-process communication (IPC) is less important. In contrast
to that, it is one of most important and optimized primitives of a microkernel such as
NOVA, so that I compare IPC performance only to NOVA. The benchmarks were done
with Linux 4.10, modified versions of NOVA, and one of its userlands called NOVA
runtime environment (NRE). NOVA and NRE were modified to run on gem57.

7The modified NOVA version is available at https://github.com/TUD-OS/NOVA/tree/gem5 and NRE
at https://github.com/TUD-OS/NRE/tree/gem5.

43

https://github.com/TUD-OS/NOVA/tree/gem5
https://github.com/TUD-OS/NRE/tree/gem5

Chapter 3 – Isolation and Communication

Linux NOVA M³

D
u

ra
ti

o
n

 (
C

y
cl

e
s)

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

(a) System call performance

NOVA (lo) NOVA (re) M³ (re)

D
u

ra
ti

o
n

 (
K

 C
y

cl
e

s)

0
2

4
6

8
1

0

(b) IPC performance

Figure 3.8: Syscall and IPC performance on Linux, NOVA, and M𝟑

Measurement Setup

All three OSes are run on gem5 in full-system mode with x86-64 cores8, using the
out-of-order CPU model and the classical memory system. Linux and NOVA use a
typical cache configuration consisting of 32 KiB L1 instruction cache, 32 KiB L1 data
cache, and 256 KiB L2 cache. Since this chapter is considering PEs with SPM, M𝟑 runs
on such a PE with a sufficiently large SPM for the used programs. I will later revisit
these benchmarks with other PE configurations. All cores are simulated with a 3GHz
clock frequency. The DDR3_1600_8x8 model of gem5 is used as the physical memory,
clocked at 1GHz. The PEs are connected via a crossbar instead of a full NoC, because
gem5’s NoC model is strongly coupled with the cache coherency protocol. A crossbar is
sufficient in this case, because the evaluation does not require many PEs.

System Calls

On all three OSes, 100 system calls were performed with warm caches. On Linux and
NOVA, system calls are done by executing the system call instruction of x86-64. On M𝟑,
a message is sent via the DTU from the application to the kernel, which handles the
system call and replies via the DTU to the application. As shown in Figure 3.8a, the
performance is similar on all three OSes. On Linux and NOVA, a large portion of the
time is spent with switching the CPU mode and saving and restoring registers. On M𝟑,
86 cycles are spent by the DTU to send the two messages (request and reply), 111 cycles
are spent by the kernel and 154 cycles are required for pre and post-processing on the
application-side. Note that neither NOVA nor the used Linux version contain mitigations
for Meltdown [89] and Spectre [78]. For example, the introduction of kernel page table
isolation (KPTI) in Linux as a mitigation for the Meltdown attack, decreased Linux’s
system call performance significantly. In contrast, the M𝟑 kernel already runs on a
separate PE, preventing the Meltdown attack and Spectre attacks against the kernel by
design.

8Since virtual memory is mandatory on x86-64 and the currently considered PEs do not support it, an
identity mapping is set up at application start to “ignore” virtual memory during runtime.

44

Section 3.7 – Evaluation

Inter-process Communication

To compare the performance of IPC with a different microkernel, I executed a “IPC-
pingpong” benchmark on NOVA and M𝟑, again with 100 repetitions and warm caches.
On NOVA, two processes are created (called protection domains in NOVA) and an empty
message is sent from one process to the other and back (round-trip). Figure 3.8b shows
the time for local IPC on one core (“NOVA (lo)”) and remote IPC between two cores
(“NOVA (re)”). This is compared to IPC on M𝟑, always performed between two cores.
Chapter 7 will show how context switching can be used to perform IPC on one core.
As can be seen in Figure 3.8b, local IPC on NOVA is quite fast (788 cycles), whereas
remote IPC is rather slow (8821 cycles). The main reason is that remote IPC requires
inter-processor interrupts (IPIs), which are expensive. On M𝟑, an IPC round-trip takes
349 cycles, which is even faster than the local IPC on NOVA. This is because the DTU
accelerates message passing in hardware and M𝟑 dedicates an entire PE to an application,
leading to a shorter code path between message reception and its handling. Note that
the time for IPC is the same as for system calls on M𝟑, because there is no technical
difference between a system call and IPC.

3.7.3 Power Consumption and Chip Area

To quantify the costs of adding a DTU next to every CU, I performed experiments that
measure the power overhead of the DTU and its required chip area. This has been
done in a collaboration with the Vodafone Chair Mobile Communication Systems at
TU Dresden. We based our work on an early version of the Tomahawk 4 Platform [58]
and extended it with a DTU. For the measurement, the modules have been synthesized
with the Synopsys Design Compiler for a 65 nm low-power TSMC CMOS process at
100MHz using typical case conditions (e.g., temperature: 25 ◦C, supply voltage: 1.25V).
To measure the power consumption, we fed Synopsys Prime-Time with a dump file of
all switching activities, which was obtained by simulating the execution of the programs
on the synthesized gate-level netlists with back-annotated timing information using
Mentor Questa.

Power Consumption

The goal of the first experiment is to measure the power consumption of message
transfers, depending on the size of the message. We developed a small program that uses
a previously configured send endpoint to send messages of varying sizes to a receive
endpoint at a different PE. The measurement starts right before a message is sent and
ends after this message has been received by the recipient. The left part of Figure 3.9
shows the average power consumption for this period of time. As can be seen, the power
consumption of the core decreases with increasing message sizes, while the DTU’s
power consumption increases linearly, but slowly. The reason is that, at the beginning,
the DTU is idling, while the core is active. After the core has instructed the DTU to
send the message, the core is put in a low-power mode, while the DTU becomes active.
Note that the core is a simple Xtensa LX5 core, optimized for a low power consumption
(comparable to the ARM Cortex-M0). That is, the relative power consumption of the
DTU compared to more complex CUs will be smaller.

To measure the power overhead of the DTU in more realistic settings, we created a
benchmark that resembles an RPC scenario. The benchmark consists of a client and a
server, whereas the client sends a request to the server. We let the server compute for
different amounts of time to study the overhead of the DTU depending on the usage

45

Chapter 3 – Isolation and Communication

8 64 128 256 512

Message size (Bytes)

A
v

g
 P

o
w

e
r

(m
W

)

0
.0

1
.0

2
.0

3
.0

Core DTU

(a) Message transfers

0.5 1 2 4 10

Compute time (K cycles)

A
v

g
 P

o
w

e
r

(m
W

)

0
2

4
6

8
1

0
1

2
1

4

Core SPM DTU

(b) RPC scenarios

Figure 3.9: Power consumption for message transfers and RPC scenarios

frequency. We configured the Xtensa core to use scratchpad memory (SPM) as the
memory for instructions and data of 32 KiB in total. The average power consumption
of the recipient is shown in the right part of Figure 3.9. As can be seen, if the DTU
is only used occasionally, which I consider realistic since the DTU is only required
to access PE-external resources, the power consumption of the DTU is rather small
compared to the core and memory. The average power consumption of core and memory
increases with longer compute times, because the instruction mix of the computation is
slightly more energy intensive than the mix for message passing and setup time and
also produces more memory accesses.

Chip Area

Module Area (mm2)
PE 0.476 864
SPM (32 KiB) 0.211 805
Xtensa LX5 0.185 259
DTU 0.0798
Memory (8 EPs) 0.060 991
Logic 0.018 809

Table 3.2: Chip area of a PE with DTU

The final question we strived to answer
is the chip area required for the DTU.
We used the same 65 nm TSMC LP pro-
cess to determine the chip area of the
involved modules. The result is shown
in Table 3.2. In this configuration, the
DTUmakes up 20 % of the chip area. The
majority of the area is spent for the end-
point registers. However, the evaluated
DTU allows to use all endpoints at the
same time. This requires command registers per endpoint and also increases the area
for the logic to handle commands in parallel. On the other hand, the evaluated DTU
stores message headers in the SPM, not in DTU-internal memory as described in Sec-
tion 3.4.5. Note also that, as for the power consumption, an Xtensa core is significantly
smaller than modern ARM or x86 cores. Additionally, the latter typically employ at least
hundreds of KiB of cache per core. Thus, the relative area overhead of the DTU would
be significantly smaller. In the hardware implementation of Tomahawk 4 [58], which
exists as custom silicon by now, each PE consists of two simple cores (Xtensa and ARM),
allowing to use either of them at a time, and employs 128 KiB of SPM. For that reason,
the DTU makes up only 6 % of a PE’s chip area.

46

Section 3.8 – Summary

3.8 Summary

In this chapter, I described the foundation of the proposed system architecture. I
introduced the data transfer unit (DTU), which provides a uniform interface for all
compute units (CUs) and enables a secure communication between all CUs. The DTU
supports two communication types: message passing and RDMA-like memory access.
Established communication channels for both communication types are represented by
the DTU’s endpoints.

I introduced M𝟑 as an operating system that runs the kernel on a dedicated pro-
cessing element (PE) and controls the applications, represented as virtual processing
elements (VPEs), remotely on potentially very heterogeneous user PEs. The primary task
of the M𝟑 kernel is to establish communication channels between VPEs by connecting
their DTUs’ endpoints. To control the access to resources, the M𝟑 kernel uses capabili-
ties and offers means to exchange capabilities between VPEs. After a communication
channel has been established between two VPEs, these VPEs communicate directly,
without involving the kernel again. To this end, the DTU offers internal commands
(e.g., SEND or WRITE), which allow untrusted VPEs to use established communication
channels, but do not allow to change existing channels or create new ones.

47

Chapter 4

Operating-System
Services

In the previous chapter, I described the basic structure of the system. I introduced the
DTU as a new hardware component that provides isolation at the NoC-level and offers
communication endpoints. Based on the DTU, the M𝟑 kernel provides the virtual pro-
cessing element (VPE) abstraction to create isolated components and means to establish
communication channels between them. Communication channels are represented in
software as gates. To use a gate, a DTU endpoint needs to be configured. Since the
number of endpoints is limited, endpoints are multiplexed among potentially many
gates. This chapter describes the part of the OS that is hosted on user PEs, which uses
the abstractions and mechanisms of the kernel to provide the actual functionality of the
OS to applications.

4.1 Motivation

As described in Chapter 2 on related work, there are several existing extensions to OSes
such as GPUfs [133], GPUnet [75], OS4RS [107], or BORPH [135] that show how one
specific accelerator can get access to OS services. These approaches either add a new
protocol to access these services, specifically for the accelerator, or let the accelerator
communicate with a software thread that performs the actual access.

In this chapter, I show how the abstractions and mechanisms of the M𝟑 kernel and
the DTU can be used to design a new and unified protocol that allows all types of
compute units (CUs) to access OS services and, as will be shown in Chapter 6, enables
accelerators to run autonomously. More specifically, I introduce a new protocol for
all file-like objects, called file protocol, that can be used by all kinds of CUs. In other
words, the file protocol allows all CUs, ranging from simple fixed-function accelerators
to complex general-purpose cores, to access OS services such as file systems, pipes, or
network stacks in a uniform way.

This chapter starts with the description of the service infrastructure, which is used
later in the chapter to provide access to files and pipes. Next, I introduce the file
protocol, followed by a file system server and a pipe server as two examples, which
implement the file protocol and use the service infrastructure. Finally, I explain how
the virtual file system in M𝟑’s library, called libm3, makes file systems and pipes easy
to use for applications. Note that this chapter still focuses on simple general-purpose
cores, as introduced in the previous chapter. The integration of accelerators and their
implementation of the file protocol will be the topic of Chapter 6.

49

PE

Core

SPMDTU

PE

Core

SPMDTU

PE

SPMDTU

PE

Accelerator

SPMDTU

PE

Core

$$DTU

PE

$$DTU

PE

DTU

PE

Core

DTU

DRAM
File

MMU

Accelerator

ME

SPM$$

App App

CoreServer

Client

Chapter 4 – Operating-System Services

4.2 Services

Kernel

Client Server

Figure 4.1: Client and
server interaction

A service onM𝟑 offers functionality for applications (clients)
and is hosted on one or more user PEs by a server. The
service interface is service specific. For example, remote
procedure calls (RPC) can be used to request a service’s
functionality. Another example is that the server sends
events to its clients, requiring a communication channel in
the opposite direction. To establish the required commu-
nication channels between client and server, they need to
exchange capabilities. On L4-style microkernels, capability
exchange is coupled with IPC, allowing to exchange capabilities during IPC. This ap-
proach cannot be used on M𝟑, because IPC is performed directly between applications
via the DTU without involving the kernel. However, the kernel is responsible for the
capability management and thus needs to perform the actual exchange. Hence, as illus-
trated in Figure 4.1, M𝟑 uses an indirect communication channel (red arrows), involving
the kernel, to exchange the capabilities for the direct communication channel (green
line). Afterwards, the direct communication channel can be used without involving the
kernel again.

4.2.1 Service and Session

The M𝟑 kernel uses two types of kernel objects to handle the access to services: a service
object, representing the service itself, and a session object. To use a service, a client
needs to first create a session for the service. The server is aware of all sessions for its
service and maintains client-specific state for each session. Furthermore, as a session
represents an established connection between client and server, a session allows to
exchange capabilities between client and server, indirectly via the kernel.

Servers on M𝟑 register their service to the M𝟑 kernel via a system call, which creates
a service kernel object. Clients create sessions via system call as well, resulting in a
session object. In contrast to other microkernels, the M𝟑 kernel is currently responsible
for maintaining a list of services and deciding whether a client can use a service. This
approach has been chosen for simplicity. As the complexity of decision making can grow
significantly (e.g., by using a scripting language to configure permissions), it should
later be moved to userland. However, since the same approach as for example in L4 can
be used, I leave this for future work.

4.2.2 Service Protocol

To notify servers about the creation and destruction of sessions and to negotiate the
exchange of capabilities, the kernel creates a communication channel between itself and
the server upon service registration. After the service registration, the server listens
to requests over this channel. The channel is used on behalf of clients. For example,
if a client requests the creation of a new session via system call, the kernel sends a
corresponding message to the server via this channel. The protocol that is used on this
channel is called service protocol and consists of the following messages:

OPEN to create a new session,
DELEGATE to copy capabilities from the client to the server,
OBTAIN to copy capabilities from the server to the client, and

50

Section 4.3 – File Protocol

CLOSE to close a session.

The OPENmessage is sent by the kernel upon a session creation request and asks the
server for permission. If the server is willing to accept the new client, the server creates
a new session capability via a system call and sends its selector (the local identifier of
the capability) back to the kernel. The kernel will create a copy of the session capability
as a child capability and store it in the client’s capability table. This way, the server is
free to revoke its session capability from its own capability space at any time, which
will revoke the capability from the client’s capability space as well, because the client’s
session capability is a child of the server’s session capability. Each session has an
identifier specified by the server when creating the session capability, which is sent as
label (see Section 3.4.2) for all further messages that are exchanged between kernel and
server for this session. In the current implementation, the server uses the pointer to the
client-specific state as the identifier.

The messages DELEGATE and OBTAIN are used upon capability exchange requests
from the client based on an existing session. For DELEGATE, the client specifies the
capability range that should be copied to the server. The server is expected to reply to
the kernel whether it agrees to the exchange and if so, to specify where the capabilities
should be stored in its capability space. For OBTAIN, the client specifies where capabilities
should be stored in its capability space and the server is expected to reply to the kernel
which capabilities should be copied to the client. Both DELEGATE and OBTAIN provide
space for arguments, which are simply forwarded from the client to the server. Note that
OBTAIN is similar to take in the take-grant model [90]. However, like other microkernel-
based systems [83, 137] and in contrast to the take-grant model, M𝟑’s capability tree
does not define which capabilities a specific VPE is allowed to obtain. Instead, OBTAIN
asks the server for a specific number of capabilities. Thus, the client is not guaranteed
to receive specific capabilities from the server.

Finally, CLOSE is sent if the client’s session object is revoked. The server will revoke
its session capability upon this message. Typically, the client uses the revoke system
call to destroy the session as soon as it is done using the service. The revoke can also be
caused by a crash of the client, which destroys the VPE including all its capabilities.

4.3 File Protocol

One of the primary goals of this work is to treat all kinds of CUs as first-class citizens.
To reach this goal, all CUs should be able to access OS services. For example, both
general-purpose cores and simple fixed-function accelerators should be able to read
from files or write to network sockets. To this end, I introduce a file protocol that can
be used by all kinds of CUs to access all file-like objects.

4.3.1 Design Goals

To suit all kinds of CUs, the protocol needs to fulfill certain requirements:

Simplicity: The protocol needs to be sufficiently simple to enable an implementation
for fixed-function accelerators or FPGAs, as described in Chapter 6.

Flexibility: At the same time, it needs to be flexible to suite general-purpose cores.
For example, applications should be able to open an arbitrary number of file-like
objects and use them simultaneously. Additionally, applications should have the
option to access file-like objects via a POSIX-compatible API.

51

Chapter 4 – Operating-System Services

Performance and scalability: The protocol has to enable a good read and write per-
formance and should scale with the number of clients, whichmandates performing
as much work on the client-side as possible.

Considering these requirements, I decided to perform the potentially complex setup
and tear-down phases always in software and offer a simple protocol for the data access
for all kinds of CUs. In other words, software is responsible to establish the communica-
tion channels (for example, to the file system) and to tear them down again after the
operation, while all CUs, including simple accelerators can use these communication
channels to access the data of file-like objects. Since the required steps in the setup and
tear-down phases depend on the service, I will describe them in Section 4.4 for M𝟑’s file
system service and in Section 4.5 for M𝟑’s pipe service.

4.3.2 The Protocol

S

M

R
Client Server

next_{in,out}()

(pos, len)

Mem

Figure 4.2: The file protocol

The file protocol is depicted in Figure 4.2 and uses
a message-passing channel between a send end-
point (EP) at the client (S in the figure) and a re-
ceive EP at the server (R). The server is expected to
make the data available in memory and provides
the client access to the data via the memory EP
(M). Note that the protocol is described using EPs
instead of gates, because it also intended for sim-
ple accelerators that do not use gates (a software
abstraction), but directly work with EPs.

The protocol consists of twomain requests: next_in() and next_out(). The former
requests access to the next piece of data to read, whereas the latter requests access to the
memory to which the next piece of data should be written to. Additionally, the protocol
supports the request commit(nbytes) to commit the first nbytes of the previous input
or output request, which is discussed in more detail below. To enable the client to access
the data, the server configures the memory EP at the client correspondingly, using the
EP capability that the client has delegated to the server during the setup phase. As
for example depicted in Figure 4.2, a file system server will provide the client access
to a fragmented file (green blocks in the figure) piece by piece. After the EP has been
configured, the server replies the position of the current piece within the green block
and the size of the piece to the client. Although the position will typically be zero and
the size will be the size of the green block, this is not necessarily the case. For example,
the pipe server uses a single green block and tells its clients where to read or write next
within this block, as will be described in more detail in Section 4.5. Upon receiving this
reply, the client can use the memory EP to access the data in RDMA fashion via the
DTU. As soon as the data has been completely read or written, the client issues another
next_in() or next_out() request to the server. Receiving a length of 0 from the server
denotes end-of-file.

As the client accesses the data on its own via the DTU, the server does not know
how many bytes the client has actually read or written. To this end, input and output
requests need to be committed. Each next_in() and next_out() request implicitly
commits the complete previous piece of input or output data, respectively. Additionally,
the commit(nbytes) request can be used to explicitly commit the first nbytes of the
previous input or output request. In contrast to the input and output requests, the
commit request does not request access to new data. The commit request is used, for

52

Section 4.4 – File System

example, if a client wants to stop writing to a file, in which case it might have written
less than it got access to. Another use case is file multiplexing, as described in the
following section.

4.3.3 File Multiplexing

As mentioned in the design goals, applications should be able to work with an arbitrary
number of files simultaneously. However, the protocol demands a dedicated memory
EP per file and EPs are a limited hardware resource. To solve that problem, I decided
to multiplex a set of endpoints at the client-side among the open files. Note that file
multiplexing is a feature of libm3 and therefore only available for software.

The file multiplexer is contacted whenever the application tries to access the data of
a file, say 𝐴. If file 𝐴 already has a dedicated EP, the data access is performed directly,
potentially preceded by an input or output request to the server. Otherwise, the file
multiplexer determines a victim file, say 𝐵, via round robin in the current implementation.
Before the EP can be used for file 𝐴, file 𝐵 calls commit(nbytes) to commit the bytes
read or written so far. Afterwards, the EP capability is revoked from the server to
prevent this server from reconfiguring the EP, while it is used for a different purpose.
File 𝐴 now delegates the EP capability to its server and can afterwards perform the read
or write operation. Note that this always requires a new input or output request to the
server, because the file has either committed the last input or output request during the
multiplexing or not yet sent a request.

4.4 File System

After the generic description of the file protocol, this section presents an in-memory
file system called M𝟑FS, which implements the file protocol and uses the service infras-
tructure. In-memory file systems are becoming increasingly important due to growing
memory sizes and upcoming non-volatile RAM. In the current implementation, the file
system image is loaded into DRAM at boot (containing executables for the boot process,
for example) and is maintained at runtime by M𝟑FS.

4.4.1 Overview

M𝟑FS is implemented as an M𝟑 service and uses two types of sessions for its clients.
The creation of a new session (OPEN in the service protocol) creates a metadata session
at M𝟑FS. Besides performing meta operations (see Section 4.4.4), clients can use the
metadata session to open a file via the OBTAIN operation, which creates a file session
(see Section 4.4.3). Both sessions offer an RPC interface for clients based on one send
gate (corresponding to the send endpoint of the file protocol) per session. The RPC
interface of the file session uses an extended version of the file protocol, additionally
allowing, for example, to seek within files. Furthermore, M𝟑FS offers the option to clone
a session, resulting in a new pair of session and send gate capability. Cloning a session
allows, for example, to provide another VPE access to a specific file without granting
the VPE access to the entire file system. Before explaining the file session and metadata
session in more detail, the next section described how the data of M𝟑FS is organized.

53

Chapter 4 – Operating-System Services

4.4.2 Data Organization

INSB

IN D

D

F

F

BB

IB

IB

BB

Figure 4.3: M𝟑FS’
data structures

The data of M𝟑FS is organized similarly to typical UNIX file sys-
tems such as ext4 [97], as shown in Figure 4.3. The file system
is split into fixed-size blocks (4 KiB in the current implementa-
tion). The superblock (SB in the figure) stores meta information
about the entire file system like the total number of blocks. Inode
blocks (IN) contain multiple inodes, each representing a file. An
inode stores the file’s meta data such as the size, the creation
date, and pointers to the data. File blocks (F) contain arbitrary
data, whereas directory blocks (D) store a list of directory entries
in a format defined by M𝟑FS. To prevent clients from directly
manipulating directory blocks, M𝟑FS grants only read access to directory blocks and
offers meta operations to add and remove directory entries. A directory entry consists
of a name and an inode number. To keep track of the available inodes and blocks, M𝟑FS
uses an inode bitmap (IB) and block bitmap (BB), respectively.

4.4.3 File Session

As mentioned in the overview, file sessions are created based on a metadata session via
the OBTAIN operation. In other words, the client requests to obtain capabilities from
M𝟑FS. The path and desired access mode are transferred via the arguments of the OBTAIN
operation (see Section 4.2.2). If the file exists and can be opened for the desired mode
(e.g., for reading and writing), M𝟑FS creates a new file session and passes the session
capability and a send gate capability for the RPC interface to the client. Afterwards,
the client can use the send gate to access the file. The RPC interface implements the
next_in, next_out, and commit requests of the file protocol and additionally a seek
request and an fstat request.

To handle the input and output requests, consolidated here as data requests, M𝟑FS
needs to configure the memory endpoint of the client to provide the client access to
the data. The M𝟑 kernel offers the activate system call to configure a DTU endpoint,
specified by using an endpoint capability, for a given gate capability. Since a memory
gate can only refer to a contiguous region of memory, M𝟑FS needs to determine which
areas of the file are contiguous in memory. For that reason, inodes organize the files’
data in extents, similar to other modern file systems [97, 122]. An extent is a contiguous
region defined by a starting block number and a number of blocks. An inode contains
three extents directly pointing to data blocks, one singly-indirect extent pointing to a
block with extents, which point to data blocks, and one doubly-indirect extent. Pointing
to data via extents directly indicates which parts of the files are contiguous, eliminating
the need to search for them on data requests.

Since data requests always ask for the next piece of data, the file session stores the
current file position as a pair of extent number and offset within this extent. The offset
is only non-zero if the client seeks or performs a commit request, explained below in
more detail. On every data request, M𝟑FS configures the memory endpoint of the client
to point to the next extent of the file. To this end, M𝟑FS first creates a new memory
gate capability for the next extent. The M𝟑 kernel offers the derive_mem system call to
create a new memory gate capability based on an existing memory gate capability (here,
the file system image in memory), reduced to a subset of its memory region and access
permissions. M𝟑FS uses the derived memory gate capability to configure the endpoint
of the client. At the end of each data request, after M𝟑FS has sent the reply to the client,

54

Section 4.4 – File System

the memory gate capability for the previous extent is revoked.
Output requests beyond the end of the file append to the file. In this case, M𝟑FS

adds a new extent to the file with a preferably large number of blocks (currently 128
blocks, i.e., 512 KiB). Using a large number of blocks is important for two reasons:

1. minimizing the number of output requests for appending and

2. minimizing the file fragmentation.

The former reason leads to a better performance of appends. Interestingly, although
M𝟑FS is an in-memory file system, file fragmentation is relevant. The reason is that a low
file fragmentation minimizes the number of data requests when reading or writing a file,
which improves the performance. That is, in contrast to file systems for spinning disks,
the distance between two fragments is not important, but the number of fragments
(extents) is. Additionally, keeping the number of data requests to the server low is
important for its scalability.

To prevent other clients from accessing file parts that have not been written yet
(these parts are initialized to zero, though), appends are not visible to other clients
until the appending client has committed the append. Appends are committed either
implicitly with the next output request or explicitly via a commit request. Besides
moving the file position forward, these requests truncate the file accordingly, in case the
previous output request reserved more space than the client committed. If another client
is already appending to the same file, M𝟑FS denies further appends until the running
append has been committed.

Besides data requests, M𝟑FS supports seeking within files. Since the client specifies
the file position and not the extent number, M𝟑FS first needs to determine the extent
number and offset within the extent. In the worst case, M𝟑FS needs to walk sequentially
through the extents to determine the extent for a given file position. For that reason, seek
requests are handled on the client side, if the requested position still refers to the data
the client already has access to, which is frequently the case. Therefore, I consider the
time complexity of 𝑂(𝑛) for server-side seeks acceptable. This can be further improved
by, for example, using binary search.

Finally, the file session does also support the OBTAIN operation to obtain memory
capabilities for a specified region of the file. This operation is used by the pager to map
files into the address space of a VPE, as will be described in more detail in Chapter 5 on
virtual memory.

4.4.4 Metadata Session

The metadata session allows to access and modify the data structures of the file system.
Like the file session, M𝟑FS offers this functionality via an RPC interface to its clients.
The current implementation supports open, stat, mkdir, rmdir, link, and unlink.
M𝟑FS accesses the meta-data blocks (SB, IN, IB, BB, and D in Figure 4.3) via RDMA in
DRAM and uses a small block cache, similar to the buffer cache in UNIX-like OSes, to
minimize the number of RDMA accesses to DRAM. However, since data accesses are
performed on the client side via RDMA, M𝟑FS’s block cache is rather small. The current
implementation has a cache for 16 blocks and employs the least recently used (LRU)
strategy for eviction.

55

Chapter 4 – Operating-System Services

4.4.5 Limitations

A difference between M𝟑FS and other file systems is that M𝟑FS does not guarantee
atomic writes, because the clients are writing the data on their own. This access type is
comparable to mmap’ing a file for writing on UNIX-like OSes. However, in case atomic
writes are required, M𝟑FS can be extended to first provide clients access to unused
memory and move/copy the data to the desired place on commit (for example, enabled
by a flag on open), similar to copy-on-write file systems [39, 122]. In this way, each client
writes to its own memory and the actual write to the file is done by M𝟑FS atomically.

The current implementation of M𝟑FS is not crash consistent. Hence, using M𝟑FS as
is with non-volatile memory can lead to inconsistencies if the system crashes. Since
metadata is completely controlled by M𝟑FS, crash consistency for metadata can be
guaranteed with the same strategies as for traditional file systems (e.g., journaling). In
case the data should be kept consistent as well, M𝟑FS can be modified to only use atomic
writes, as discussed above. In this way, the file’s data is never updated in place. How
M𝟑FS can be extended by a block cache for data to efficiently support storage devices as
well is discussed in Section 4.7.

4.5 Pipe

This section describes how pipes are provided based on the service infrastructure and
the file protocol. The goal is to offer the same semantics as an anonymous pipe on UNIX,
that is, a unidirectional, first-in-first-out (FIFO) communication channel. A UNIX-like
pipe requires in particular to support multiple readers and writers, which allows, for
example, the reader to spawn worker VPEs that concurrently read from the pipe.

4.5.1 Overview

To support multiple readers andwriters, M𝟑 implements pipes with a server that manages
the pipe at a central place. Data is exchanged via shared memory and the readers and
writers ask the server for the next read or write position. Similar to M𝟑FS, the pipe
server uses two kinds of sessions. The creation of a new session creates a pipe session,
representing the pipe. To use the pipe, the client needs to delegate a memory gate
capability via the pipe session to the server, which is used to exchange data over the
pipe. Furthermore, the pipe session allows to create channel sessions, either for reading
or for writing, via the OBTAIN operation. In this way, the client obtains a capability for
the channel session and a send gate capability for the pipe’s RPC interface, implementing
the file protocol. Each channel session can either be used for reading or for writing and
can be cloned to add another reader or writer, respectively, to the pipe.

4.5.2 Data Access

Data in the pipe is accessed according to the file protocol. To this end, the pipe server
manages the shared memory, referenced by the memory gate that was delegated via the
pipe session at the beginning, as a ring buffer with variable element sizes. For readers,
the pipe server derives a read-only memory gate from the shared memory, whereas
for writers it derives a write-only memory gate. In contrast to M𝟑FS, the pipe server
configures the memory endpoint of each client only once upon the first data access. The
reason is that the shared memory area has a fixed size and is always contiguous.

56

Section 4.6 – Virtual File System

File
+ seek(pos:off_t,whence:int): off_t
+ read(buf:void*,count:size_t): ssize_t
+ write(buf:const void*,count:size_t): ssize_t

FileSystem
+ open(path:const char*,mode:int): File*
+ stat(path:const char*,info:FileInfo*): err_t
+ mkdir(path:const char*): err_t

FileTable
+ alloc(f:File*): fd_t
+ get(fd:fd_t): File*
+ set(fd:fd_t,f:File*)
+ free(fd:fd_t)

MountTable
+ add(path:const char*,fs:FileSystem*): err_t
+ resolve(path:const char*): FileSystem*
+ remove(path:const char*)

VPE

VFS
+ mount(path:const char*, fs:const char*): err_t
+ open(path:const char*, mode:int) : fd_t
+ mkdir(path:const char*) : err_t

Figure 4.4: Overview of the VFS in form of a UML class diagram

Upon input and output requests, the pipe server checks if the ring buffer has data
to read or space to write to. If so, the pipe server replies with the position within the
shared memory and the length. Otherwise, the pipe server queues the request and
revisits it later. Each input and output request implicitly commits the previous request
to the pipe. Additionally, commit requests commit the specified number of bytes to
the pipe without requesting new access. To support multiple readers and writers, only
one client at a time can read or write, respectively. Further requests are queued as well.
After committing an input or output request, pending requests are reconsidered in FIFO
order. As soon as all write channel sessions have been closed and all data has been read,
readers receive the end-of-file reply from the pipe server. Similarly, if all read channel
sessions are closed, writers receive end-of-file since all readers lost interest in the data.

4.6 Virtual File System

The virtual file system (VFS) is a feature of libm3 that offers the ability to work with
multiple file systems and access file-like objects. This section takes a brief look at its
implementation to provide a better understanding of how files are used in applications.
Since M𝟑 is written in C++, the VFS is implemented in an object-oriented fashion.

4.6.1 Files and File Systems

Figure 4.4 provides an overview of the involved classes with their relations and most
important methods. libm3 uses an object of the VPE class to represent the application’s
own VPE and one object for each created child VPE. Each VPE object has a FileTable
object and a MountTable object. The FileTable maintains a table of open files. The
table is indexed by the file descriptor, as in UNIX-like OSes, and each open file is
represented by a File object. The File class implements the file protocol, introduced
in Section 4.3. Analogous to the FileTable, the MountTable maintains a table of file
systems, mounted at specific paths and represented by FileSystem objects. In contrast
to UNIX-like OSes, the VFS is a library feature and files and file systems are not passed

57

Chapter 4 – Operating-System Services

to child VPEs by default. Instead, as described in the next section, the VFS provides
mechanisms to selectively pass files and file systems to child VPEs, allowing a shared
access to, for example, the same file system object.

The VFS class offers an abstraction layer on top of the two tables, always refer-
ring to the own VPE. Besides forwarding mount and unmount requests to the mount
table of the own VPE, it is responsible for determining the FileSystem object for
a given path, and forwarding the call to this object. For example, VFS::open will
first use MountTable::resolve to determine the FileSystem object responsible for
the path. Afterwards, it calls the open method of the found FileSystem object and
passes the remaining path within this file system as an argument. The open call re-
sults in a File object, which VFS::open associates with a free file descriptor by calling
FileTable::alloc.

The File class implements the file protocol and is therefore used for all file-like
objects. The read and write methods of File have a POSIX-like interface and abstract
the details of the file protocol. For example, the write method is implemented as follows
(simplified):

ssize_t File::write(const void *buffer , size_t count) {
delegate_ep_cap_if_not_done ();

if(pos == len)
(pos , len) = send_request(NEXT_OUT);

size_t amount = min(count , len - pos);
DTU::write(ep, buffer , amount , pos);
pos += amount;
return amount;

}

At first, the EP capability is delegated to the server in case this has not been done yet or
needs to be done again after file multiplexing (see Section 4.3.3). Afterwards, an output
request is sent to the server, if no space is left for writing. Finally, the data is written via
the DTU from the application’s buffer to the position chosen by the server. Note that
the commit request is only used when closing the file, as each output request implicitly
commits the previous request.

4.6.2 Selective Inheritance

The VFS supports a selective inheritance of file and file system objects to share them
with child VPEs. For example, this allows to create a pipe between two VPEs and
perform I/O redirection. The key idea, leading to the class design depicted in Figure 4.4,
is to separate between the creation of File and FileSystem objects and their reference.
Although each VPE has a file table and a mount table (referencing File and FileSystem
objects), the VFS class always creates these objects for the own VPE (VPE::self()). If
for example a file should be shared with a child VPE, the application copies the pointer
to the file object into the file table of the child VPE. This allows to build a collection of
files and file systems for an inheritance using the same data structures, without creating
new objects, but merely referencing them. After filling the file and mount table of the
child VPE, the file sessions and file system sessions selected for the inheritance are
cloned for the child VPE, as explained in Section 4.4 and Section 4.5. As most other
OSes, M𝟑 defines the file descriptors 0, 1, and 2 for standard input, standard output, and
standard error, respectively.

58

Section 4.7 – Discussion

The following shows an example for a pipe between the parent and child VPE:
1 Pipe pipe = Pipe:: create (64 * 1024);
2 VPE rd = VPE:: create ();
3
4 rd.fds()->set(STDIN_FD ,
5 VPE::self().fds().get(pipe.reader_fd ()));
6 rd.obtain_fds ();
7 rd.run([] {
8 File *in = VPE::self().fds().get(STDIN_FD);
9 in->read(buffer , sizeof(buffer));
10 });
11 pipe.close_reader ();
12
13 File *out = VPE::self().fds().get(pipe.writer_fd ());
14 out ->write(buffer , sizeof(buffer));
15 pipe.close_writer ();
16
17 rd.wait();

The first line constructs a new pipe with a 64 KiB shared memory area, which creates
two new File objects in our file table. Afterwards, we create a new VPE (starting with
an empty file and mount table) and set its standard input to the reading end of the
pipe. The call to obtain_fds in line 6 lets the child VPE obtain the required capabilities
defined by its file table. Finally, run executes the given function in the child VPE, which
reads from the File object associated with standard input. After closing the read end of
the pipe in line 11, the parent writes to the pipe and closes the write end. Finally, the
parent waits in line 17 until the child VPE has completed the function call.

4.7 Discussion

As in the previous chapter, this section discusses extensions to the presented concepts.

4.7.1 File System Access Control

Ametadata session at M𝟑FS currently provides full access to all its files and directories. If
a more fine-grained access control is desired, M𝟑 can for example be extended to restrict
metadata sessions to a specific subtree of the file system and to a specific access mode
(e.g., read-only or read-write). The OBTAIN operation to clone an existing metadata
session can be extended to only allow downgrades of these permissions to enable
hierarchical restrictions. For example, a session with read-write access to the entire file
system can create a new session with read-only access to the sub-directory “/shared”
and delegate this session to a different VPE. This VPE can create new sessions as well
(e.g., for “/shared/data”), but is restricted to this sub-directory and read-only access.

4.7.2 M𝟑FS for Storage Devices

M𝟑FS is currently an in-memory file system. As the data organization is already similar
to popular disk file systems, it can be used for storage devices as well. While the current
implementation already uses a block cache for meta data blocks, it grants applications
direct access to data, which is already in memory. However, using the existing block
cache for data blocks as well and granting applications access to cached data blocks
is not desirable in this case, because it eliminates one of M𝟑FS’s advantages: granting

59

Chapter 4 – Operating-System Services

applications access to a large contiguous region at once. To support that with storage
devices, the cache should store extents instead of blocks.

4.7.3 POSIX Compatibility

As described in Section 4.6, libm3 currently uses an API for the access to pipes and
files, which is not POSIX compatible. However, the API has been designed with POSIX
compatibility in mind, making it easy to add a POSIX compatibility layer on top. Such a
layer does already exist in a slightly different form for the system-call tracing infras-
tructure, called systrace, used for application-level benchmarks in Chapter 8. Systrace
translates (a subset of) Linux’ system calls to libm3’s API, which can easily be provided
as a library to run legacy applications.

4.8 Evaluation

This section evaluates the presented OS services in comparison to Linux 4.10 using
micro-benchmarks. The benchmarks are performed with the same gem5 configurations
as in the previous chapter (see Section 3.7): Linux is using caches, whereas M𝟑 is using
scratchpad memory (SPM). However, this difference is not important for the following
benchmarks. Running M𝟑 on PEs with caches, as is supported with the additions
presented in the next chapter, leads to comparable results.

4.8.1 File System Read/Write/Copy

The first benchmark evaluates the performance when reading, writing, and copying files.
Since M𝟑FS is an in-memory file system, I compare its performance to tmpfs on Linux.
Linux is running on a single core, whereas M𝟑 uses three PEs: one for the kernel, one
for M𝟑FS and one for the benchmark. However, M𝟑 does not take advantage of multiple
PEs, that is, at no point in time are multiple PEs doing useful work in parallel. Instead,
the execution merely transitions from PE to PE when the benchmark performs calls to
the kernel or M𝟑FS. To ensure that, M𝟑FS revokes the memory gate capability for the
previous extent before replying to the client in these benchmarks instead of afterwards
as described in Section 4.4.3.

The benchmarks perform the following tasks:

1. Read : read a file, discarding the data,

2. Write: write precomputed data into a new file, and

3. Copy : copy a file by reading an existing file and writing to a new file.

All files are 32MiB large and the benchmarks use an 8 KiB buffer to read/write the file
step by step. 8 KiB has been chosen as the buffer size, because it is the sweet spot on
Linux for these benchmarks. M𝟑FS and tmpfs use a block size of 4 KiB. M𝟑FS has been
configured to use extents of at most 512 KiB for both existing and created files. I analyze
the influence of the extent size on the performance in the next section. On Linux, the
file operations are performed via the system calls read and write. On M𝟑, the methods
File::read and File::write are used.

Figure 4.5a shows the average time over four runs, preceded by one warm-up run.
The times are split into data transfers (DTU transfers on M𝟑 and memcpy on Linux) and
the OS overhead. As can be seen, both the transfer times and the OS overhead show

60

Section 4.8 – Evaluation

L
in

u
x

M
³

Read

0

5

10

15

20

25

30

T
im

e
 (

m
s)

L
in

u
x

M
³

M
³−

ze
ro

Write

L
in

u
x

M
³

L
x

−
se

n
d

Copy

OS Overhead Data Transfers

(a) Comparison to Linux
Blocks per extent

T
im

e
 (

m
s)

2 4 8 16 32 64 128

0
5

1
0

1
5

2
0

Read Write Copy

(b) Performance with varying extent lengths

Figure 4.5: Read, write, and copy performance, using 32MiB files

large differences. In explaining this behavior, I will start with the transfer times and go
into the OS overhead afterwards.

M𝟑 and Linux use different ways to perform the data transfers. While M𝟑 uses the
DTU’s RDMA feature to load data from DRAM into SPM or store data from SPM to
DRAM, Linux copies the data within its CPU cache from one location to the other.
As shown in Figure 4.5a, this leads to comparable transfer times when reading a file.
However, on Linux, writing is slower than reading, whereas on M𝟑, writing is faster than
reading. The former stems from the fact that gem5’s cache model uses the write-alloc
policy for write misses (as is common in today’s hardware). Thus, write requests that
cause a cache miss first load the cache line from memory. This effectively doubles the
transfer volume, leading to 64MiB in total. When writing the file on M𝟑, the DTU is
repeatedly instructed to read the buffer from SPM and write it to DRAM. Thus, the file’s
data is only written to DRAM, not read from DRAM. Interestingly, writing to DRAM
is even faster than reading, because read requests cannot be answered until the data
is available. Write requests are queued in the DRAM controller and written to DRAM
later. This has the consequence, that the DTU can already send the next write request,
while the controller is writing the queued requests to DRAM. Hence, writing to DRAM
achieves a higher data rate than reading from DRAM. On both OSes, the transfer time
for copying a file is the sum of the transfer times for reading and writing.

Besides the transfer time differences, M𝟑 and Linux show different OS overheads.
The main reason for the different OS overheads is that M𝟑FS grants its clients direct
access to potentially large contiguous regions of the file’s data, whereas Linux accesses
the file’s data page by page. Thus, on M𝟑, after the client has access to the data, it only
issues DTU transfers, leading to less overhead. When reading, the overhead is 0.30ms
on M𝟑 and 1.70ms on Linux. When writing, the overhead is 0.33ms on M𝟑 and 6.83ms
on Linux. The write overhead on Linux is primarily caused by the block allocation (this
has been determined by comparing the overhead when appending new data to a file with
the overhead when overwriting existing data). In the default configuration (the columns
labeled “M𝟑” in Figure 4.5a), M𝟑FS does not overwrite blocks with zeros on allocation,
because it assumes that enough zeroed blocks are available. Overwriting blocks with
zeros can be done in idle times of M𝟑FS. In contrast to Linux in this benchmark, M𝟑FS is
required to zero the blocks, because it grants its clients direct access (similar to mmap
on Linux). Otherwise, clients could get access to deleted confidential data. If no zeroed
blocks are available anymore, M𝟑FS needs to perform this task on allocation. The results

61

Chapter 4 – Operating-System Services

for this case are shown in the column “M𝟑-zero”.
On both OSes, the OS overhead for copying is again roughly the sum of the OS

overheads for reading and writing. However, Linux does offer the system call sendfile
to transfer data between two file descriptors. When using sendfile to copy the file
instead of read and write, the performance improves, as shown by the column “Lx-
send”. The reason is, that sendfile can copy directly within the buffer cache, whereas
read and write uses the application’s buffer as an intermediate step.

In summary, M𝟑 outperforms Linux in these benchmarks by taking advantage of
the DTU’s RDMA feature to grant clients direct access to large contiguous file regions.
The access can be granted in constant time, independent of the size of the region. CPU
caches are inherently at a disadvantage to copy data, because they operate at cache
line granularity and have no knowledge about the software’s intention. This can be
mitigated to some degree by prefetching (enabled in the benchmark), but not completely
eliminated, as this benchmark shows. In contrast, the DTU can be instructed to read
or write a large amount of data at once, leading to better results (e.g., writing does not
require reading). Another positive side-effect of DTU transfers is that the CU can be put
into a low power mode during the transfer. Alternatively, the DTU can already prefetch
the next data block, while the CU is working on the current block.

4.8.2 File Fragmentation

As mentioned previously, the performance onM𝟑 for reading or writing a file depends on
the fragmentation of the file, that is, the number of extents. To quantify the performance
impact of fragmentation, I repeated the three benchmarks of the previous section with
varying extent sizes for the 32MiB file. For reading, the file is created with a varying
number of blocks per extent, leading to a fragmentation of the file. Similarly, for writing,
M𝟑FS is restricted to find contiguous regions with a limited number of blocks when
appending to the file. The results are shown in Figure 4.5b, which are again the averages
of four runs, preceded by one warm-up run. As can be seen, the performance increases
with increasing extent sizes, but levels off at 16 blocks per extent. For that reason and
to reduce the number of requests to M𝟑FS, files are extended in steps of 128 blocks as a
trade-off between good performance/scalability and low memory wastage.

4.8.3 Pipe

The second OS service that has been introduced in this chapter is the pipe. Similar to
the file system benchmarks in the previous section, I evaluate the pipe performance in
this section in comparison to Linux. This time, Linux is running on a two-core system
with per-core L1 instruction and data caches with 32 KiB each and a shared 512 KiB L2
cache. M𝟑 uses five PEs: kernel, pipe server, creator, reader, and writer. The creator
starts reader and writer and is thus only used at setup time. Reader and writer are
working in parallel, as on Linux, whereas the pipe server and the kernel are only active
on behalf of the reader/writer. During that time, the reader/writer is inactive.

The creator starts a reader and a writer and lets them exchange 32MiB of data via
the pipe using a 8 KiB buffer. Analogous to the file system benchmarks, the writer writes
precomputed data into the pipe and the reader reads and then discards the read data. On
Linux, the fork and execve system calls are used to create reader and writer, whereas
on M𝟑, two VPEs are created and VPE::exec is used. M𝟑 uses a shared memory (SHM)
area of 128 KiB in DRAM to exchange the data. The pipe accesses are performed via
read and write on Linux and via File::read and File::write on M𝟑.

62

Section 4.9 – Summary

Total Idle OS Xfers

L
in

u
x

L
x

−
rd

L
x

−
w

r

M
³

M
³−

rd

M
³−

w
r

0

5

10

15

20

T
im

e
 (

m
s)

(a) Comparison to Linux using a SHM area in DRAM

M
³

M
³−
rd

M
³−
w
r

0

5

10

15

20

(b) Using a SHM area in SPM

Figure 4.6: Pipe performance, exchanging 32MiB of data

Figure 4.6a shows the average time over eight runs. The bars “Linux” and “M𝟑” show
the total time of the benchmark, that is, the time from starting reader and writer until
both have exited. The two bars next to each of them show the time for the reader and
writer, respectively, split into transfer time, OS overhead, and idle time. On M𝟑, the
transfer times behave comparably to the file system benchmarks: writing is faster than
reading, leading to a lot of idle time at the writer. In this case, the transfers on Linux are
faster than in the file system benchmarks, because the in-kernel buffer for the pipe is
much smaller than the file size in the previous section. Thus, the write requests do not
leave the L2 cache in most cases.

The comparison also shows that Linux has a much higher OS overhead than M𝟑.
The primary reason is that Linux uses a single lock for the entire code to read from
or write to the pipe, including the data transfers. Thus, since the user applications in
this benchmark use precomputed data and discard the read data, Linux spends almost
the entire time in these critical sections. On M𝟑, the data transfers are performed by
the clients, not by the pipe server. Thus, the pipe server does not become a bottleneck
with one reader and one writer. Furthermore, similar to M𝟑FS, the pipe server lets its
clients access a large portion of the pipe’s shared memory area at once (by default 25 %
of the shared memory size), which reduces the number of requests to the pipe server
and therefore the OS overhead.

The performance on M𝟑 can be further improved, because so far, M𝟑 used a shared
memory area in DRAM to exchange the data. Since any kind of memory can be used for
that purpose, the data can for example be stored in the SPM of an unused neighboring
PE. As illustrated in Figure 4.6b, this reduces the transfer times significantly, because
SPM is much faster than DRAM. Additionally, the SPM’s read and write performance is
symmetric, removing the idle times at the writer.

4.9 Summary

In this chapter, I demonstrated how OS services are provided based on the DTU’s
features and the mechanisms offered by the M𝟑 kernel. I introduced a file protocol,
which can be used for all file-like objects such as files, pipes, network sockets, and so
on. Most importantly, this protocol is sufficiently simple and yet flexible enough to
be suitable for all kinds of compute units (CUs), ranging from simple fixed-function

63

Chapter 4 – Operating-System Services

accelerators to complex general-purpose cores. As a proof of concept, I designed and
implemented an in-memory file system, called M𝟑FS, and pipes. The evaluation shows
that their performance is not only competitive with, but even outperforms Linux by
taking advantage of the DTU’s RDMA feature and granting clients direct access to large
amounts of data.

64

Chapter 5

Virtual Memory

The previous chapters used simple scratchpad memory-based processing elements as in
the Tomahawk platform. This chapter describes how virtual memory and a cache-based
memory access strategy is supported in the proposed system architecture.

5.1 Motivation

The scratchpad-based processing elements (PEs) considered in the previous chapters
are well suited for, for example, small applications that fit into the scratchpad mem-
ory (SPM) or fixed-function accelerators that benefit from many parallel SPM accesses
or predictable access times. However, the SPM is typically small (in the order of hun-
dreds of KiB) due to its expensive SRAM. While larger applications and accelerators can
move data manually between the SPM and larger memories, this is rather inconvenient
and complicated. Instead, using a cache-based access strategy to a large memory is
more attractive, because the cache performs these data movements transparently to the
compute unit (CU), while being reasonably efficient.

Cache-based access to a large memory leads to the desire to share this large memory
securely among multiple applications to make efficient use of the memory. Thus,
applications should be enabled to access virtual memory. Besides secure sharing of the
physical memory, virtual memory enables other well-known techniques such as copy-
on-write, demand loading, swapping, memory mapped files, and page deduplication.
The preferred way to implement virtual memory today is paging1, because it is both
performant and simple to use for applications.

5.2 Goals

For the virtual-memory support, I strive for the following properties:

Uniform External Interface The M𝟑 kernel should be able to manage all PEs in a
uniform way and all PEs should be able to collaborate in an easy fashion. Thus, although
the DTU’s internal interface may vary, all DTUs should have the same external interface
to hide the differences between the PEs.

1As there is some disagreement concerning these terms, I want to shortly define how they are used
in this thesis: virtual memory introduces virtual address spaces that are mapped via some mechanism to
physical memory. One of these mechanisms is paging, which splits the virtual and physical address spaces
into same-size blocks called pages in the virtual address space and frames in the physical address space.

65

PE

Core

SPMDTU

PE

Core

SPMDTU

PE

SPMDTU

PE

Accelerator

SPMDTU

PE

Core

$$DTU

PE

$$DTU

PE

DTU

PE

Core

DTU

DRAM
MMU

Accelerator

ME

SPM$$

App App

CorePager

Client

Chapter 5 – Virtual Memory

Virtual Interface to DTU As will be introduced in this chapter, a VPE has a virtual
address space if it has been assigned to a PEwith virtual-memory support. This raises the
question whether such VPEs should use virtual or physical addresses when interacting
with the DTU (e.g., to specify the address of a message that should be sent or the
destination buffer for an RDMA read request). Requiring physical addresses has the
downside, that applications cannot specify them on their own, because this would
compromise the security of the system. To prevent the security problem, the M𝟑 kernel
could store the physical address in the affected DTU endpoint and let the application
work with the corresponding virtual address. For message passing, this approach is
acceptable, as has been shown by L4, which uses a per-thread buffer at a fixed location
called user thread control block (UTCB). However, it has significant downsides for
RDMA. Let us consider a file system with a buffer cache as an example. Being forced to
use physical addresses leaves us with three options:

1. We register the entire buffer cache at the M𝟑 kernel to enable RDMA for it.
This requires to allocate the entire buffer cache upfront in physically contiguous
memory and pin it in virtual memory. Thus, we lose most of the advantages of
virtual memory.

2. We register a single block in the buffer cache at the M𝟑 kernel on-demand. For
example, before loading a block from persistent storage into the buffer cache,
we register the destination area in the buffer cache for RDMA. After performing
the RDMA read operation, we unregister the area again. Since both registering
and unregistering requires a system call, this adds significant overhead to the
operation. Depending on the size of the block, the overhead could even be larger
than the transfer time for the block.

3. We register a block outside the buffer cache at the M𝟑 kernel, which we use for
all RDMA transfers. This doubles the transfer time for all RDMA operations. For
example, a load into the buffer cache requires a load into our RDMA block first,
followed by a copy to the actual destination.

As outlined, all three options are undesirable. For that reason, I decided that the interac-
tion with the DTU should use virtual addresses. This enables the applications to freely
choose the address without compromising security, because the access permissions
are defined by page tables. Thus, in the example, the file system can load data from
persistent storage directly into the desired place without any overhead. At the same
time, all memory-management techniques such as demand loading, swapping, and so
on can be used for the buffer cache. Furthermore, applications on PEs with memory
support interact with the DTU in the same way as applications on SPM-based PEs: both
use the use the addresses of their own address space (physical or virtual).

UniformAddressing In the previous chapters, I have shown that RDMA can be used
to access all memory in the system, including SPM in PEs and external memory such as
DRAM or NVM. That is, VPEs were able to access each other’s physical address spaces.
In this chapter, I will extend this by allowing RDMA to virtual address spaces as well.
Furthermore, it should be possible to map all types of physical memory into virtual
memory. This requires uniform addressing, which I will introduce in the following
sections. Remember that we are not yet considering context switching in this chapter.
For that reason, each PE has only a single virtual address space at a time: the virtual
address space of the running VPE. Thus, RDMA requests to such a PE access the virtual

66

Section 5.3 – Overview

CU

DTU
MMU access

Cache

(a) CUs w/o MMU

Cache

CU

DTU

xlate

access

MMU

(b) CUs w/ MMU (idealized)

CU

DTU

xlate access

Cache

MMU

(c) CUs w/ MMU (reality)

Figure 5.1: Abstract integration concept of CUs with caches

memory of the running VPE. Upon each VPE’s termination, the kernel invalidates the
communication endpoints at the VPE’s communication partners. This ensures that no
other VPE can still access the virtual address space of the just terminated VPE.

Optional Cache Coherency Cache-coherent shared-memory systems are the pre-
dominant form of systems today. However, it is still unclear whether future systems
will be (globally) cache coherent:

1. The costs of cache coherency in terms of energy, chip area, complexity, and
performance are expected to increase with an increasing number and variety of
cores [74, 98].

2. Heterogeneous systems as targeted by this work increase the challenge to provide
global cache coherency: all caches need to use the same cache coherency protocol,
which requires changes to at least a subset of the CUs.

3. Whereas implicit communication via cache-coherent shared memory simplifies
the programming of homogeneous systems, it is less attractive for heterogeneous
systems: CUs might use different endiannesses, different word sizes, different
atomic operations, etc.. Thus, communication between different CUs is always
explicit to perform the necessary conversions. In other words, the value of cache
coherency in heterogeneous systems is arguably smaller than in homogeneous
systems.

For these reasons, I keep cache coherency optional. In other words, M𝟑 does not take
advantage of cache coherency. To keep it simple, this chapter uses non-coherent caches
and discusses the consequences of coherent caches at the end.

5.3 Overview

To achieve the stated goals, the DTU needs to access the virtual memory of the current
VPE. For example, sending a message requires to load the message from the specified
virtual address and receiving a message requires to store the message into the receive
buffer in virtual memory. Additionally, incoming RDMA requests require access to the
virtual memory of the current VPE.

Existing CUs can be split into two categories: CUs that already support virtual
memory and CUs that do not support virtual memory. Most general-purpose cores fall
into the first category, because they contain a memory management unit (MMU). In
contrast to that, accelerators such as DSPs, FPGAs, or fixed-function accelerators do not

67

Chapter 5 – Virtual Memory

necessarily contain an MMU and therefore fall into the second category. The integration
of these two categories of CUs is depicted in Figure 5.1.

Starting with the simpler case, if a CU does not contain an MMU as in Figure 5.1a,
the address translation should be done externally and transparently to the CU. For that
reason, the DTU receives all memory accesses of the CU and interprets the addresses as
virtual (red arrows in the figure). The DTU-internal MMU translates the virtual address
to a physical address and sends a request with the physical address (blue arrows) to the
cache. This leads to physical caches, which are typically preferred over virtual caches
(see Section 5.12.2 for a discussion of virtual caches). With this structure, the DTU can
easily access the virtual address space of the current VPE, because the DTU can translate
the virtual address on its own before accessing the physical cache.

If a CU contains an MMU as in Figure 5.1b, virtual addresses are translated by
the CU-internal MMU and the CU’s external interface uses physical addresses. Thus,
the DTU is not able to translate virtual addresses and requires assistance from the
CU (red arrow named “xlate”) to access the physical cache based on virtual addresses.
Unfortunately, this structure requires an integration of the DTU between the CU and the
first-level cache. While this might be achievable in some cases, I consider it unrealistic
for today’s complex general-purpose cores (e.g., x86 cores), because the caches are
typically difficult to separate from the core. Solving the problem requires to reuse of
existing cores including their caches without any modification as depicted in Figure 5.1c.
In this case, the DTU needs an interface to access the CU-internal caches, which is
typically provided by the cache-coherency interconnect. Note that it is also imaginable
to integrate entire CPUs, potentially including DRAM and other components, as a single
PE into the system. For example, an Intel Xeon CPU can be integrated in this way.
However, this thesis focuses on the creation of system-on-chips by reusing existing
cores instead of entire CPUs.

The remainder of this chapter is organized as follows. In Section 5.5, I explain the
integration of the two just discussed categories of CUs in more detail, followed by the
introduction of uniform addressing in Section 5.6. Before continuing with the address
translation procedure, Section 5.7 provides the required background on DTU-based
data transfers. Section 5.8 describes the address translation in detail for CUs without
MMU (Section 5.8.1) and for CUs with MMU (Section 5.8.2), assuming that all pages are
already mapped. This is relaxed in Section 5.9 on virtual-memory management, which
describes how page faults are resolved. Afterwards, Section 5.10 walks through an
example to show the interplay of the different components that provide virtual-memory
support. Finally, Section 5.11 examines the implications on the trusted computing base,
followed by a discussion of miscellaneous aspects in Section 5.12 and the evaluation in
Section 5.13.

5.4 Related Work

There are other works that add address translation or protection to accelerators. At
first, the DTU-internal MMU is comparable to an IOMMU in conventional architectures
in the sense that the DTU and the IOMMU are managed externally and add virtual
memory transparently to a CU. Additionally, this approach is similar to the hetero-
geneous system architecture (HSA) [7, 123] and the coherent accelerator processor
interface (CAPI) [15, 138], which allow the integration of accelerators into a cache-
coherent virtual-memory system. IOMMUs, CAPI, and the DTU-internal MMU add
virtual-memory support transparently to an accelerator. On the one hand, this approach

68

Section 5.5 – Integration

CU

DTU
SPM

CU

DTU
MMU

CU

Caches

MMU

DTU

Software

Caches

1
DTUCache

2

3

1 1

3

2 2

44

PE-Type A PE-Type B PE-Type C

TLB

Figure 5.2: Detailed depiction of the integration of different PE types: A for accelerators,
B for CUs without MMU, and C for complex general-purpose cores

simplifies the development of accelerators and also leads to secure systems, because
memory protection is enforced by a trusted component from the point of view of the
system designer (the accelerator can be developed by a third-party vendor). On the other
hand, the accelerator vendor cannot tightly integrate the memory translation with the
accelerator and optimize it for a specific purpose. For that reason, Border Control [109]
separates address translation from protection by leaving the address translation up to
the accelerator and performing protection checks outside of the accelerator. In contrast
to my approach, HSA, CAPI, and Border Control focus on cache-coherent systems, while
my approach keeps cache coherency optional.

5.5 Integration

After the rather abstract description in the overview, this section explains in detail how
these two categories of CUs can be integrated. This leads to three PE types as depicted in
Figure 5.2. All PE types have the same external interface, but different internal interfaces,
as described in the following.

In general, the DTU is connected to the NoC (arrow 1) and can access memory
(arrow 2), for example, to load a message that should be send or to store a received
message. The CU uses memory mapped I/O (MMIO) requests to interact with the DTU,
which are handled in different ways, depending on the PE type. Blue arrows indicate
the use of physical addresses and red arrows the use of virtual addresses. Green arrows
indicate the use of NoC addresses, which are introduced in the following section.

PE-type A was the foundation of the previous chapters and is primarily intended
for simple accelerators. For example, some accelerators prefer an untranslated access
to scratchpad memory (SPM), because SPM easily supports many parallel accesses and
has a predictable access latency [43, 93, 129, 130, 144]. Since the SPM is not shared with
other PEs2, an address translation on the path to the SPM is not required. To simplify
the sharing of the DTU’s implementation for different PE types, all memory requests of
the CU are sent to the DTU (arrow 3), which either forwards the request to the SPM or

2Only the CU in the same PE sends memory requests to the SPM. Other PEs can access the SPM via
RDMA requests (arrow 2), but not without explicit permission by the VPE on the target PE.

69

Chapter 5 – Virtual Memory

handles it, if the request refers to the DTU’s MMIO region. In other words, the crossbar
shown in Figure 3.2 is part of the DTU.

PE-type B is intended for CUs, for which virtual memory is desired, but unsupported
by the CU itself. In this case, the DTU is integrated between the CU and the caches. As
in PE-type A, all memory requests from the CU are sent to the DTU (arrow 3) and
handled by the DTU if a request refers to the DTU’s MMIO region. Otherwise, the
DTU performs an address translation before forwarding the request to the first-level
cache, similar to an IOMMU. Last-level cache misses are sent to the DTU (arrow 4)
and forwarded over the NoC to the physical memory.

PE-type C is intended for complex general-purpose cores that have an MMU and
caches. I connect the DTU via a DTUCache to the coherency interconnect (thick hor-
izontal line) after the last-level cache, which allows the DTU to access the caches of
the CU. Therefore, existing cores, including their MMUs and caches, do not need to be
modified. The DTUCache does not need to be large to achieve good performance (8 KiB
is used in the evaluation). To perform MMIO requests, the DTU’s MMIO region needs
to be configured as “uncachable”, leading to last-level cache misses, which are sent to
the DTU (arrow 4). If a last-level cache miss does not refer to the MMIO region, it is
sent over the NoC to the physical memory.

5.6 Uniform Addressing

The key idea of uniform addressing is to split the system into processing elements and
memory elements (MEs) and make these elements “look the same” from the outside.
In contrast to PEs, MEs do not contain a CU, but only memory such as DRAM, NVM
or SPM. An RDMA request to an element always refers to its address space. In MEs,
the RDMA request refers to their internal physical memory. In type-A PEs, it refers to
the SPM; that is, the physical address space of the running VPE. In type B and C PEs,
it refers to the virtual address space of the running VPE. This is directly supported in
type-B PEs, because the DTU is responsible for the address translation. However, since
the purpose of type-C PEs is to reuse existing cores, which communicate with other
hardware components via physical addresses, directly accessing the virtual address
space is not possible for the DTU. I solve this problem by running a small assistant on
the core, called virtual-memory assistant (VMA), which will be described in Section 5.8.

To support the element-centric addressing, I introduce NoC addresses, which are
split into an element ID and an offset for the element’s address space. Currently, I use
64-bit NoC addresses with an 8-bit element ID and 56-bit offset. The element ID is used
for routing on the NoC to determine the destination element. The destination element
only receives the offset of the NoC address. To support mapping all physical memory
into virtual memory, virtual addresses are translated to physical addresses, which are in
turn converted to NoC addresses. The conversion depends on the PE type: in PE-type B,
no conversion is required, because physical addresses and NoC addresses have the same
format. In PE-type C, the required conversion depends on the physical address format
of the CU (for example, physical addresses on x86 are 48-bit wide), which is explained in
more detail in Section 5.8.2. Without any additional measures, this allows to map virtual
memory into virtual memory, possibly leading to cycles. For example, a VPE running
on PE 1 could map a virtual address to a NoC address with element ID 1, referring to
the VPE’s own address space. The M𝟑 kernel prevents this by only allowing to map
physical memory (i.e., NoC addresses referring to elements with physical memory) into
virtual memory.

70

Section 5.7 – Data Transfers

The arrow colors in Figure 5.2 indicate where the different address types are used in
the system. All PE types use physical addresses (blue) to access the PE-internal SPM or
cache, potentially after a translation from virtual (red) to physical. In type-B PEs, the
MMU in the DTU translates the virtual address to a physical address. In type-C PEs, the
MMU in the CU performs the translation and the DTU uses a small, software-managed
translation lookaside buffer (TLB) to cache recent translations. Incoming requests from
the NoC provide the DTU with the offset from the NoC address. In PE-type A, the offset
is a physical address, which can be passed directly to the SPM. In type B and C PEs, the
offset is a virtual address, which needs to be translated first. In general, NoC addresses
are used for outgoing requests such as RDMA and last-level cache misses. Hence, the
DTU converts physical addresses to NoC addresses upon last-level cache misses.

This addressing scheme allows to map all physical memory, possibly residing in
different elements and using different technologies such as SPM, DRAM, and NVM,
into virtual memory. Furthermore, the scheme provides the same semantics for all
RDMA requests, independent of the destination element, because all RDMA requests
refer to the element’s address space: the physical memory in memory elements or the
virtual/physical address space of the running VPE in processing elements. Hence, a
memory endpoint (enabling RDMA requests) simply holds a NoC address and a size to
refer to a piece of memory. In other words, these concepts abstract the differences of
the PE types and allow us to (mostly) ignore these differences in the following chapters,
because all PEs interact with the DTU in the same way and all PEs can interact with
each other in the same way.

5.7 Data Transfers

Before we can understand how address translation works, we first need to take a closer
look at how the DTU performs data transfers. These data transfers take place between
two DTUs in the system: the sending DTU loads the data from its internal memory and
sends it via the NoC to the receiving DTU, which will store the data into its internal
memory. Due to this symmetry, I will concentrate on one DTU, that is, the transfers
between internal memory and NoC.

XferUnit

The component in the DTU that is responsible for the data transfers between the internal
memory and the NoC is called XferUnit. As explained in Section 5.5, the DTU accesses
the internal memory in the same way in all PE types (arrow 2 in Figure 5.2). The
XferUnit is used in two different situations:

Commands Executing a command for the CU often involves data transfers. For exam-
ple, sending a message requires loading the message from memory and sending it
via the NoC to the recipient. Similarly, reading from external memory requires to
transfer the data into the internal memory.

NoC Requests If 𝑃𝐸𝐴 has a communication channel to 𝑃𝐸𝐵, 𝑃𝐸𝐵 might receive requests
from the NoC. For example, if 𝑃𝐸𝐴 has a send endpoint referring to a receive
endpoint at 𝑃𝐸𝐵, 𝑃𝐸𝐵 needs to store incoming messages into its memory.

71

Chapter 5 – Virtual Memory

Cache
/

SPM

MMU/TLB

Command

addr
size
flags

XferUnit

buffer

Slot

Figure 5.3: The XferUnit

As depicted in Figure 5.3, the XferUnit sup-
ports multiple transfers at the same time by pro-
viding multiple transfer slots. Each transfer slot
maintains the information about the transfer
and contains a buffer, which is used as interme-
diate storage when transferring data between
internal memory and NoC packages. In memory
elements and type-A PEs, the addr field holds a
physical address referring to the internal mem-
ory. That is, no address translation is performed.
In type B and type-C PEs, the addr field holds
a virtual address, which refers to the virtual
address space of the running VPE. Thus, the
XferUnit uses the DTU’s MMU/TLB to perform
the address translation, whose details will be
explained in the next section. Note that support-
ing multiple simultaneous transfers also leads to potentially multiple simultaneous
address translations.

Another responsibility of the XferUnit is to respect cache line boundaries in case
the internal memory is a cache. For that reason, accesses are performed in cache-line
granularity and the XferUnit takes care of alignment. Supporting arbitrary alignments
and sizes in the DTU relieves the CU of aligning data structures accordingly, which
simplifies the usage of DTU commands significantly. However, aligning data structures
is beneficial for performance.

Page Faults

As explained in more detail in the following sections, transfers in type B and C PEs can
cause page faults. Resolving these page faults can lead to new transfers if, for example,
page table entries are manipulated (see Section 5.9.3). Without further measures, a
deadlock is caused in case all transfer slots are already in use and a new transfer slot
is required to free a used transfer slot. To solve this problem, I decided to dedicate the
first transfer slot to transfers that cannot page fault. In other words, if a page fault is
caused by a transfer in the first slot, the transfer is aborted with an error. The dedicated
slot is sufficient, because transfers can only generate new transfers on page faults and
resolving page faults cannot cause new page faults. Thus, all transfers that are performed
to resolve a page fault specify the “no page fault” flag to indicate that the first transfer
slot should be used. The dedicated slot also implies that each DTU needs at least two
transfer slots.

5.8 Address Translation

The translation of virtual addresses to physical addresses is handled differently in PE-
type B and C. In PE-type B, the DTU is performing the translation autonomously, that
is, without involving the CU. In PE-type C, the translation is performed by the MMU of
the CU and the DTU contains a software-managed TLB to cache recent translations in
the DTU. Thus, this section explains their address translations separately. The virtual-
memory management is the same for both PE types, apart from minor details, and will
be explained in the following section.

72

Section 5.8 – Address Translation

ROOT_PTPF_EP

L1 Cache

TLB

PT Walker

TLB miss

rd PTEPFPF Unit

readread

virtual address

PF

physical address

Figure 5.4: The internals of the MMU in the DTU of PE-type B

5.8.1 PE-Type B

As mentioned earlier, for PE-type B, the DTU is extended by address translation func-
tionality, inspired by IOMMUs. IOMMUs are similar in that they are used by devices,
but managed remotely by the CPU. The DTU in PE-type B is also used by the CU in this
PE, but managed by other PEs. Thus, a key point for both is to not require support by
the CU/device. To this end, the DTU performs the address translation with an internal
MMU (see Figure 5.2) transparently to the CU. An address translation is performed
during transfers with the XferUnit, as explained in the previous section. Additionally, in
PE-type B, all memory accesses by the CU (e.g., via load/store instructions) are routed
through the DTU to the cache and require an address translation. This section zooms
into the MMU and explains its internals.

Overview

I starts with a high-level perspective on the translation of a virtual address. Figure 5.4
provides an overview of the DTU’s MMU. It consists of:

1. the ROOT_PT register, holding the physical address of the root page table,

2. the PF_EP register, holding the endpoint number for page fault messages,

3. the translation lookaside buffer (TLB) to cache recent translations,

4. the page table walker to resolve TLB misses, and

5. the page fault unit to send page fault messages.

Whenever the DTU receives a virtual address, the MMU is used to translate it to
a physical address. To do so, the MMU first consults the TLB in case it translated this
page before and still hold the result (TLB hit). If not (TLB miss), the TLB asks the page
table walker to translate the address. The page table walker loads the corresponding
page table entries (PTEs) from the cache and inserts the resulting entry into the TLB, if
all PTEs exist and the access is allowed. Afterwards, the resulting physical address is
returned to the DTU. In case a PTE is missing or has insufficient permissions, the page
fault unit sends a page fault as a message over the NoC via the send endpoint defined
by PF_EP to resolve the page fault. The following explains this process in more detail.

73

Chapter 5 – Virtual Memory

Page Table Walker

To perform the page table walk, the DTU needs to define the paging-related data
structures. Note however, that many of the decisions are purely implementation choices
and not inherent to the system architecture. Like other paging mechanisms, I decided
to use 4 KiB pages, because this size offers a good trade-off between performance and
memory usage. Since NoC addresses are 64 bits, I decided to use 64-bit wide physical
addresses as well, which results in 64-bit (8 B) wide PTEs and 512 PTEs (4096/8 = 512)
in each page table. Thus, virtual addresses have a 12 bit offset (212 = 4096) and 9 bit per
page table index (29 = 512). I decided to use four levels of page tables, leading to 48-bit
virtual addresses:

63
PTI3

47
PTI2

38
PTI1

29
PTI0

20
offset

11 0

PTEs contain the frame number (physical address divided by the page size), which is
either the next page table or the frame the page is mapped to. Some of the bits in the
offset are used to store the permissions:

frame number undef ixwr
63 11 3 0

The last three bits (xwr) grant execute, write, and read permission, respectively. If any of
the bits is set, the PTE is considered valid. If bit 3 (i) is set, the memory can be accessed
internally, that is, by the CU. Otherwise, only RDMA request are allowed to access the
memory. This is comparable with x86’s user/supervisor bit and is primarily intended
to let the kernel map PTEs into virtual memory, as will be explained in Section 5.9.3,
but hide them from the CU. The bits 4 to 11 are not defined by the DTU and thus freely
usable by software.

The page table walker starts the translation with the root page table from the
ROOT_PT register and loads the PTE at index PTI3 from the cache (caches are indexed
and tagged with physical addresses). If the permissions are sufficient, the page table
walker continues with the page table at the physical address set in the just loaded PTE
and so on until the last level is reached. If the translation was successful, the page
number and the PTE of the last level are inserted into the TLB.

Page Fault Unit

As mentioned, if a PTE has insufficient permissions, the page table walker turns to the
page fault unit to resolve the page fault. Since I strive to keep the address translation
transparent to the CU, the page fault has to be resolved without involving the CU. For
that reason, the page fault unit sends page faults as messages to a predefined pager
that resolves the fault. The pager will be described in more detail in Section 5.9.4.
The message contains the virtual address and the required permissions and is sent
via the endpoint given by the register PF_EP. If the fault has been resolved (e.g., by
creating PTEs), the pager sends a reply, on which behalf the page table walker retries
the translation. Note that the pager knows the VPE for which the page fault should be
resolved from the label of the message (see Section 3.4.2), which has been defined by
the pager at the VPE’s creation.

74

Section 5.8 – Address Translation

Application

VMA

CU TLB

DTU

PFIRQ

TLB miss
MMU

PF

XFER_REQ

XFER_RESP

EXT_REQ

Figure 5.5: Address translation in PE-type C

Translation Lookaside Buffer

The translation lookaside buffer (TLB) is responsible for caching translation results,
which is essential for performance since every instruction requires at least one memory
access (to load the instruction itself). The current implementation consists of a config-
urable number of entries, whereas each entry stores the page number, frame number,
and permission bits. Additionally, it stores the LRU sequence number as the TLB uses
the least-recently-used (LRU) replacement strategy. To keep the cached translations in
sync with the page tables, the DTU offers external commands to flush the TLB entry for
a specific page number and to flush the complete TLB (to load a new VPE).

5.8.2 PE-Type C

In contrast to type-B PEs, the CU in type-C PEs is expected to have a MMU to translate
virtual addresses to physical addresses. The goal is to use such a CU without any
modification and let the DTU access the virtual address space defined by the MMU. As
illustrated in Figure 5.5, the basic idea to achieve this goal is to integrate a small TLB into
the DTU, which is managed by a software running on the CU, called virtual-memory
assistant (VMA), via a register interface provided by the DTU (blue in the figure).

Physical vs. NoC Addresses

If an existing core is used without modification, its MMU will translate virtual address
to physical addresses. However, as outlined in Section 5.6, the physical address needs
to be converted to a NoC address on last-level cache misses. For example, current
x86-64 cores use 48-bit physical addresses. To use such a core without modification,
the 48-bit physical addresses are converted to NoC addresses by the DTU. Currently, a
simple translation scheme is used, which dedicates 8-bit of the physical address to the
element ID and 40-bit to the offset and widens the offset to 56-bit when translating a
physical address to a NoC address. As a consequence, such a core can only map the
first 1 TiB (240) of memory in each memory element into virtual memory. To access the
memory beyond 1 TiB, the core can use the DTU’s RDMA feature, though.

Virtual-Memory Access

To serve an incoming RDMA request to the virtual memory of the running VPE, the DTU
uses the XferUnit, as outlined in Section 5.7. Since the RDMA request refers to a virtual

75

Chapter 5 – Virtual Memory

address, the XferUnit needs to translate this address to a physical address before being
able to send a request to the DTUCache. The XferUnit first consults the TLB in case the
translation for this page has been done before. On a TLB hit, the translation is finished
and the DTUCache access can be performed. In contrast to PE-type B, TLB misses
are handled in software by the VMA. On a TLB miss, the XferUnit writes the virtual
address, the requested permissions, and the transfer slot id to the XFER_REQ register and
injects an interrupt request (IRQ) into the CU. After the VMA has performed the address
translation, the VMA needs to write the physical address, permissions, and transfer
slot id to the XFER_RESP register. Upon this register write, the XferUnit will insert a
corresponding entry into its TLB and continue with the transfer.

Since the XferUnit has multiple transfer slots, multiple transfers can request an
address translation simultaneously. Thus, on a second translation, the XferUnit has to
wait until the VMA has read the XFER_REQ register for the first translation. For that
reason, the VMA is expected to write zero to the register as soon as it has read its content,
which notifies the XferUnit to request the second translation. If the address translation
fails, the VMA is expected to write the transfer slot id without any permissions to
XFER_RESP. In this case, the XferUnit will abort the transfer.

Virtual-Memory Assistant

CU-specific helper

RCTMux VMA

Figure 5.6: Modules of the CU-
specific helper

As described in Section 3.5.3, the kernel loads a CU-
specific helper onto the target PE at the start of each
VPE. The CU-specific helper is responsible of the ini-
tialization of the CU and contains two modules, as
depicted in Figure 5.6. One of these modules is the
virtual-memory assistant (VMA). To protect page table
entries from applications, the CU-specific helper is run-
ning in the privileged CPU mode on type-C PEs. The
VMA module is responsible for the CU-specific part of virtual-memory management.
The current prototype contains an implementation for x86-64.

The DTU reports TLB misses to the VMA via an interrupt vector dedicated to the
DTU. The VMA first reads the XFER_REQ register. If it is non-zero, the VMA sets it to
zero and translates the virtual address by performing a page table walk in software.
Afterwards the VMA writes the result to XFER_RESP as described earlier.

Besides handling the TLB misses of the DTU, the VMA is also responsible for
handling page faults caused by the MMU. If the MMU causes a page fault exception, the
VMA sends a corresponding page fault message to the pager, just as the page fault unit
in PE-type B does in hardware. Afterwards, the VMA waits for the reply of the pager,
upon which the execution of the application is resumed. The VMA follows the same
protocol in case the page table walk on behalf of a TLB miss causes a page fault.

As pointed out earlier, the DTU might request another translation once the VMA
has set XFER_REQ to zero. For that reason, the VMA disables interrupts by default to
delay the handling of the next translation until the completion of the current translation.
However, when sending a page fault message and waiting for its reply, interrupts need
to be enabled. The reason is, that the handling of the page fault might again cause
address translation requests. For example, the page fault message itself might cause
a TLB miss if the DTU tries to load it from the VPE’s virtual address space. Thus, the
VMA handles address translations during the page fault handling by enabling interrupts
for this period of time. If more page faults are caused during this time, the VMA queues
them and services them as soon as the current page fault handling is finished.

76

Section 5.9 – Virtual-Memory Management

App

VMA

CU (PE-type C)

CU (PE-type B)

App

CU CU

Pager Kernel
PF

PF create_map

kernel requests

update PTEs

IRQ

DTU

DTU

DTU DTU

Figure 5.7: Overview of the virtual-memory management, with type B and C PEs sharing
the pager and kernel

Another problem the VMA has to solve is that page fault messages are sent via a
DTU command (with the send endpoint given by the PF_EP register), but commands
can cause page faults. First, this implies that the page fault message and its reply cannot
cause another page fault, requiring to store them in pinned memory. Second, for example
a READ command of the application might page fault if the DTU tries to store the read
data at the specified virtual address. Since the DTU supports only one command at
the time, the VMA cannot send the page fault message to the pager, because the READ
command is still in progress. To solve that, the VMA soft aborts the current command
before sending the page fault message and retries the command afterwards.

5.9 Virtual-Memory Management

The previous section described the ways address translation is performed in PE-type
B and PE-type C: in PE-type B, TLB miss resolution and page fault messaging is done
completely in hardware by the DTU and transparently to the CU. In PE-type C, both is
done in software by the virtual-memory assistant (VMA) and the DTU only contains
a software-managed TLB to cache recent translations. In both cases, page faults are
reported via messages to the pager, which is responsible for resolving the faults. This
section describes how the pager manages the virtual memory of applications.

5.9.1 Overview

As illustrated in Figure 5.7, page faults are resolved by two components: the pager
and the M𝟑 kernel. The kernel is responsible for the security-critical operations such
as page table manipulation, because it would allow applications to access arbitrary
physical memory. The potentially complex part of virtual-memory management is done
by the pager in userland. In other words, the kernel offers a mechanism for page table
manipulation and the userland implements policies based on it, as in L4 [83, 137].

Every VPE has its own address space. VPEs on type-A PEs have a physical address
space (the SPM in the PE), whereas VPEs on type B and C PEs have a virtual address
space. In case of the latter, the VPE optionally has a pager. The pager allows the VPE to
map anonymous memory or files and benefit from virtual-memory techniques such as

77

Chapter 5 – Virtual Memory

demand loading and copy on write. Page faults are sent to the pager, which will typically
allocate new physical memory and instruct the kernel to create page table entries with
the create_mapping system call (see Section 5.9.2 for details). Afterwards, the pager
sends a reply, which finishes the page fault handling and resumes the execution of the
VPE. If the VPE runs on a type-C PE, the kernel sends kernel requests to the VMA for
operations that cannot be handled remotely (e.g., flush TLB entries).

Note that VPEs can also benefit from virtual memory without using a pager by
allocating physical memory and mapping it into their virtual address space via the
create_mapping system call. However, the system call maps the physical memory
eagerly and does not support page faults to implement virtual-memory techniques such
as copy on write, demand loading, swapping, and so on. For example, the pager itself
can use virtual memory without a pager.

5.9.2 Mapping Capabilities

Memory gates were introduced in Section 3.5.4 as kernel objects to access PE-external
memory via the DTU in an RDMA-like fashion. A memory gate capability or memory
capability for short is a capability that references a memory gate. A memory gate is
byte granular and can either refer to physical memory or the virtual memory of a VPE.
For that reason, the memory gate stores the NoC address, the VPE id, the number of
bytes, and the access permissions. To support virtual memory, I introduced another type
of capability called mapping capability. A mapping capability references a kernel object
called mapping, consisting of the NoC address, the number of pages and the access
permissions. Note that mapping capabilities and memory capabilities seem similar,
because they share some of their fields, but are fundamentally different: mapping
capabilities represent page table entries (see below) and the memory is accessed via
load and store instructions. In contrast, memory capabilities do not represent page table
entries and can only be used via the DTU and thus require to configure a DTU endpoint
before the memory can be accessed.

Mapping capabilities are created via the create_mapping system call, which receives
a VPE capability (destination address space), a virtual address, a memory capability, the
offset and size of the region in the memory capability to use and the permissions. That
is, a mapping capability is always based on a memory capability. To prevent mapping
loops (e.g., virtual memory referring to itself), the memory capability has to refer to
physical memory. The creation of a mapping capability creates the corresponding PTEs
for the destination VPE. Consequently, revoking a mapping capability invalidates these
PTEs again. Furthermore, revoking a memory capability does also revoke all mapping
capabilities that are based on it. However, revoking mapping capabilities does not revoke
memory capabilities that refer to this part of the virtual address space. In other words,
if VPE1 creates a memory capability 𝑀 for a part of its own virtual address space and
passes 𝑀 to VPE2, VPE1 should revoke 𝑀 if the part of the virtual address space is
no longer available. Without the revoke, VPE2 can still try to access 𝑀 via its DTU,
which will either fail if the virtual addresses have not been reused yet or access the new
memory.

Note that mapping capabilities cannot be exchanged between VPEs, because all
mapping capabilities are based on memory capabilities and only memory capabilities
are supported on all PE types. In contrast, mapping capabilities are only supported
on PE-type B and C. Hence, it is more attractive to exchange the underlying memory
capability to, for example, establish shared memory. If only a subset of the memory
capability should be shared, the derive_mem system call can be used to create a memory

78

Section 5.9 – Virtual-Memory Management

capability for a subset of the memory and a subset of the access permissions. Using
memory capabilities also allows to establish shared memory in a smaller granularity
than pages, because memory capabilities are byte granular.

5.9.3 Page Table Entries

As mentioned in the overview, the kernel is responsible for the manipulation of page
table entries (PTEs). Since the PEs are potentially heterogeneous, the kernel needs to
support multiple page table formats. In the current implementation, the kernel supports
the DTU’s page table format (PE-type B) and x86-64’s format (PE-type C). Alternatively,
the kernel can delegate the task of page table manipulation to the VMA (to only support
the DTU’s format), but for simplicity and because I expect the number of different page
table formats in one system to be small, I decided against this approach.

At the creation of mapping capabilities, the kernel creates the corresponding PTEs
to establish the mapping. In traditional OSes, PTEs are created by accessing the page
table via load and store instructions. However, as described in Section 5.8, both the page
table walker of the DTU and the MMU load PTEs from physical memory via the cache.
Since the M𝟑 kernel is running on a different PE, it has a different cache (if at all; maybe
it runs on a type-A PE) and I do not postulate cache coherency. The M𝟑 kernel could
write the PTEs to physical memory and invalidate the corresponding cache lines in
the user PE to force a reload from physical memory. However, there is a more efficient
way to remotely manipulate PTEs: use the RDMA feature of the DTU to directly push
them into the cache of the user PE. Unfortunately, page tables are stored in physical
memory and RDMA requests refer to the virtual address space on PE-type B and C.
Therefore, the kernel makes all page tables accessible via virtual memory. For PE-type
B, the kernel clears the internal bit (see Section 5.8.1) in the PTEs to make the page
tables only accessible via RDMA. For PE-type C, the kernel uses the user/supervisor bit
to make the page tables only accessible for the VMA. In summary, the kernel writes a
PTE by calculating the PTE’s virtual address and sending an RDMA write request to the
user PE that writes to this virtual address.

Manipulating PTEs also requires to set the root page table and to flush TLB entries
in case permissions are downgraded. On PE-type B, the kernel performs an RDMA
write request to the ROOT_PT register of the DTU to set the root page table and uses an
external command to invalidate TLB entries. On PE-type C, the kernel uses the external
command as well to invalidate the TLB entries in the DTU. However, the TLB entries in
the MMU of the CU also need to be invalidated, which cannot be done remotely (for
x86-64). Similarly, the root page table (CR3) cannot be set remotely. For that reason, the
kernel instructs the VMA to perform these operations via the already mentioned kernel
requests. In the current implementation, kernel requests are done by injecting an IRQ
in the user PE and polling until the VMA acknowledges the completion of the request.
Since all kernel requests are completed in a few hundred cycles, I consider the solution
acceptable.

5.9.4 Pager

The pager is an M𝟑 service, which manages the virtual address space of its clients (VPEs).
On VPE creation, the creator decides whether a pager is used and if yes, which one. If a
pager is used, a session is created at the pager and the pager obtains the VPE capability
and the memory capability of the virtual address space to manage. The pager offers
an RPC interface to create and remove mappings. The general design of the pager is

79

Chapter 5 – Virtual Memory

Address Space 1

Address Space 2

Figure 5.8: The data structures of the pager: each address space consists of dataspaces
(grey), which in turn consist of areas (green) pointing to physical memory (red).

similar as on L4 [83, 137], with the difference that M𝟑’s current pager implementation
does not support multiple pagers per address space. This is supported on L4 via the
region manager indirection, which can be added to M𝟑 in the future.

Figure 5.8 illustrates the data structures that are used to manage the virtual memory
of the pager’s clients. Each address space contains a list of so-called dataspaces. A
dataspace is an abstraction for anything that contains data (anonymous memory, files,
I/O memory, . . .). For example, the typical M𝟑 application has one dataspace for its code,
one for static data, one for the heap, and one for the stack. The dataspaces for code
and static data are file dataspaces, whereas the other two are anonymous dataspaces.
The pager manages each dataspace with so-called areas to allocate and copy physical
memory in smaller granularity than the dataspace size, but in larger granularity than
pages. Areas have a variable size and point to a physical memory object, which may be
shared by multiple areas.

Application Loading

Section 3.5.3 described how applications are loaded on type-A PEs: code and data is
eagerly loaded from the executable and copied into the SPM before the application is
started. Application loading is done by libm3, which offers the method VPE::exec to
execute a given executable in a VPE. Since type B and C PEs support virtual memory,
demand loading is used to reduce the loading times of applications. In other words,
VPE::exec uses the pager’s RPC interface to create the dataspaces for code, data, and
so on, and starts the VPE. Creating a dataspace only creates the data structure, which
stores the virtual address, the size, and the access permissions. As soon as the VPE is
started, it will trigger a page fault. If the page fault occurred in an anonymous dataspace,
the pager allocates physical memory. If it occurred in a file dataspace, the pager obtains
memory capabilities from M𝟑FS for the corresponding part of the file. In both cases, the
pager creates a new area in the dataspace and uses the create_mapping system call to
create PTEs for the physical memory. To improve the performance, the pager tries to
map multiple pages at once.

80

Section 5.10 – Interplay

Application Cloning

The other operation supported by libm3 to load applications is VPE::run, which copies
the current state of the application and executes a given function in a child VPE. Anal-
ogously to application loading, if the child VPE runs on a type-A PE, libm3 eagerly
copies the entire state into the SPM of that PE. If the child VPE runs on a type B or C
PE, the state is copied on demand. Since I do not postulate coherent caches, I decided to
implement copy-on-access instead of copy-on-write. The reason is that providing the
child read access to a page is already similarly expensive as copying the page, because
the corresponding cache lines need to be flushed first. Otherwise, the child gets access
to stale data if the parent has dirty cache lines. For that reason, the pager copies the
data on the first read or write access instead of the first write access. However, without
coherent caches the pager cannot simply copy the memory via memcpy. Instead, the
physical memory object stores which VPE has a writable copy of that memory. If there
is such a VPE, the pager copies the memory via RDMA from the VPE’s virtual address
space and therefore, from the PE’s caches. Otherwise, the pager copies the memory via
RDMA from the physical memory in the memory element.

5.9.5 Message Passing

If a message is sent between DTUs, the receiving DTU stores the message into the
receive buffer that is associated with the message’s destination receive endpoint. As
mentioned in Chapter 3, receive buffers are allocated by the kernel to ensure that they
reside in pinned memory. Consider the following example to understand the reasoning
behind the decision. Let us assume that an application sends a system call message to
the kernel and instructs the DTU to use a receive endpoint, whose receive buffer is not
mapped, to receive the kernel’s reply. Consequently, trying to store the kernel’s reply
into the receive buffer at application side causes a page fault, leading to a message to
the pager to resolve the page fault. As explained in the previous sections, the pager
might need the kernel to create page table entries. However, the kernel is still busy
with the reply to the application, because the DTU’s SEND and REPLY commands are
synchronous, leading to a deadlock. To prevent such deadlocks, I decided to forbid page
faults in receive buffers. Note that this model is similar to L4’s model [83, 137], which
pins message buffers to prevent “nested messages”: a page fault during message passing
would cause another message to the pager to resolve the page fault.

5.10 Interplay

After the description of data transfers, address translation, and virtual-memory manage-
ment, this section explains their interplay. Let us consider a DTU READ command as an
example: VPE1 performs a READ command with a memory endpoint that refers to the
virtual address space of VPE2. The existence of such a memory endpoint means that
VPE2 has delegated a corresponding memory capability to VPE1. Let us assume that
VPE2 runs on a type-C PE and uses a pager. Figure 5.9 illustrates a possible sequence
of events for the DTU READ command. To focus on the relevant components for this
example, the figure shows only the DTUs of the participating VPEs (DTU1 and DTU2),
the virtual-memory assistant (VMA) of VPE2, the pager, and the kernel.

The sequence starts at DTU1, which sends the read request (1) to DTU2. The activity
of DTU1 ends at this point, because the DTU handles these operations asynchronously.
DTU2 accepts the read request, allocates a transfer slot in the XferUnit and starts the

81

Chapter 5 – Virtual Memory

DTU1 DTU2 VMA Pager Kernel

read (1)

TLB miss (2)

PT walk (3)

pagefault (4)

alloc mem (5)

map (6)

create PTE (7)

TLB miss (8)

PT walk (9)

resume (10)

PT walk (11)

load (12)

store (13)

Figure 5.9: The sequence of events for a RDMA read from virtual memory. The numbers
in parentheses are used to refer to the individual steps in the text.

82

Section 5.11 – Revisiting the TCB

transfer. In this example, the targeted region in virtual memory has not been touched yet.
Hence, the translation causes a TLB miss in DTU2 and activates the VMA by injecting
a TLB-miss IRQ (2). The VMA notices the invalid page table entry (PTE) during the
page table walk (3) and sends a page fault message (4) to the pager. To resolve the page
fault, the pager first allocates new physical memory (5) from the kernel (we assume here
that the DTU read refers to an anonymous dataspace) and uses the create_mapping
system call (6) afterwards to create the PTE. The kernel creates the PTE via an RDMA
write request (7) to the corresponding virtual address in VPE2’s address space (see
Section 5.9.3). This requires a new transfer slot in DTU2, besides the already occupied
slot for the read request. Since the kernel knows that this transfer will not and cannot
page fault, it specifies the “no page fault” flag for this DTU write request, instructing
DTU2 to use the first transfer slot (see Section 5.7).

In this example, the DTU transfer that creates the PTE also leads to a TLB miss in
DTU2. Thus, another TLB-miss IRQ (8) is injected, causing a nested interrupt in the
VMA. In this case, the page table walk (9) raises no page fault (if so, the VMA does not
send a page fault message, but reports an error because the first transfer slot may not
cause page faults), so that the VMA reports the resulting physical address to the DTU,
which resumes the transfer (10). After the PTE has been written, the kernel replies to
the pager, which in turn replies to the VMA. The VMA repeats the page table walk (11)
and reports the resulting physical address to the DTU. Afterwards, the DTU resumes
the transfer, which now loads the requested data (12) from the cache using the received
physical address and sends the response to DTU1. Finally, DTU1 stores the loaded data
(13) at the desired place in VPE1’s address space.

5.11 Revisiting the TCB

As this chapter has increased the complexity of the system significantly, this section
revisits the discussion of the trusted computing base (TCB).

In Section 3.3.5, I argued that the CUs including their memories are not part of the
system’s TCB. Instead, only the DTUs, the NoC, and the kernel’s CU are part of the
system’s TCB. For PE-type B (and A) this still holds, because the address translation is
performed by the DTU without involving the CU. However, PE-type C uses the VMA to
perform page table walks and handle page faults for the DTU. Without further measures,
the VMA (and the CU) is as powerful as the M𝟑 kernel, because the VMA can set the root
page table and has write access to all page tables3. This allows the VMA to access all
physical memory in the system. However, the DTU handles all last-level cache misses
and already converts physical addresses to NoC addresses. This can be extended to
restrict the physical memory access of the CU. For example, the DTU can use a dedicated
endpoint to define the range of accessible physical memory for the CU and deny accesses
outside this range. This limits the flexibility regarding the sharing of physical memory,
but reduces the power of the VMA and the CU to the level of all other CUs and user-level
components. Alternatively and similarly to Border Control [109], the DTU can use a
protection table to validate the physical memory access on a per-frame basis without
performing another translation.

Revisiting the interplay example of Section 5.10 does also show that the kernel
requires assistance from the VMA to create page table entries: the VMA may need to
handle TLB misses for the DTU. A malicious VMA could refuse to handle the TLB misses,

3Current general-purpose cores do not allow to prevent privileged software from accessing parts of the
memory such as page table entries.

83

Chapter 5 – Virtual Memory

preventing a completion of the DTU WRITE command issued by the kernel. Thus, the
kernel must be prepared to abort these commands after a timeout. Fortunately, a short
timeout can be used, because these commands take only a couple of hundred cycles.

As in L4-based systems, an application that uses virtual memory needs to trust the
components that are responsible for its management. Let us call them virtual-memory
management components (VMMCs) for a moment. Specifically on M𝟑, the VMMCs are
the kernel, the pager, and the VMA (on type C PEs). All VMMCs control the virtual
memory of the VPEs they are responsible for and possess therefore complete power
over these VPEs. If memory mapped files are used for critical parts of the application
(e.g., code or data), M𝟑FS is part of the VMMCs as well.

In contrast to L4, M𝟑 also supports the access to the virtual memory of other VPEs
via the DTU’s RDMA feature. Accessing other virtual address spaces requires to also
trust their VMMCs to some degree. For example, consider the interplay example of
Section 5.10 again: in contrast to VPE1’s VMMCs (if it has a virtual address space), the
VMMCs of VPE2 cannot access or manipulate VPE1’s address space. However, using a
malicious pager for VPE2 that never replies to page fault messages, prevents a successful
completion of VPE1’s DTU READ command. If VPE1 does not trust VPE2 (or its VMMCs),
VPE1 can abort the DTU READ command at any time.

5.12 Discussion

As in the previous chapters, this section discusses possible alternatives and extensions
to the presented design.

5.12.1 The VMA in Existing OSes

In Section 5.8.2, I presented the VMA as a small piece of software running in the
privileged CPU mode as the virtual-memory assistant for the VPE on this PE. It is also
possible to integrate the VMA into an existing OS such as Linux or L4. For example, a
type-C PE can run a full-fledged L4-based system, represented as a single VPE in M𝟑 and
extended by the VMA to handle TLB misses of the DTU. In this case, the VMA would
not send page faults as messages to the M𝟑 pager, but use L4’s memory management to
resolve them. This allows L4 applications to use the DTU to communicate with other
PEs. To share the DTU among multiple L4 applications, the L4 kernel can mediate the
access to the DTU via system calls.

5.12.2 Caches in Type B PEs

In Section 5.5, type-B PEs were introduced with the DTU placed between CU and caches,
translating virtual addresses to physical addresses on the way. This section shortly
discusses other possible configurations as shown in Figure 5.10. The arrows show where
virtual addresses (red) and physical addresses (blue) are used. To keep it simple, only
two levels of caches are considered. The leftmost configuration places the DTU between
CU and caches, leading to physically tagged caches. The downside of this configuration
is that the DTU is placed at a performance-critical position. Without further measures
such as a virtually indexed and physically tagged cache, the L1 hit latency increases due
to the address translation in the DTU. This problem can be mitigated by increasing the
distance of the DTU to the CU as in the two configurations on the right in Figure 5.10.
However, an address translation after the first-level cache makes some of the caches
virtual. In consequence, maintaining cache coherence requires a reverse translation

84

Section 5.12 – Discussion

from physical addresses to virtual addresses. Furthermore, it leads to aliasing problems,
because the same physical address might be mapped at two different virtual addresses.
To avoid these problems, I am using the leftmost configuration in the evaluation.

5.12.3 Page Faults in Type B PEs

CU

L1$

L2$

DTU

CU

L1$

L2$

CU

L1$

L2$DTU

DTU

Figure 5.10: Different PE-
type B configurations

If a system designer wants to integrate a specific CU into
a system as considered in this work, it needs to pick the PE
type that fits best for the CU. If the CU is a general-purpose
core that has an MMU, PE-type C is typically preferable. In
contrast, type-B PEs are primarily intended for CUs that do
not have an MMU. However, it is also possible to integrate
an x86-64 core into PE-type B, which is for example done
in the evaluation in the following section to make the PE
types comparable. Doing so leads to interesting effects
and problems regarding page faults, that I want to explain
shortly in this section.

As already described in the previous section, the DTU in type-B PEs is placed
between the CU and the first level cache and performs an address translation on the
way. The address translation can lead to a page fault, which the pager will try to resolve,
transparently to the CU. The transparent page-fault resolution raises the question what
should happen if the page fault cannot be resolved. Currently, the pager terminates the
VPE, but it is also imaginable to allow the VPE to handle unresolved page faults, similarly
to the SIGSEGV signal on UNIX-like OSes. However, existing general-purpose cores
typically only support to raise interrupts externally, but not exceptions. Unfortunately,
interrupts are not guaranteed to be issued immediately, which is required if the handler
of unresolved page faults should be able to continue the execution at the failed load/store
instruction. Thus, to support such a handler, the CU could raise an exception upon
failed cache accesses.

The opportunity to raise such an exception would also improve the situation for
CUs that perform speculative execution. Speculative execution generates loads and
stores to more or less arbitrary addresses, which can lead to page faults. In traditional
architectures, speculative execution is performed by the same entity as the address
translation (and protection check): the core. Thus, if the protection check fails for the
speculatively executed instruction, the core will flag the instruction correspondingly. If
it turns out that the instruction should indeed be executed, the core raises an exception.
Otherwise, the instruction is discarded. If the protection check is moved into the DTU,
as is done when integrating a corresponding CU into a type-B PE, the only way to
flag the instruction correspondingly is to let the DTU pass this information to the CU.
Hence, the DTU should be able to report page faults upon cache accesses to the CU.
However, existing general-purpose cores do not necessarily support such an interface.
For example, the x86 family supports a machine-check exception, which is intended
for errors such as system bus errors, ECC errors, and cache errors. But as the machine-
check exception is an abort-class exception, it does not allow to resume the execution
afterwards [9, p. 3181].

Without the possibility to inform the CU about page faults, applications on type-B
PEs generate many page faults due to speculative execution, which leads to a perfor-
mance degradation. To reduce the number of page faults, I decided to store non-existing
mappings in the TLB as well. To this end, I extended the DTU to support a special error
code in replies from the pager. If the pager sends this error code as the page fault reply

85

Chapter 5 – Virtual Memory

to the DTU, the DTU inserts an entry into the TLB with a special flag set. If an address
causes a TLB hit with the flag set, the DTU will not send a page fault message to the
pager, but only pretend the memory access: stores are not performed and loads load
zeros. In the current implementation, the pager uses this error code only for accesses
to the first page, because it turned out that many misspeculations access the first page
and the first page is never mapped. If necessary, this scheme can be extended to all
unmapped parts of the address space.

5.12.4 Cache Coherency

In this work, I am using non-coherent caches to prepare for future systems that might
not be (globally) cache coherent, as argued in Section 5.2. This section shortly discusses
implications of coherent caches.

Maintaining cache coherency requires that all caches use the same cache coherency
protocol. Assuming that this is the case and that all caches are physical (see Sec-
tion 5.12.2), no changes are necessary. However, it is worthwhile to reconsider DTU-
based access to memories, which are also accessed via caches (e.g., DRAM). Without
cache coherence, DTU-based accesses lead to inconsistencies as well, if one party ac-
cesses the memory via the cache and another party via DTU transfers directly from
the memory. However, this can be considered acceptable, because the system is non-
coherent, requiring manual coordination in any case. If caches are coherent, this
behavior is arguably less desirable. To solve the problem, a cache can be placed in front
of the memory, which participates in the cache coherency protocol, and DTU transfers
can access the memory indirectly through this cache. This solution is transparent to
applications and avoids inconsistencies if both cache-based and DTU-based accesses
are used.

Note also that M𝟑 can take advantage of cache coherency. For example, the pager
can implement copy-on-write instead of copy-on-access and the M𝟑 kernel can update
page table entries with load and store instructions instead of RDMA requests.

5.13 Evaluation

This evaluation analyzes the implications of virtual-memory support and its basic
performance. After describing the measurement setup, I will start by revisiting the
system call, file system, and pipe benchmarks of the previous chapters to show their
behavior on the three different PE types that are now supported. Afterwards, I will
show the performance of page fault handling and application loading in comparison to
Linux.

5.13.1 Measurement Setup

This evaluation will primarily focus on the differences between type A, B, and C PEs. All
PE types use a single out-of-order x86-64 core clocked at 3GHz as the CU. Type-A PEs
contain scratchpad memory as the internal memory without any caches. Both Type-B
and Type-C PEs use 32 KiB L1 instruction cache, 32 KiB L1 data cache, and 256 KiB L2
cache. The same cache configuration is used for Linux. Type-C PEs additionally use
an 8 KiB DTUCache. The DTU’s TLB has 128 entries in type-B PEs and 32 entries in
type-C PEs. The reason is that the DTU in type-B PEs handles all memory accesses of
the CU, leading to many address translations. In type-C PEs, the DTU’s TLB is only
used for DTU transfers. In type-B PEs, the L1 hit latency is 5 cycles instead of 4 cycles

86

Section 5.13 – Evaluation

Duration (Cycles)

0 200 400 600 800 1000

M³−A M³−B M³−C M³−C*

Figure 5.11: System call performance on the different PE types

as in type-C PEs due to the address translation in the DTU. As in the previous chapters,
the DDR3_1600_8x8 model of gem5 is used as the physical memory, clocked at 1GHz.
To ease the interpretation of the results, each system contains only PEs of the same type
(e.g., only type-A PEs).

5.13.2 Revisiting System Calls

To compare the performance of M𝟑 system calls on different PE types, I repeated the
system call benchmark used in Section 3.7.2. Each system call sends a message to the
M𝟑 kernel, which sends a reply back to the application. The benchmark executes 100
no-op system calls with warm caches. Figure 5.11 shows the results obtained with only
type-A PEs (“M𝟑-A”), only type-B PEs (“M𝟑-B”), and only type-C PEs (“M𝟑-C”). The
figure shows that the performance is comparable on type-A PEs and type-B PEs, but
decreases significantly on type-C PEs.

To analyze the cause of the slowdown, I ran the benchmarks on type-C PEs again,
but routed the memory-mapped I/O (MMIO) requests to the DTU’s registers from the
CU directly to the DTU, bypassing the caches (called “M𝟑-C*” in the figure). As can be
seen in Figure 5.11, this leads to roughly the same performance as on the other PE types.
The reason is that in M𝟑-C, accesses to DTU registers have a latency of about 40 cycles
to 50 cycles, because they need to first travel through the caches until they reach the
DTU. Since a system call requires quite a few DTU register accesses to send messages,
fetch messages, and so on, the duration of a system call increases significantly.

5.13.3 Revisiting File Systems and Pipes

After the system calls benchmark, this section revisits the file system and pipe benchmark
of the previous chapter. The file system benchmark reads, writes, and copies a 32MiB
file using a 8 KiB buffer. The pipe benchmark transfers 32MiB of data from the writer to
the reader also using a 8 KiB buffer (at reader and writer) and a 128 KiB shared memory
area in DRAM. Figure 5.12a shows the average times of four runs after one warm-up
run. As can be seen, all file system benchmarks require roughly the same runtime on all
PE types. The reason is that the slower MMIO accesses on PE-type C are less important
for data transfers than for message passing, because data transfers require much less
accesses to DTU registers. In particular, the relative overhead is smaller, because the
data size for data transfers is typically larger than for message transfers, so that DTU
READ and WRITE commands executes longer.

Figure 5.12b shows the average of eight runs of the pipe benchmark. As for the file
system benchmarks, the total runtime is roughly the same on all PE types. However,
interestingly, the performance is slightly worse on type-B PEs, in contrast to the file
system benchmark. The reason is, that the pipe benchmark has two PEs that access

87

Chapter 5 – Virtual Memory

M
³−

A

M
³−

B

M
³−

C

Read

0

3

6

9
T

im
e

 (
m

s)

M
³−

A

M
³−

B

M
³−

C
Write

M
³−

A

M
³−

B

M
³−

C

Copy

OS Xfers

(a) File system performance

M
³−

A

M
³−

B

M
³−

C

Total

0

3

6

9

T
im

e
 (

m
s)

M
³−

A

M
³−

B

M
³−

C

Reader

M
³−

A

M
³−

B

M
³−

C

Writer

Total Idle OS Xfers

(b) Pipe performance

Figure 5.12: File system and pipe performance on different PE types

the DRAM with RDMA requests. Hence, the transfer performance depends on whether
and how these requests overlap. For that reason, small timing differences (for example,
faster MMIO accesses on type B than on type-C PEs) can change the overlap and thus
the transfer performance. In this particular benchmark, the overlap on type-B PEs is
more beneficial for the transfer performance as on type-C PEs. Another effect that can
be seen in Figure 5.12b is that the reader idles more on type-C PEs than on the other
PE types. This stems from the fact that MMIO accesses are slower, which increases the
time for calls to the pipe server, leading to idle times at the client.

5.13.4 TLB Misses and Page Faults

This section evaluates the time to handle TLB misses and resolve page faults. To
measure the time of TLB misses, the benchmark eagerly maps 16 pages of anonymous
memory into its address space and reads 8 byte from every page via the DTU. Since
the memory has not been touched yet, every READ command leads to a TLB miss in
the DTU. Figure 5.13a shows the time per TLB miss for eight runs after one warm-up
run. The figure compares the performance of the different PE types, again including
M𝟑-C*, where DTU register accesses bypass the caches. To understand the differences,
the figure splits the time into multiple parts: VMA denotes time spent in the VMA, IRQ
denotes the time from the interrupt injection until the begin of its handling, and Xfer
denotes the time for the data transfer itself.

On type-B PEs, the DTU performs the page table walk to handle the TLB miss
completely in hardware. For that reason, a TLB miss requires only 63 ns. On type-C PEs,
the DTU injects an IRQ to let the VMA perform the page table walk. The VMA itself
needs about 150 ns, regardless of whether DTU register accesses bypass the caches or
not. Interestingly, PE-type C spends the majority of the time waiting until the x86-64
core starts to handle the injected IRQ. To start handling an IRQ, the core needs to drain
its pipeline first. Since the benchmark executes a loop at this point, which repeatedly
reads a DTU register to wait for the completion of the DTU command, the pipeline
typically already contains many load instructions for the DTU register. Thus, if these
loads need to travel through the caches first, draining the pipeline costs significantly
more time. The pipeline drain is also the main cause for the variation for M𝟑-C.

The next benchmark compares the handling of page faults between Linux and M𝟑

on different PE types. Note that a comparison to L4 is not done, because L4Re [83] does
not run on gem5 and NOVA’s [137] userland NRE is not mature enough. On Linux, the

88

Section 5.13 – Evaluation

M
³−

B

M
³−

C

M
³−

C
*

TLB miss

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
 (

µ
s)

VMA IRQ Xfer

(a) TLB miss handling
L

in
u

x

M
³−

B

M
³−

C

M
³−

C
*

Anon 1P

0

2

4

6

8

10

T
im

e
 (

µ
s)

L
in

u
x

M
³−

B

M
³−

C

M
³−

C
*

File 1P

M
³−

B

M
³−

C

M
³−

C
*

Anon 4P

M
³−

B

M
³−

C

M
³−

C
*

File 4P

Kernel M³FS Pager VMA/DTU

(b) Page fault handling time per page

Figure 5.13: TLB miss and page fault handling performance on different PE types

MMU raises a page fault exception, which is completely handled by the Linux kernel.
On M𝟑, page faults are handled in user space by the pager (involving M𝟑FS for memory
mapped files) and the kernel is only responsible for the manipulation of page table
entries. The page fault message is either sent by the DTU (type-B PEs) or by the VMA
(type-C PEs). Similarly to the TLB-miss benchmark, the page-fault benchmark maps 64
pages into its address space and causes page faults by writing to every page. Figure 5.13b
shows the average time per page, using eight runs with warm caches, and shows the
contribution of the participating components to the time. I measured both the time for
anonymous memory and file-backed memory.

As shown in Figure 5.13b, M𝟑-B and M𝟑-C* achieve similar performance than Linux
for anonymous memory if one page is mapped at once (“Anon 1P”). M𝟑-C is significantly
slower due to the slower DTU register accesses. The majority of the time is spent in
the kernel and the pager. The kernel needs to allocate new physical memory and is
responsible for the page table manipulation. The pager spends most of the time with
overwriting the allocated memory with zeros. Page faults for memory mapped files
are significantly slower on M𝟑 in all configurations. The main reason is that M𝟑 is a
microkernel-based system, requiring some indirections and multiple components to
resolve each page fault. However, in contrast to Linux, page fault handling is based
on memory capabilities (e.g., the pager obtains a memory capability from M𝟑FS). Thus,
mapping larger pieces of memory at once is both natural and more efficient. As shown
in Figure 5.13b, even mapping only four pages at once (“Anon 4P” and “File 4P”), leads to
comparable or better performance than on Linux. Comparing the runtime distribution
of a single page with multiple pages also shows that the pager needs roughly the same
time per page, whereas the kernel needs significantly less time when mapping multiple
pages at once. The reason is that the pager needs to copy the memory from the file to
anonymous memory first (as it is mapped with write permissions), which scales linearly
with the number of pages. The time for page table manipulation or physical memory
allocation depends much less on the number of pages.

89

Chapter 5 – Virtual Memory

1
 B

2
 M

iB

4
 M

iB

8
 M

iB

Linux

0.0

0.1

0.2
T

im
e

 (
m

s)

1
 B

2
 M

iB

4
 M

iB

8
 M

iB

M³−A

0.3 0.6

1
 B

2
 M

iB

4
 M

iB

8
 M

iB

M³−B

1
 B

2
 M

iB

4
 M

iB

8
 M

iB

M³−C

1
 B

2
 M

iB

4
 M

iB

8
 M

iB

M³−C*

Figure 5.14: Performance comparison of fork and VPE::run on different PE types and
with varying application sizes.

5.13.5 VPE::run and VPE::exec

M𝟑 supports VPE::run and VPE::exec to clone and load applications. Due to the
similarities to fork and exec on Linux, this section compares their performance. As
described in Section 5.9.4, VPE::run clones the current state of the application and
executes a given function in another VPE. If virtual memory is supported, copy-on-
access is used to clone the state, similar to copy-on-write for fork on Linux. VPE::exec
loads a new application from the file system into another VPE. If virtual memory is
supported, demand loading is used on M𝟑, as for exec on Linux. In contrast to exec
on Linux, VPE::exec can currently only be used on other VPEs, not on the own VPE.
It should also be mentioned, that fork and exec on Linux offer more features than
their equivalent on M𝟑. For these reasons, the results of the comparison should be
interpreted with a grain of salt. Nevertheless, comparing them puts the performance of
M𝟑’s operations into perspective.

First, I compare the performance of VPE::run and fork. On M𝟑, the benchmark
creates a new VPE and calls VPE::run. On Linux, the benchmark calls fork. In both
cases, the measurement is started before the VPE creation or fork and is stopped as
soon as the child starts executing. The benchmark has an array of varying size (1 B
to 8MiB) in its static data segment, which is initialized before the measurement, to
evaluate the influence of the application’s size on the performance. Figure 5.14 shows
the average of four runs after one warm-up run. M𝟑 shows comparable performance
to Linux on type-B PEs, but is significantly slower on type-C PEs due to the slower
DTU register accesses. As can be seen, the performance depends on the application’s
size in all configurations. On all configurations except PE-type A, the reason is that
copy-on-access/copy-on-write requires to set all writable pages to read-only. On M𝟑,
this is only done for the parent and all pages for the child are created on demand. On
Linux, all page table entries of the parent are set to read-only and are copied to the child,
which is the main reason why Linux’s performance scales worse with the application
size in this benchmark. On PE-type A, all data needs to be copied eagerly due to the
missing virtual-memory support, leading to bad performance for large applications.
However, this is acceptable, because the scratchpad memory in type-A PEs is typically
in the order of 100 KiB, limiting the application size anyways.

The comparison of VPE::exec and exec has been done similarly. On M𝟑, the
benchmark creates a new VPE and calls VPE::exec to execute an application. On Linux,
the benchmark calls vfork and also executes an application in the child process. On

90

Section 5.14 – Summary

1
 B

2
 M

iB

4
 M

iB

8
 M

iB

Linux

0.0

0.1

0.2

T
im

e
 (

m
s)

1
 B

2
 M

iB

4
 M

iB

8
 M

iB

M³−A

0.6 1.2 2.3

1
 B

2
 M

iB

4
 M

iB

8
 M

iB

M³−B

1
 B

2
 M

iB

4
 M

iB

8
 M

iB

M³−C

1
 B

2
 M

iB

4
 M

iB

8
 M

iB

M³−C*

Figure 5.15: Performance comparison of vfork+exec and VPE::exec on different PE
types and with varying application sizes.

both OSes, the time is measured from the VPE creation or vfork until the child starts
executing. In this case, vfork instead of fork is used to let the child process borrow the
parent’s address space until the call of exec, improving the performance on Linux. Like
for the previous benchmark, the application that is executed in the child VPE/process
contains an array of varying size (1 B to 8MiB) in its static data segment. Figure 5.15
shows again the average of four runs after one warm-up run. Since the array of varying
size does not need to be cloned in this case and is also not touched, the performance is
mostly independent of the application’s size (except for M𝟑-A). Similarly to the previous
benchmark, M𝟑’s performance is roughly on the same level as Linux’s performance. On
PE-type A, the entire application needs to be loaded, which costs significantly more
time than using demand loading. Note also that on type-A PEs, VPE::exec takes much
longer than VPE::run, because VPE::exec requires to load the data first from the file
into the parent’s address space and to copy it afterwards into the child’s address space.
In contrast to that, VPE::run simply copies the data from the parent’s address space
into the child’s address space.

5.14 Summary

This chapter extended the system by caches and virtual-memory support. To this end,
I introduced two new PE types (called PE-type B and PE-type C) to the existing type
(called PE-type A). All three PE types have the same external interface to collaborate
seamlessly with each other, but differ in the way the CU is attached to the DTU and
the internal memory (scratchpad memory or caches). PE-type A is intended for ac-
celerators that prefer untranslated access to scratchpad memory (SPM). PE-type B is
intended for accelerators that desire cached-based access to large amounts of data. Since
these accelerators typically lack virtual-memory support, the DTU adds the support
externally and transparently to the accelerator. Finally, PE-type C is intended for general-
purpose cores that already have a memory management unit (MMU). For that reason,
the MMU is reused for virtual-memory support and the DTU offloads the translation
of virtual addresses to a small component running on the core called virtual-memory
assistant (VMA).

Fortunately, in the remaining chapters of the thesis and when working with the
system, the differences between the PE types can mostly be ignored. The reason is that
all PE types have the same external interface, hiding these differences. In particular,
all PE types accept RDMA requests, which always refer to the address space of the

91

Chapter 5 – Virtual Memory

running VPE: the SPM on PE-type A and the virtual address space in PE-type B and C.
Furthermore, page faults are handled by M𝟑’s pager in the same way, independent of
whether the paged application is running on PE-type B or PE-type C. The pager receives
page faults as messages from the application’s PE (either from the VMA or from the
DTU) and handles the page faults by using the kernel’s mechanism to update page table
entries.

The evaluation has shown that the performance of DTU commands is worse on
PE-type C, because accessing the DTU’s registers is slower. However, this slowdown
is mostly negligible in more realistic settings such as file and pipe accesses, which
show comparable performance. Comparing the performance of page fault handling and
application loading to Linux has also shown that M𝟑 is competitive in this regard.

92

Chapter 6

Autonomous
Accelerators

In the previous chapters, I introduced the architecture that enables the integration
of very different kind of compute units (CUs) as first-class citizens. I also introduced
different processing element (PE) types that suit different kind of CUs. After focusing
on general-purpose cores in the previous chapters, this chapter integrates accelerators
into type A and type-B PEs and shows how M𝟑’s concepts enable accelerators to run
autonomously.

6.1 Motivation and Related Work

Running accelerators autonomously has multiple benefits. First, accelerators typically
offer substantial energy savings over general-purpose cores [69, 86, 91]. However, if
accelerators need to be assisted by a typically power-hungry general-purpose core
during their operation, the system cannot benefit from the energy savings. For example,
Google’s TPUs burden their controlling CPU with 11 % to 76 % load just to operate
the TPU [69]. Second, if the CPU does not need to assist the accelerator, the CPU can
perform other work in the meantime. Third, with an increasing number of accelerators
that the CPU needs to assist simultaneously, the CPU becomes the bottleneck.

In this chapter, I first explain how accelerators can access OS services such as file
systems or network stacks based on the file protocol introduced in Chapter 4. I also
show how this protocol can be used for direct accelerator-to-accelerator communication.
There are already specialized solutions that allow access to OS services by a specific
type of accelerator, like GPUfs [133] and GPUnet [75] for GPUs or BORPH [135] and
ReconOS [26] for FPGAs. However, there is no general solution that would grant
any accelerator first-party access to OS services and also allow direct communication
between multiple accelerators without assistance by the CPU. CAPI [15] uses a similar
approach to integrate accelerators into a system, but focuses on cache coherency and
address translation, whereas I am focusing on protocols to access OS services.

Second, I show how fine-grained interruptibility can be combined with autonomous
operation. If a system wants to support multiple activities with different priorities on
a single accelerator, a low-latency context switch to the prioritized activity is needed.
However, accelerators are typically invoked by software and are not interruptible
until the computation is complete. One way to lower the latency is to reduce the
amount of data per invocation. Consequently, the compute time per invocation is
reduced, but software needs to continuously invoke the accelerator, which causes more

93

PE

Core

SPMDTU

PE

Core

SPMDTU

PE

SPMDTU

PE

Accelerator

SPMDTU

PE

Core

$$DTU

PE

$$DTU

PE

DTU

PE

Core

DTU

DRAM
MMU

ME

SPM$$

App App

CoreServer

ClientAccelerator

Chapter 6 – Autonomous Accelerators

CPU utilization and power consumption. Alternatively, the fine-grained invocation
can be done in hardware by adding a simple state machine with preemption points
next to the accelerator logic. This approach allows to get the best of both worlds:
operate accelerators autonomously and interrupt them with low latency. As the context-
switching mechanism will be subject of the next chapter, this chapter only explains how
accelerators can be interrupted with low latency.

6.2 Accelerator Types

Before I focus on specific accelerators, this section provides an overview of the most
important types of accelerators and how they are or can be supported in my system
architecture.

6.2.1 Memory Access

At first, accelerators can be categorized by their memory access type, because some ac-
celerators prefer direct memory access (DMA)-based bulk transfers into local scratchpad
memory (SPM) and others prefer cache-based memory access [130].

DMA-based Memory Access

Some accelerators perform their computation on local SPM, which requires to first load
the data into the SPM via a DMA transfer and to copy the result after the computation
from the SPM tomainmemory. This type of memory access is calledDMA-based memory
access and is often preferable if the accelerated algorithm performs its computation
block-wise. For example, a stream-processing accelerator (e.g., for AES encryption)
receives a block of data from its source, performs its computation on the block, and sends
the resulting block to its sink. Additionally, many accelerators prefer to compute on SPM,
because it has a predictable access latency and can easily support many parallel accesses
by partitioning the SPM [43, 93, 129, 130, 144]. In my system architecture, PE-type A
is the most suitable PE type for DMA-based memory access. DMA transfers can be
performed with the DTU’s RDMA feature. Since the M𝟑 kernel configures the memory
endpoint to restrict the accessible memory, an untrusted accelerator can issue the RDMA
transfers on its own without compromising the system’s security. On conventional
systems, this is typically done via an IOMMU.

Cache-based Memory Access

Other types of accelerators (e.g., accelerators for matrix multiplication) perform fine-
grained and irregular memory accesses to large amounts of data (too large for SPM).
In this case, a cached-based memory access is preferable, because a cache allows fine-
grained memory accesses without the setup overhead of DMA transfers and caches the
data locally in case it is accessed again. A cache can also be preferable for computations
on smaller amounts of data, if a small cache can capture enough locality to achieve
comparable performance to a larger SPM [130]. If the main memory should be securely
shared among multiple CUs or the accelerator’s access to the memory should be re-
stricted, virtual-memory support is desirable. Like with DMA-based memory accesses,
this is typically done via an IOMMU on conventional systems. In my system architecture,
PE-type B is intended for this kind of accelerators, in which the DTU supports virtual
memory, similar to an IOMMU.

94

Section 6.2 – Accelerator Types

6.2.2 Implementation Paradigm

Apart from the memory access type, accelerators can be distinguished by the used
implementation paradigm. The following discusses the most important paradigms.

ASIP

The first way to build an accelerator is to take an existing general-purpose core and add
instructions that speed up specific computations. This paradigm is called application-
specific instruction-set processor (ASIP). For example, Cadence [22] offers several digital
signal processors (DSPs) based on an extensible general-purpose instruction set archi-
tecture (ISA). Adding instructions to a general-purpose core requires a flexible ISA such
as Xtensa [22] or RISC-V [17], which typically leads to mixed-ISA systems if cores with
a high single-thread performance for general-purpose workloads such as x86 or ARM
cores are desired as well. Fortunately, the design of M𝟑 can easily support systems
with multiple ISAs. However, this cannot be shown in this work, because gem5 does
currently not support the simulation of mixed-ISA systems.

ASIC

The application-specific integrated circuit (ASIC) provides an alternative to the ASIP,
which can further improve the accelerators performance and energy efficiency, at the
price of less flexibility [28]. In contrast to ASIPs, ASICs do not execute any software,
but implement a finite-state machine in hardware, typically designed in a hardware
description language such as Verilog [20] or VHDL [21]. For that reason, ASIC-based
accelerators are also called fixed-function accelerators [129]. Since fixed-function accel-
erators are the most difficult to integrate as first-class citizens and can be added to gem5
with reasonable effort, this chapter focuses on this implementation paradigm.

FPGA

Field-programmable gate array (FPGA) designs are similar to ASICs in the sense that
both are implemented in a hardware description language. In contrast to ASICs, FPGAs
are more flexible, because they can be reconfigured at runtime. Due to the similarities, I
believe that the concepts that are introduced in this chapter for fixed-function accelera-
tors can also be applied to FPGAs. However, due to the complexity of FPGAs and the
missing support in gem5, the integration of FPGAs is left for future work.

GPGPU

Finally, general-purpose computing on graphics processing units (GPGPU) is an attrac-
tive and common way to accelerate a specific workload. A GPU consists basically of
many cores, where each of them contains a large number of single instruction, multiple
data (SIMD) functional units. Typically, each core is split into two groups of functional
units to execute two instruction streams at a time. For example, the GeForce GTX 1070
from Nvidia’s Pascal generation consists of 15 cores called streaming multiprocessors
with 128 functional units, called CUDA cores, each. These CUDA cores are split into
two groups to execute two instruction streams, called warps, at a time [14]. I believe
that GPUs can be integrated by adding one DTU per group, leading to two DTUs per
streaming multiprocessor. However, due to the complexity of GPUs, their integration is
left for future work.

95

Chapter 6 – Autonomous Accelerators

Accel Accel

Figure 6.1: Stream processing (left) versus request processing (right)

6.3 Goals

In this work, I focus on fixed-function accelerators for two major reasons. First, for
OSes, fixed-function accelerators represent one of the extreme points in the design space
of CUs: on the one end of the spectrum, complex general-purpose cores provide all
architectural features that are required for an OS kernel. Fixed-function accelerators
are on the other end of the spectrum, because they have none of these features and do
not even execute software. Hence, in this sense a fixed-function accelerator is the most
difficult type of CU to support as a first-class citizen. Second, fixed-function accelerators
can be easily integrated into gem5.

Since both memory access types are important, I will show the integration of fixed-
function accelerators with DMA-based memory access and fixed-function accelerators
that prefer cache-based memory access. For each memory-access type I chose one
example use case. For DMA-based memory access, I chose stream processing, because
the continuous and block-based arrival of data fits well to DMA-based memory access.
The characterizing property of stream processing, as shown on the left in Figure 6.1,
is that each block of data in the stream (green in the figure) is seen and processed by
the accelerator exactly once. As shown in Figure 6.1, a buffer is used for incoming and
outgoing data and the accelerator loads the data block-wise from the input buffer and
stores the result of the computation block-wise into output buffer1.

For cache-based memory access, I chose a use case I call request processing, shown on
the right of Figure 6.1. In contrast to stream processing, request processing provides the
entire data for the computation to the accelerator with a single request. In other words,
the accelerator can access the complete data (green in the figure) during the whole
computation. To support large requests and fine-grained data accesses, a cache-based
memory access is preferable.

Note that the memory-access type for both use cases is not mandatory, but a design
choice. Stream processing can be performed with cache-based memory access and
request processing can be performed with DMA-based memory access. However, as
stream processing typically benefits from DMA-based memory access and request
processing typically benefits from cache-based memory access, I do not evaluate the
alternatives.

For the integration of both stream-processing accelerators and request-processing
accelerators, I strive for the following goals:

Uniformity: The usage of accelerators should be represented as VPEs just like the
usage of general-purpose cores is represented as VPEs. This simplifies the usage
of accelerators and minimizes the differences between cores and accelerators.

Direct access to OS services: The accelerators should be able to autonomously access
OS services such as pipes, files, or network sockets.

1The data can also “flow through” the accelerator without the buffers, as will be described later.

96

Section 6.4 – Overview

Interruptibility with low latency: Despite running autonomously, the accelerators
should be interruptible with a low latency in case a more important job for the
accelerator arrives.

No changes to existing accelerators: The approach should allow to reuse an existing
accelerator logic without modifications.

The following sections explain how these goals are reached, starting in Section 6.4
with an overview on the integration and usage of both types of accelerators. Afterwards,
Section 6.5 describes request-processing accelerators in more detail, followed by the
details on stream-processing accelerators in Section 6.6.

6.4 Overview

ASM

Accelerator
logic

DTU

CU

Figure 6.2: Overview of the acceler-
ator integration

Both considered types of accelerator are integrated
into the system as depicted in Figure 6.2. The CU
consists of the accelerator logic, performing the
computation, and the accelerator support mod-
ule (ASM). The only requirements on the accel-
erator logic are, 1) one or more ports to access
memory, which will be connected to a cache or
scratchpad memory, 2) a way to invoke the logic,
and 3) a notification upon its completion. Since
these interfaces are always required to make use
of an accelerator logic, I believe that an existing accelerator logic can be reused without
any modification. The tasks of the ASM are to interact with the DTU, invoke the ac-
celerator logic, and receive the completion notifications of the accelerator logic. In the
current implementation, the ASM is simulated as a piece of hardware, because dedicated
hardware is typically faster, more energy-efficient, and requires less chip area than a
core-based solution. However, it is also imaginable to use a small core to implement the
functionality of the ASM in software.

6.4.1 Accelerator Usage

Due to the major differences between stream-processing and request-processing accel-
erators, M𝟑 provides different interfaces to them for applications. Stream-processing
accelerators are well suited to form a chain by connecting multiple accelerators together.
As this scheme is similar to UNIX pipelines, M𝟑 allows to build such chains, containing
mixtures of programs and accelerators, in M𝟑’s shell. This allows to execute each step
of the pipeline on the CU that suits it best. The details will be described in Section 6.6.3.

Request-processing accelerators are not designed to be connected, because they
work on a single request until its completion and notify the application afterwards.
The request is split into the data, which is provided in memory, and the meta-data that
describes the data and is sent as a message to the accelerator. To this end, M𝟑 provides a
library for applications to use request-processing accelerators.

The differences in the accelerator usage lead to different implementations of the
ASM. The ASM for stream-processing accelerators, called SASM, uses the DTU to
load data from a source (e.g., a file) into the SPM, invokes the accelerator logic, and
sends the result to a sink (e.g., a pipe) via the DTU. In contrast, the ASM for request-
processing accelerators, called RASM, waits for a message from the application, invokes
the accelerators logic multiple times, and sends the response to the application upon

97

Chapter 6 – Autonomous Accelerators

completion. Additionally, the RASM is interruptible between invocations. Due to the
small block sizes of the considered stream-processing accelerators, the invocation of
their logic does not need to be interruptible.

6.4.2 VPEs for Accelerators

Although applications use these two types of accelerators in different ways, theM𝟑 kernel
represents the usage of all PEs, ranging from general-purpose PEs to accelerator PEs,
by virtual processing elements (VPEs). The VPE abstraction simplifies the integration
and usage of heterogeneous PEs, because the same concepts and mechanisms are used
for all kinds of PEs. For example:

• system calls can be performed by all PEs,

• communication channels between VPEs are established by the kernel in the same
way, independent of the PEs to which the VPEs are assigned, and

• context switching is handled in the same way for all PEs, as will be discussed in
the next chapter.

Since the VPE abstraction is used for all PEs, the same rules apply to the use of accelera-
tors as to the use of general-purpose cores. For example, spatial isolation is enforced
between VPEs and only the kernel can establish communication channels. In particular,
if an application creates an accelerator VPE2, the application can only create communi-
cation channels for the accelerator VPE that it can also create for itself. Additionally,
the memory of the accelerator is owned by the application while its VPE is active on
the accelerator PE. Currently, the VPE is active from its start until its termination. The
next chapter on context switching will extend this to allow sharing of accelerator PEs
among multiple VPEs with only one VPE being active at a time.

Representing the usage of all PEs as VPEs and providing applications direct access
to accelerator’s memory has the benefit that the kernel stays small and simple, because
the kernel does not need to know the specifics to setup or use accelerators. Instead,
the kernel only knows the available PEs in the system, their PE type (A, B, or C), and
their CU type (x86, ARM, FFT accelerator, . . .). This information is used to find a
suitable PE on VPE creation and to know whether and how virtual memory is supported.
Applications use the direct access to the accelerator’s memory that the VPE provides to
setup and use the accelerator. As explained in the previous section, the setup and usage
is supported by a library for request-processing accelerators and performed by the shell
for stream-processing accelerators.

The direct access to accelerators by untrusted applications is similar to the approach
proposed by Gelado et al. [56], which maps FPGA-based accelerators into the virtual
address space of applications and uses the virtual memory indirection to dynamically
multiplex the FPGA. The direct access by untrusted applications requires to ensure
that no cause physical damage can be caused (e.g., by overclocking). If a direct access
can lead to physical damage, a trusted component needs to mediate the access to the
accelerator, as in other OSes.

2Although the current implementation allows every application to create a VPE for every PE, PE
capabilities can be introduced to control the access to PEs.

98

Section 6.5 – Request-Processing Accelerators

RASM

Accelerator
logic

DTU

Cache

MMU

R

msgs

S

PFs

CU

(a) Components

𝑅𝑒𝑝𝑙𝑦

𝐹𝑒𝑡𝑐ℎstart 𝐶𝑜𝑚𝑝

msg received
ctxsw ctxsw

(b) Finite state machine of the RASM

Figure 6.3: The integration of request-processing accelerators

6.5 Request-Processing Accelerators

In this and the next section, I will show how two different kinds of accelerators are
integrated in a way that achieves the mentioned goals. This section starts with request-
processing accelerators.

6.5.1 Integration

The request-processing accelerators considered in this work perform fine-grained ac-
cesses to large amounts of data and therefore use cache-basedmemory access. Figure 6.3a
shows the involved components and their interaction to integrate such an accelerator
into the system. As described in Section 6.4, the accelerator logic is connected to the
request-processing accelerator support module (RASM). The RASM is implemented as
a finite state machine that interacts with the DTU and invokes the accelerator logic.
The RASM uses one receive endpoint (R in the figure) to receive messages and one
send endpoint (S) to send page faults to the pager. The accelerator logic accesses the
cache indirectly via the DTU, whose MMU translates the virtual addresses to physical
addresses as described in Chapter 5. Page faults that occur during the translation are
sent by the DTU via the send endpoint (S) to the pager and are resolved transparently
to the accelerator.

Figure 6.3b shows the finite state machine implemented by the RASM. Initially, the
RASM is in the 𝐹𝑒𝑡𝑐ℎ state, which waits for incoming messages. As soon as a message
arrives at the receive endpoint, the RASM decodes the message, which contains the
addresses and lengths of the input and output areas in memory that should be used for
the computation. Afterwards, the RASM transitions to the state 𝐶𝑜𝑚𝑝, which invokes
the accelerator logic. After the computation, the RASM sends a reply to notify the caller
of the completion and transitions back to the 𝐹𝑒𝑡𝑐ℎ state.

6.5.2 Interruptibility

As discussed in Section 6.1, accelerators should be interruptible with low latency, requir-
ing fine-grained invocations. At the same time, accelerators should run autonomously,
asking for coarse-grained interactions with software. I achieve both by using the RASM
as an indirection. Software performs the coarse-grained invocation of the RASM via
message, which in turn invokes the accelerator logic in a fine-grained fashion in state

99

Chapter 6 – Autonomous Accelerators

𝐶𝑜𝑚𝑝 and is interruptible between these invocations. As will be described in more
detail in the next chapter, the kernel sends a signal to the accelerator if a context switch
is desired. The RASM checks for the signal in the 𝐹𝑒𝑡𝑐ℎ state and between the invoca-
tions in the 𝐶𝑜𝑚𝑝 state, as indicated by the loops labeled “ctxsw” in Figure 6.3b. Upon
receiving the signal, the RASM acknowledges to the kernel that the accelerator is ready
for a context switch.

Since request-processing accelerators use virtual memory, their memory accesses
can cause page faults. If the application that uses the accelerator can freely chose the
pager to resolve these page faults, a malicious application could chose a pager that refuses
to resolve page faults (e.g., sends no reply). In other words, applications could block
accelerator PEs forever by causing their logic to wait for a page fault resolution. This
problem has two solutions. First, applications can be forced to use a trusted pager, like
in other OSes. Second, the RASM can reset the accelerator logic and use the DTU’s soft-
abort command on context switch requests. Performing the reset immediately requires
to repeat the last step of the computation. Alternatively, the worst-case execution time
of page fault resolutions can be determined to only reset the logic after a corresponding
timeout.

Note that low-latency context switches can require changes to the accelerator logic
in some cases. For example, if the amount of data per invocation is hardcoded in the
accelerator logic, the time for an invocation cannot be influenced by the component that
performs the invocation. In such cases, resetting the logic on a context switch request
is an option to achieve low-latency context switches. However, if the accelerator is not
idempotent3, a checkpoint of the input data is required before each accelerator invocation.
For example, all accelerators that do not change their input data are idempotent. Note
that these problems are not specific to my system architecture, but exist in general.

6.5.3 Usage

As explained in Section 6.4.2, applications get direct access to accelerator PEs. Hence,
to use an accelerator, the application first creates a VPE for the accelerator PE by
specifying its properties (PE type and CU type). If such a PE exists and the M𝟑 kernel
grants the application access, the application creates a pager for the VPE, because
request-processing accelerators are integrated in PE-type B and therefore use virtual
memory. In the next step, the application maps the input data and the memory for the
output by communicating with the pager. For example, the input data can be stored in a
file, in which case this file is mapped into the address space of the accelerator VPE.

In the next step, the application sets up the communication channels with the accel-
erator. To this end, the application let’s the M𝟑 kernel configure the accelerator’s receive
endpoint (R) to receive messages from the application. Analogously, the accelerator’s
send endpoint (S) is configured to let the accelerator’s DTU send page faults messages
to the pager.

Finally, the accelerator setup is complete and the application can start to use the
accelerator. To this end, it sends a message to the accelerator’s receive endpoint, which
describes the mapped memory areas and waits for a reply to this message. Afterwards,
the application can repeat these steps or terminate the VPE. Note that the accelerator
setup can be provided as a library, simplifying the accelerator usage for applications.

3An operation is idempotent if it can be applied multiple times without changing the result.

100

Section 6.6 – Stream-Processing Accelerators

DTU

SPM

S

in out

M SM

RSASM

Accelerator
logic

CU

(a) Components

𝐶

𝑅𝐷 𝑂𝑈

𝑊

𝐸

𝐼𝑁 𝑊𝑅

input no input output

no outputin reply

out reply
EOF

ctxsw

ctxsw

(b) Finite state machine of the SASM

Figure 6.4: The integration of stream-processing accelerators

6.6 Stream-Processing Accelerators

This section describes the integration and usage of accelerators that perform stream
processing, which is used in various domains such as image processing, mobile com-
munication, or audio processing. In these domains, filter chains of multiple CUs are
constructed and data is streamed through these chains. As will be described in this
section, M𝟑’s concepts allow to construct such chains in the shell and run each element
of the chain on the CU that serves it best.

6.6.1 Integration

Stream-processing accelerators are integrated into PE-type A as shown in Figure 6.4a.
As for the request-processing accelerators, the accelerator logic is placed next to the
stream-processing accelerator support module (SASM). The SASM is implemented as
a finite state machine that interacts with the DTU and invokes the accelerator logic.
The accelerator logic has direct access to the SPM, because no address translation is
performed, and expects the input data to be available in the SPM before the computa-
tion. Hence, the SASM needs to load the input data into the SPM before invoking the
accelerator logic and needs to copy the result of the computation to somewhere else
afterwards. To allow the accelerator the participation in pipelines, the SASM follows
the file protocol (see Section 4.3) for both the data source and the data sink. The former
is comparable to stdin in UNIX-like OSes and the latter to stdout. As the file protocol
demands, source and sink use two endpoints each: a send endpoint to request access to
new data (S in Figure 6.4a) and a memory endpoint to access the data (M). The receive
endpoint (R) is used to receive replies to the request messages.

The SASM implements the finite state machine shown in Figure 6.4b. The SASM
starts in the state 𝐼𝑁 , which checks whether the input has data left to read. If there
is data left to read, it directly transitions to state 𝑅𝐷 to read the next block of data
via the memory endpoint into the SPM. Otherwise, the SASM sends an input request
(next_in()) to the input server to request access to new input data and transitions to
state𝑊 . State𝑊 waits until a reply arrives at the receive endpoint and transitions to
𝑅𝐷 as soon as the reply to the input request has been received. After the SASM has
read the next data block into the SPM, the accelerator logic is invoked and the SASM

101

Chapter 6 – Autonomous Accelerators

transitions to state 𝐶 , which in turn transitions to 𝑂𝑈 as soon as the computation has
been completed. Analogously to the input phase, 𝑂𝑈 first checks whether the output
area, to which the memory endpoint provides access to, has space left to write the result
of the computation. If so, the SASM directly transitions to 𝑊𝑅 and writes the data and
otherwise it first requests new space for the result from the output server (next_out()).
Afterwards, the SASM transitions back to the state 𝐼𝑁 , which repeats the procedure
until the reply to an input request receives a length of zero, which indicates end-of-file.
In this case, the SASM commits the written data by sending commit(bytes_written) to
the output server and transitions to the state 𝐸. Finally, the SASM sends the exit system
call to the kernel using the system call send endpoint that the M𝟑 kernel configures for
all VPEs and stops.

Similarly to the RASM, the SASM is ready for a context switch at specific points
in the state machine, indicated by the loops labeled “ctxsw” at state 𝐼𝑁 and 𝑂𝑈 𝑇 in
Figure 6.4b. Thus, the SASM checks for the context switching signal in these states.

6.6.2 Direct Data Exchange

The solution presented so far has the disadvantage that multiple accelerators that are
connected to a chain exchange their data indirectly via pipe based on a shared memory
area in PE-external memory. The longer the chains are, the more time and energy
is wasted due to this indirection. For that reason, I extended the SASM presented in
Section 6.6.1 to enable a direct exchange of the data between the SPMs of the accelerator
PEs. The idea is to let the writer push its result directly into the SPM of the reader,
removing the need for the reader to load the data into the SPM. This is achieved by
transitioning into state𝑊 during the computation as well (instead of 𝐶) and handling
incoming requests for input or output from the neighbors according to the file protocol.
An output request of the predecessor is answered as soon as the own SPM has space and
the input request of the successor is answered as soon as the result has been produced
and has been written to the successor. For simplicity, the accelerator’s SASM assumes
that the endpoints have already been configured accordingly.

6.6.3 Shell Extension

Since stream processing with accelerators is similar to UNIX pipelines, I extended M𝟑’s
shell to allow the construction of such pipelines from the shell. To execute a command
such as “preproc input | accel1 | accel2 > output”, the shell needs to distinguish
between parts that should be executed on programmable CUs and parts that should be
executed on non-programmable CUs. To this end, I introduced an accelerator description
file, similar to a shell script, that starts with “@=”, followed by the name of the accelerator
and potentially configuration options in the future. After determining the required
CU types based on the executables or accelerator description files, the shell creates
VPEs for the corresponding PE and CU types. In the next step, the shell opens files or
creates pipes as their stdin and stdout. For programmable CUs, the shell delegates the
capabilities for the files to the child VPE, whereas for non-programmable CUs the shell
configures their endpoints. Two consecutive accelerators are connected directly via the
optimization explained previously. Afterwards, all VPEs are started and the shell waits
for their completion. Remember that the accelerators perform the exit system call just
as the programs on programmable CUs, removing the need to treat accelerators special.
Since accelerators are first-class citizens in M𝟑, supporting accelerators in pipelines
required adding less than 50 lines of code to the shell.

102

Section 6.7 – Evaluation

This concept enables the use of stream-processing accelerators in arbitrary pipelines.
Depending on their position within the pipeline, accelerators read from a file, a pipe,
or the previous accelerator and write to a file, a pipe, or the next accelerator. Since a
pipeline can contain an arbitrary mixture of programs and accelerators, each pipeline
stage can be executed on the CU that serves it best.

6.7 Evaluation

This section analyzes the basic properties of the two types of accelerators. I start by
explaining how the logic of the two accelerator types is simulated. Afterwards, I compare
the performance and system utilization of the traditional approach, that continuously
assists the accelerators during their operation, with M𝟑’s approach, that lets accelerators
work autonomously.

6.7.1 Accelerator Logic

For both accelerator types, I use Aladdin [129, 130] to simulate the accelerator logic.
Aladdin is a power-performance accelerator-modeling framework that can be used to
make a design-space exploration for fixed-function accelerators. Aladdin estimates
performance, power, and chip area within 0.9 %, 4.9 %, and 6.6 %, respectively, compared
to hardware implementations. At the same time, Aladdin performs the estimation based
on C Code and a configuration file that specifies the desired loop-unroll factors and
memory sizes, which makes Aladdin easy to use. Aladdin exists in two flavors:

1. the original Aladdin [129], simply called “Aladdin” in the following, determines
the behavior of an accelerator offline, assuming a constant memory access time. I
use Aladdin for the stream-processing accelerators, because of their deterministic
execution model and the SPM’s constant access time.

2. gem5-Aladdin [130] is integrated with gem5 to accurately simulate the memory
accesses using gem5’s memory subsystem. I use gem5-Aladdin for the request-
processing accelerators, because their memory access times vary due to page
faults and cache misses. I slightly adapted gem5-Aladdin to invoke gem5-Aladdin
from the RASM and notify the RASM upon completions of gem5-Aladdin.

6.7.2 Request-Processing Accelerators

As described in Section 6.5, software invokes the RASM via message, which in turn
invokes the accelerator logic. In this section, I evaluate the impact of the invocation
granularity on the performance and CPU wake-up frequency.

I use different accelerator workloads from the MachSuite [119]. MachSuite has
been analyzed by gem5-Aladdin with the result that some accelerators benefit from
DMA-based memory access and others benefit from cache-based memory access. For
this evaluation, I picked the accelerators that benefit from cache-based memory access:

1. Stencil-3D: a three-dimensional stencil computation,
2. MD-KNN: a 𝑘-nearest-neighbor computation from molecular dynamics,
3. FFT-1D: a one-dimensional fast Fourier transform, and
4. SPMV: a sparse matrix-vector multiplication.

103

Chapter 6 – Autonomous Accelerators

Stencil
0.0

0.3

0.6

0.9

1.2
T

im
e

 (
m

s)

MD FFT SPMV

1 4 16 64 256 N

Stencil
1e+02

1e+03

1e+04

1e+05

1e+06

T
im

e
 (

n
s)

MD FFT SPMV

1 4 16 64 256 N

Figure 6.5: Total runtime (left) and the average (bars on the right) and maximum
execution times (lines on the right) for different batch sizes

I adjusted each accelerator to perform a single indivisible step per invocation by the
RASM. Multiple invocations are batched in a single invocation by the CPU. I analyze
the spectrum between assisted and autonomous operation by varying the batch size.

As explained in Section 6.5.3, to use such an accelerator, an application creates a
VPE for the desired accelerator, creates the memory mappings for the input and output
data in the VPE’s virtual address space, and establishes the communication channel to
invoke the RASM. In this case, the input data is stored in files and the output data should
be written to files as well. Therefore, these files are mapped into the virtual address
space of the accelerator VPE.

The application that uses the accelerator and the remaining software components
(kernel, M𝟑FS, pager) run on type-C PEs, which are clocked at 3GHz and contain a
single out-of-order x86-64 core, 32 KiB L1 instruction cache, 32 KiB L1 data cache and
256 KiB L2 cache. Each accelerator is integrated into a type-B PE, which is clocked at
1GHz and contains 32 KiB L1 cache and a TLB with 128 entries. The DDR3_1600_8x8
model of gem5 is used as the physical memory, clocked at 1GHz.

Figure 6.5 shows the results from three runs after one warmup run with batch sizes
of 1 to 256. Performing all invocations in a single batch is shown as ‘N’, because the
total number of invocations depends on the workload. The standard deviation is less
than 1 %. As can be seen in the left part of the figure, larger batch sizes lead to better
performance. More importantly, the right part of the figure shows the average (the
bars in the figure) and maximum (lines) accelerator execution times for each RASM
invocation. For example, running the MD workload with a batch size of 16 shows
acceptable performance, because the total runtime does no longer improve significantly
with larger batch sizes as shown in the left part of Figure 6.5. However, as shown in
the right part of the figure, a batch size of 16 leads to an average execution time of
8 µs and a maximum execution time of 48 µs. In other words, the context switching
latency is up to 48 µs and the CPU is woken up every 8 µs on average. High wake-up
frequencies are a problem on modern cores, which can only achieve significant power
savings in deep sleep states. However, the deeper the sleep state, the longer the time to
bring the core back into a functional state (e.g., on Intel’s Haswell generation, dozens of
microseconds to leave C6 and up to several milliseconds to leave C10 [81, 126]). Hence,
deeper sleep states are only beneficial during longer idle periods. As mentioned earlier,
resetting the accelerator logic allows to interrupt the accelerator immediately. Resetting
the accelerator logic eliminates the context switching latency, but requires to repeat
the last batch. In summary, invoking the accelerator logic in a fine-grained fashion
from software results in a trade-off. Performing too fine-grained invocations degrades
performance and prevents the CPU from entering deep sleep states. Performing too
coarse-grained invocations leads to too high context switching latencies or requires to
repeat too much work in case the logic is reset.

104

Section 6.7 – Evaluation

M𝟑 achieves the best of both worlds by invoking the RASM just once from software
and invoking the accelerator logic in a fine-grained and interruptible fashion in hardware.
On the one hand, invoking the RASM just once from software (as with batch size ‘N’)
leads to the best performance and longest deep sleep of the CPU. On the other hand, the
fine-grained and interruptible invocation of the accelerator logic by the RASM allows
to context-switch to a more important VPE with a low latency (as with batch size 1).
Resetting the accelerator logic allows an immediate context switch as well. In this case,
only a single indivisible step of the accelerator needs to be repeated.

6.7.3 Stream-Processing Accelerators

Stream-processing accelerators use DMA-based memory access to load a block of data
from a source (e.g., a file or network socket), perform the computation on the block,
and store the result to a sink. On traditional systems, the access to OS services can
only be done in software and therefore, accelerators need to be assisted by a general-
purpose core. On M𝟑, accelerators can access OS services autonomously. In this section,
I will analyze the differences between these approaches in general by using a chain of
accelerators with different lengths and different accelerator speeds. Chapter 8 shows
the advantages of the autonomous approach on a real-world scenario.

The benchmark uses an application that creates a chain of accelerators and lets the
chain process 4MiB of data. The data is read from a file and the result is stored into a
file as well. I compare three different variants:

Assisted: The first variant tries to resemble the traditional approach. To this end, I
developed another ASM that waits for a message, computes for a given number
of cycles, and sends a reply. Hence, software is responsible to load the input
data into the SPM, start the accelerator via a message, and move the result upon
receiving the reply from the SPM to the next accelerator or to the output file.

Auto-Pipes: The second variant uses M𝟑’s approach introduced in Section 6.6, but
does not use the direct data exchange. In other words, the first and last accelerator
are connected to the input and output file, respectively, and all accelerators are
connected via pipes.

Autonomous: The final variant is the same as the previous variant, but uses the direct
data exchange between the accelerators as introduced in Section 6.6.2.

The application and the remaining software components (kernel, M𝟑FS, and pipe
server) run again on type-C PEs, using the same configuration as in the benchmark
with request-processing accelerators. The accelerators are integrated in type-A PEs, as
described in Section 6.6.1. These PEs are clocked at 1GHz and contain 4 KiB SPM.

The results are shown in Figure 6.6 using different chain lengths (1 to 8 accelerators)
and different accelerator speeds (0.5GB/s to 4GB/s). The left figure shows the total
runtime, whereas the right figure shows the CPU time spent in the rest of the system
(application, kernel, M𝟑FS, and pipe server), relative to the total runtime. As can be seen
in the left figure, the performance of both the assisted and the auto-pipes variant degrades
with increasing chain lengths and increasing accelerator speeds. The slowdowns have
two different reasons. The performance of the assisted variant degrades primarily,
because the load of the application increases with an increasing number of accelerators,
as can be seen in the right figure. From a certain number of accelerators onwards,
the application is not fast enough to fully utilize the accelerators. Furthermore, each

105

Chapter 6 – Autonomous Accelerators

4
G

B
/s

2
G

B
/s

1
G

B
/s

0
.5

G
B

/s

1 Accel.

T
im

e
 (

m
s)

0
2
4
6
8

10
12

4
G

B
/s

2
G

B
/s

1
G

B
/s

0
.5

G
B

/s
2 Accel.

4
G

B
/s

2
G

B
/s

1
G

B
/s

0
.5

G
B

/s

4 Accel.

4
G

B
/s

2
G

B
/s

1
G

B
/s

0
.5

G
B

/s

8 Accel.

Assisted Auto−Pipes Autonomous

4
G

B
/s

2
G

B
/s

1
G

B
/s

0
.5

G
B

/s

1 Accel.

C
P

U
 t

im
e

 (
re

l)

0.0

0.2

0.4

0.6

0.8

1.0

4
G

B
/s

2
G

B
/s

1
G

B
/s

0
.5

G
B

/s

2 Accel.

4
G

B
/s

2
G

B
/s

1
G

B
/s

0
.5

G
B

/s

4 Accel.

4
G

B
/s

2
G

B
/s

1
G

B
/s

0
.5

G
B

/s

8 Accel.

Assisted Auto−Pipes Autonomous

Figure 6.6: Total runtime (left) and the CPU time spent in the rest of the system, relative
to the total runtime (right). Both are shown depending on the chain length (1 to 8) and
the accelerator speed (0.5GB/s to 4GB/s).

invocation introduces overhead. The performance of the auto-pipes variant degrades,
because each accelerator that reads from a pipe needs to wait at the beginning of the
benchmark until its predecessor has written the data into the pipe. This is done in
steps of 128 KiB. With an increasing chain length, these wait times sum up and lead
to an increasing performance degradation. Furthermore, since the auto-pipes variant
exchanges all data between the accelerators via shared memory areas in DRAM, an
increasing chain length and accelerator speed puts more load onto the DRAM, leading
to a slowdown. In contrast, the autonomous variant shows the same performance for all
chain lengths and increasing accelerator speeds do not lead to performance problems.

The right figure shows the load that is caused in the rest of the system by the
accelerator chain. As can be seen, the assisted variant leads to a lot of CPU load
(between 0.5 to 1 with 8 accelerators), which is primarily spent in the application that
drives the accelerator chain. The CPU time increases with increasing chain length and
accelerator speed, because these two factors increase the frequency the accelerators
need assistance by the application. Both other variants cause little CPU time in the
rest of the system. The auto-pipe variant causes CPU time primarily in the pipe server
(between 0.03 to 0.06 with 8 accelerators), which increases slightly with increasing
chain length. The autonomous variant causes almost no load in the rest of the system
(between 0.01 to 0.03 with 8 accelerators).

The performance and CPU time in the rest of the system can be improved for both the
assisted and autonomous variant by increasing the size of the SPM to let the accelerators
work autonomously for longer periods of time. However, SPM is expensive in terms of
chip area and energy. The autonomous variant removes this trade off, because a small
SPM size already achieves the best performance and allows to power-off the rest of the
system for almost the entire runtime.

To put the accelerator speeds into perspective, I used Aladdin [129] to determine the
computation time for several typical accelerator use cases. Aladdin uses a configuration
file to analyze trade-offs between power, chip area, and performance by, for example,
specifying loop unrolling factors. To get reasonable results, I generated all sensible
configurations and picked the sweet spot between performance and the product of
chip area and power consumption. Aladdin reports 6400 cycles to generate a SHA256
hash for 4 KiB of data (0.64GB/s with 1GHz clock frequency), 17 000 cycles for 512-
point 1D fast Fourier transformation (4 KiB; 0.24GB/s), 2000 cycles for a general matrix
multiplication (GEMM) using a 32 × 32 matrix (8 KiB; 4.17GB/s), and 1400 cycles for a
9-point 2D stencil on a 32 × 32 image (4 KiB; 2.94GB/s). The results indicate that the
chosen accelerator speeds are in line with typical accelerators.

106

Section 6.8 – Summary

6.8 Summary

In this chapter, I introduced and discussed two types of accelerators: request-processing
accelerators and stream-processing accelerators. Both types are seamlessly integrated
into M𝟑, because the activity on accelerators is represented as VPEs, just as in the case
of general-purpose cores. This simplifies the integration and usage of heterogeneous
compute units (CUs), because the same abstractions and mechanisms are used for all
types of CUs. As a demonstration, I extended M𝟑’s shell to enable the construction of
pipelines containing a arbitrary mixture of programs and accelerators.

For both accelerator types, an existing accelerator logic can be reused without
modification by placing the logic next to an accelerator support module (ASM), which
interacts with the DTU. In particular, the ASM for request-processing accelerators
allows to combine fine-grained interruptibility with autonomous operation. The ASM
for stream-processing accelerators enables the access to arbitrary file-like objects as
sources or sinks. The ASMs can be provided to CU vendors as a library.

In the evaluation, I showed that using the ASM for a fine-grained and interrupt-
ible invocation of the accelerator logic achieves the best performance and also allows
to interrupt the accelerator with low latency. Furthermore, I showed that running
stream-processing accelerators autonomously leads to superior performance with longer
accelerator chains and faster accelerators. Finally, I demonstrated that both types of
accelerators allow to power off the rest of the system for almost the entire runtime of
the accelerators.

107

Chapter 7

Context Switching

In the previous chapters, M𝟑 assigned a virtual processing element (VPE) to a specific
processing element (PE) at its creation and ran the VPE on this PE without any interrup-
tion until its completion. In this chapter, I explain how multiple VPEs can time-share a
PE by context switching between them. In particular, the subject of this chapter will be
context switching in combination with DTU-based communication that bypasses the
kernel and context-switching support on accelerators.

7.1 Motivation

Traditional communication via UNIX pipes, sockets, or L4-like IPC [83, 137] involves the
kernel in every communication. For that reason, the kernel can buffer messages until the
recipient is ready to receive them, can schedule recipients based on pending messages,
and can easily switch to a different thread if the current thread needs to wait for I/O. In
contrast, communication on M𝟑 via the DTU and on DLibOS [96] via Tilera’s on-chip
network bypasses the kernel with the consequence that the kernel cannot perform these
actions. For that reason, DLibOS decided to omit context switching support altogether.
I also believe the still increasing core counts and the dark silicon effect [51, 64] will
reduce the context-switching frequency and lead to dedicated cores for applications
by default. However, in the foreseeable future, there will always be situations where
dedicated cores for all applications are not feasible or resources are underutilized. Thus,
context switching is necessary to use the system’s resources as efficiently as possible.

Combining kernel-bypassing communication with context switching is a hard prob-
lem, though. If the kernel is not involved in the communication, another means is
required to determine whether the recipient is running. Since both M𝟑 and DLibOS [96]
do not rely on shared memory for communication, the message cannot be stored in case
the recipient is not running. However, the naive solution of waking up the recipient and
retrying the kernel-bypassing communication is not sufficient. Since these two steps
are not atomic, the recipient can be suspended in between, leading to no progress at
the sender side. Furthermore, the kernel can no longer make scheduling or placement
decisions if it cannot tell whether applications are currently waiting for a message or
are doing useful work.

Context switching is not only beneficial for general-purpose cores, but also for
accelerators. For example, in multi-tenant cloud environments context switching of
accelerators is essential, because a single user will typically underutilize these accel-
erators. Furthermore, context switching is important to keep wait times and response
times minimal. For example, a TPU-like deep-learning accelerator [69] service might

109

PE

Core

SPMDTU

PE

Core

SPMDTU

PE

SPMDTU

PE

Accelerator

SPMDTU

PE

Core

$$DTU

PE

$$DTU

PE

DTU

PE

Core

DTU

DRAM
MMU

Accelerator

ME

Accelerator

SPM$$

App App

CoreServer

ClientApp App

Chapter 7 – Context Switching

have multiple customers that want to run jobs of different lengths. Without context
switching, a short job would have to wait a long time if a long job is already running.
I also envision advantages for small embedded and edge devices. Due to their limited
hardware resources, these devices benefit from the power efficiency of accelerators and
require context switching to flexibly time-share these resources. However, accelera-
tors typically lack the architectural features to run an OS kernel locally that switches
between different contexts. Heavyweight hardware features such as single root I/O
virtualization (SR-IOV) add a sufficient number of contexts to the hardware that can all
be active simultaneously. I decided to keep the hardware simple by using a combination
of hardware and software that only requires a single context in hardware.

7.2 Related Work

Sharing accelerators between multiple applications has been explored specifically for
GPUs [34, 112, 140]. However, context switching is expensive on GPUs due to the typi-
cally large context of hundreds of kilobytes [25, 111]. For that reason, research has been
done on alternative ways to support multitasking on GPUs. For example, Draining [140]
takes advantage of the GPU execution model by preempting the execution at a thread
block boundary, so that no context needs to be saved and restored. Chimera [112] uses a
technique called Flushing, which detects and exploits idempotent execution to instantly
preempt a streaming multiprocessor of a GPU.

Similarly, previous work has shown how context switching can be supported on
FPGAs [56, 70, 134]. For example, Simmler et al. [134] presented fully preemptive
multitasking on FPGAs. In contrast, my approach does not require a preemptible
accelerator logic, but the accelerator support module supports interruptions at specific
preemption points. Similarly to M𝟑, Gelado et al. [56] provide untrusted applications
access to FPGA-based accelerators by mapping them into their virtual address space.
The virtual-memory indirection allows Gelado et al. to dynamically multiplex the FPGA.
The M𝟑 kernel uses VPEs as an indirection to multiplex PEs of arbitrary types.

An alternative to context switching is to add sufficiently many contexts to the
hardware. An example is SR-IOV that is supported by recent peripheral devices. SR-IOV
has been adopted by the OS community by, for example, Arrakis [114] and OmniX [132]
to support peripherals and accelerators. Instead of requiring the architectural features
to run an OS kernel, these works assume the hardware to manage multiple contexts.
I decided to keep the hardware simple and therefore perform the potentially complex
scheduling decisions in software and only simple save and restore actions in hardware.

7.3 Overview

Supporting context switches on accelerators and other types of CUs that do not provide
the architectural features to perform these switches locally, requires to perform (at least)
the complex part of context switches remotely. Additionally, the state that needs to be
saved and restored depends on the CU and might also be inaccessible from a remote
CU. Therefore, context-switching support is split in two parts: the potentially complex
decisions and security-critical operations are performed by the M𝟑 kernel, whereas the
CU state is saved and restored by the CU the context switch is performed on. Note
that this separation is not required for general-purpose cores that typically have the
architectural features to perform both parts locally. However, for simplicity I decided to
perform context switches on general-purpose cores remotely as well.

110

Section 7.4 – Context-Enabled Communication

Kernel

RCTMux

App

DTU DTU DTU

CU: x86 CU: ARMRCTMux

CU: Accel
CtxSw

Figure 7.1: The involved components and
their interfaces. The grey boxes at the bot-
tom denote hardware, whereas the narrow
boxes on top denote software.

Context switching involves four com-
ponents, depicted in Figure 7.1: the CU of
the user PE, the DTU, the context switcher
(CtxSw) in the M𝟑 kernel, and a small
component on the user PEs, called re-
motely controlled time multiplexer (RCT-
Mux). RCTMux’s responsibility is to save
and restore the CU state (e.g., CPU reg-
isters or local memory of accelerators)
during a context switch. RCTMux is CU-
specific and either a piece of software on
programmable CUs or a piece of logic
in case of non-programmable accelera-
tors. TheM𝟑 kernel maintains one context
switcher for each user PE and is responsible for scheduling and placement decisions.
The context switcher initiates context switches and RCTMux reacts on its behalf.

These four components have two important interfaces: the DTU-CU interface
(orange in Figure 7.1) and the CtxSw-RCTMux interface (green). The DTU-CU interface
is used by the kernel to signal a remote CU (indirectly via the remote CU’s DTU) about
a planned context switch. Depending on the type of CU, the signal injects an interrupt
request into a core or notifies the accelerator support module (containing RCTMux).

The CtxSw-RCTMux interface is used for the interaction between RCTMux and
the context switcher. Both components use a shared variable for the interaction. The
context switcher initiates each interaction by writing a request (e.g., to save the state)
to the shared variable and signaling RCTMux via the DTU-CU interface. RCTMux
acknowledges the completion of a request to the context switcher by writing to the
shared variable as well. If the kernel decides to perform a context switch on a specific
user PE, the context switcher first asks RCTMux to save the CU state. Afterwards, the
context switcher saves the DTU state of the current VPE, restores the DTU state of the
new VPE, and asks RCTMux restore the CU state. The context switcher executes each of
these steps individually to allow the kernel to handle other requests (e.g., system calls)
in the meantime. For the same reason, the context switcher polls the shared variable
for RCTMux’s response only a couple of times. If RCTMux has still not written to the
shared variable, the context switcher checks the variable again later.

The remainder of this chapter is organized as follows. Section 7.4 explains the
necessary steps to combine DTU-based communication that bypasses the kernel with
context switching. Afterwards, Section 7.5 describes two implementations of RCTMux:
for general-purpose cores and accelerators. Finally, Section 7.6 revisits the trusted
computing base (TCB) and discusses whether RCTMux and the CU are part of the TCB.

7.4 Context-Enabled Communication

On M𝟑 and other systems like DLibOS [96], applications can directly communicate with
each other without involving the kernel. However, if applications can be suspended,
for example due to a preemption, other means are required to deliver a message to
a suspended application. This section describes the necessary steps to combine such
communication with context switching.

111

Chapter 7 – Context Switching

7.4.1 VPE-aware Communication

Since communication on M𝟑 is not based on shared memory, messages cannot be
delivered if the receiving VPE is suspended. There are two basic solutions to this
problem:

1. Eagerly invalidate all incoming communication channels to a VPE before suspend-
ing the VPE or

2. Keep the communication channels alive, but lazily detect communication attempts
with suspended VPEs.

The eager approach does not require hardware support, but leads to more context
switching overhead that grows linearly with the number of communication channels.
In contrast, the lazy approach requires hardware support, but communication channels
do not need to be invalidated on context switches. I decided to use the lazy approach,
because M𝟑 supports many incoming communications (at most (𝑛 − 1) ∗ 𝑚 per PE with
𝑛 PEs and 𝑚 endpoints per DTU). Furthermore, many communication channels are
typically not used while a VPE is suspended. To this end, I extended the DTU by a
register that holds the ID of the running VPE and added the ID of the destination VPE
to send endpoints and memory endpoints. On message sends and RDMA-like memory
accesses, the DTU adds the destination VPE ID to the request. This allows the DTU in
the destination PE to determine whether the request targets the current VPE. Whenever
the DTU receives a request to the wrong VPE, it responds with an error that can be
handled at the sender PE.

7.4.2 Message Forwarding

Independent of eager invalidation or lazy detection, the DTU reports an error to the
sender if the intended recipient is not running. Unfortunately, the naive solution of
scheduling the recipient and retrying the communication introduces the following race
condition. Since the kernel is not involved in this communication, it does not know
when the communication has been completed successfully. If the kernel is suspending
the recipient before the communication has been finished, the sender does not make
progress. The reason for this problem is that context switching and communication
are decoupled, because the kernel performs the context switching, but VPEs bypass the
kernel when performing DTU-based communication. For example, if multiple senders
try to communicate with multiple recipients scheduled on the same PE, the kernel
could decide to schedule the next recipient before the communication with the current
recipient has been finished.

I resolve the race condition by falling back to the traditional kernel-based communi-
cation model, if a communication failed due to a suspended VPE. The kernel performs
both the context switching and the communication: if VPE A receives an error after
trying to send a message to VPE B, VPE A asks the kernel to forward this message
to VPE B. When receiving the forward request, the kernel will first schedule VPE B
and afterwards send the message to VPE B. To guarantee progress, the kernel does not
suspend VPE B until the message has been successfully delivered to VPE B. Note that
the kernel does not perform a context switch on the target PE immediately in case the
time slice of the current VPE on the target PE is not depleted yet.

Memory accesses to virtual address spaces via the DTU can fail for the same reason
as messages. Thus, the kernel forwards them to the destination VPE on failures as well.
However, the kernel can only execute the memory access, if no page faults occur (the

112

Section 7.4 – Context-Enabled Communication

part of the virtual address space might be mapped on demand), because the kernel itself
is required to handle the page fault, leading to a deadlock. To solve this problem, the
kernel tries the access, but instructs the DTU to abort it if a page fault occurs. In this
case, the kernel answers the forward request with an error and asks the VPE to retry the
access. Thus, if memory accesses to other virtual address spaces are used and a progress
guarantee is required, the memory should be pinned beforehand.

7.4.3 VPE Migration

To prefer direct communication that bypasses the kernel, the kernel should migrate the
VPEs among compatible PEs accordingly. Currently, migration is supported if two PEs
have the same instruction set architecture (ISA). With compiler support, even cross-ISA
migration can be supported [47]. The M𝟑 kernel migrates VPEs in two situations:

• If two VPEs are scheduled on the same PE and attempt to communicate, the kernel
tries to migrate the currently suspended communication partner to another PE.
If migration is not possible (e.g., no other compatible PE is available), the kernel
instead performs a context switch from the VPE that attempted the communication
to the suspended VPE.

• If a VPE is idling (see next section), the kernel tries to work-steal a ready VPE
from a compatible PE.

7.4.4 Computing vs. Idling

Another consequence of the DTU-based communication that bypasses the kernel is that
the kernel does not know whether a VPE is currently computing or idling (e.g., because
the VPE waits for a message). I solve this problem by sending an idle notification in form
of a system call to the kernel. Alternatively, the kernel could poll all PEs periodically
to check whether the current VPE is performing useful work, but I opted against this
solution in favor of a less loaded and more scalable kernel.

As an optimization, I decided to delay the sending of idle notifications by a kernel-
defined value to prevent too frequent context switches. For all application VPEs, the
kernel sets the idle delay to 20 000 cycles1. For server VPEs, the kernel uses an idle delay
of 1 cycle with the rational that server VPEs are typically only activated on demand.
Hence, switching to an application VPE is more beneficial for the system’s performance.
Finally, the kernel asks a VPE to not send any idle notifications at all by setting the idle
delay to 0 cycles, if there is no ready VPE that can run on its PE.

Note that the kernel cannot force VPEs to report idling. However, threads on
traditional systems can also decide to poll instead of using blocking system calls. On
both systems, CPU-hogging threads/VPEs can be penalized (e.g., priority degradation)
and forcefully preempted.

7.4.5 Gang Scheduling

The described concepts so far allow to suspend VPEs, resume VPEs based on communi-
cation attempts, and use the system’s resources efficiently by switching to a different
VPE in case the current VPE idles. However, if a set of heavily-communicating VPEs
contend with other VPEs for the same PEs, a systematic scheduling approach is required

1This idle delay turned out to be a good trade-off between context switching too often and overly long
idle periods.

113

Chapter 7 – Context Switching

to maintain good performance. For example, consider a chain of accelerator VPEs
performing stream processing and therefore exchanging messages and data at a high
rate. If multiple such chains are contending for the same accelerator PEs, the kernel
needs to context switch these VPEs. However, uncoordinated context switching among
the VPEs of all chains leads to many failed communication attempts, because VPEs of
different chains can run simultaneously.

I solve this problem by introducing a simple form of gang scheduling [110]. To this
end, I added a new kernel object called VPE group and a system call to create a new VPE
group. When creating a new VPE, applications can optionally specify the VPE group.
The kernel pins all VPEs within a group on different PEs and schedules them at the
same time to let them run simultaneously on different PEs. In this way, multiple sets of
heavily-communicating VPEs can efficiently share the same PEs.

7.4.6 Revisiting Command Abortion

If the kernel decides to perform a context switch on a user PE, the DTU might currently
be busy with a communication. As described in Section 3.4.7, the DTU supports two
types of command abortions. The soft abort is used for context switching, while the hard
abort is used for non-cooperative communication partners. Context switching uses soft
aborts, because the communication channel should stay valid. Soft aborts use a timeout
to cope with malicious communication partners. If the command is still in progress
after the timeout expired, the command is hard aborted, rendering the communication
channel unusable.

The DTU supports two different kinds of commands that need to be considered
during command abortion: SEND and REPLY as well as READ and WRITE. The important
difference is that READ and WRITE can be repeated, which is not possible for SEND and
REPLY. The reason is that every message needs to be delivered to the recipient exactly
once. Since receive buffers are pinned (see Section 5.9.5), page faults cannot occur,
which leads to a fast message delivery in any case. Therefore, if the current command is
SEND or REPLY, the DTU simply waits until the command is completed or the timeout
expired. If the current command is READ or WRITE, the DTU aborts the command
immediately, because it can be retried later. Aborting the command instead of waiting
for its completion is important for READ and WRITE, because these commands can cause
page faults, whose resolution can take arbitrary amounts of time.

Another important point of the soft abort is that it disables incoming communication
from other unprivileged DTUs. In other words, as soon as RCTMux used the soft abort,
all incoming communication requests fail with an error, as mentioned in Section 7.4.1.
The M𝟑 kernel will enable the communication again (for the new VPE) after the context
switch has been completed. Privileged DTUs can still communicate with VPEs whose
communication has been disabled, to, for example, access the DTU state. Furthermore,
outgoing communication is still allowed after the VPE used the soft abort, because the
VPE might need to save its state elsewhere (e.g., the accelerator’s local memory).

7.5 RCTMux Implementation

In this section, I show two implementations of RCTMux (remotely controlled time
multiplexer) for different kind of CUs to show the generality of the context-switching
approach. I start with the implementation for general-purpose cores, followed by the
implementation for fixed-function accelerators, as introduced in the previous chapter.

114

Section 7.5 – RCTMux Implementation

7.5.1 General-Purpose Cores

CU-specific helper

RCTMux VMA

Figure 7.2: Modules of the CU-
specific helper

This section describes the implementation of RCT-
Mux for general-purpose cores. Currently, x86-64 and
ARMv7 are supported. In general, RCTMux is a mod-
ule of the CU-specific helper that has been mentioned
in earlier chapters, as depicted in Figure 7.2. The CU-
specific helper is responsible to initialize the CU to a
usable state (e.g., by initializing the CPU registers and
configuring interrupts). As described in Section 7.3, the
RCTMux module acts on behalf of the M𝟑 kernel to perform context switches. The
other module of the CU-specific helper is the virtual-memory assistant (VMA), that was
introduced in Chapter 5 on virtual memory to translate virtual addresses to physical
addresses on type-C PEs. Both modules are entered upon a specific interrupt to either
save or restore the state or perform an address translation. Note also that both mod-
ules are optional. RCTMux is only required, if context switching should be supported,
whereas the VMA is only required on type-C PEs.

If the VMA module detects a page fault during the address translation, it sends a
message to the pager to resolve the page fault and waits for the response. Since the time
until the reception of the pager’s response is unbounded, this procedure is interruptible.
In other words, if the kernel requests a context switching during this procedure, the
VMA module will pass the control to RCTMux to save the state and switch to a different
VPE. As soon as the VPE is resumed, RCTMux will pass the control back to the VMA to
continue the page fault procedure.

On x86-64, the CU-specific helper runs in the privileged CPU mode (ring 0) and sets
up interrupt and exception handling during its initialization. To this end, it initializes
the Global Descriptor Table (GDT), Interrupt Descriptor Table (IDT) and the Task State
Segment (TSS). On ARMv7, the CU-specific helper runs in supervisor mode. In contrast
to x86-64, the interrupt table is stored at a fixed address and contains a single instruction
per interrupt vector (the instruction jumps to the interrupt handler) and therefore does
not need initialization. However, the current implementation for ARMv7 does not
implement the VMA module.

7.5.2 Accelerators

ASM

Accelerator
logic

DTU

CU

RCTMux

Figure 7.3: RCTMux in accelerators

In contrast to general-purpose cores, acceler-
ators are not forcefully preempted via an in-
terrupt request. Instead, accelerators receive
a signal by the DTU if the M𝟑 kernel plans a
context switch. As illustrated in Figure 7.3,
RCTMux is part of the accelerator support
module (ASM) that I provide to reuse the accel-
erator logic without modification. The ASM
checks for this signal only at convenient points
in time, as explained in the previous chapter.
For example, request-processing accelerators check the signal after the invocation of
the accelerator logic has been completed, because the accelerator logic is not assumed
to be interruptible. After receiving the signal, the ASM hands over the control to RCT-
Mux, which reads the shared variable that is used for the communication between
the M𝟑 kernel and RCTMux to determine the required action. If the CU state should

115

Chapter 7 – Context Switching

be saved, RCTMux saves the state of the ASM, which holds, for example, the current
position within the memory area the memory endpoint provides access to. For the
stream-processing accelerators, it also saves the local scratchpad memory, because the
scratchpad is shared among all VPEs on this PE. RCTMux saves the state based on a
memory endpoint that has been configured beforehand. The restore action is performed
analogously.

Besides the addition of RCTMux to the ASM, the ASM needed to be extended to
take communication failures into account. For example, if the ASM sends a message to
the file server to request the next piece of input data, the file server might currently be
suspended. In such cases, the ASM performs the forward system call to let the kernel
forward the message to the recipient.

7.6 Revisiting the TCB

After the description of the context-switching mechanism, this section revisits the
discussion on the trusted computing base (TCB). I start with RCTMux’s influence on the
rest of the system, followed by a discussion of whether RCTMux needs to be protected
from applications.

7.6.1 How Powerful is RCTMux?

RCTMux is running in the privileged CPU mode on general-purpose cores, as described
in Section 7.5.1, which raises the question whether RCTMux is a privileged component
in the overall system. As this chapter is concerned with context switching, I will discuss
this question for RCTMux. Note however that all arguments apply for the CU-specific
helper as well, because RCTMux is a module of the CU-specific helper. Since RCTMux
runs on a user PE, it has an unprivileged DTU. Thus, RCTMux cannot change or create
communication channels. In consequence, RCTMux has only influence on the user PE
it is running on and is therefore in the TCB of the applications on this PE. However,
RCTMux on PE1 is not in the TCB of an application running on PE2. Note that on
PE-type C, RCTMux’s influence is only limited to its own PE if the DTU restricts its
access to a specific part of the physical memory, as discussed in Section 5.11. In summary,
RCTMux is not privileged in the overall system, but has only power on its own PE.

On accelerators, RCTMux is implemented in hardware (as part of the ASM), just
as the accelerator logic. However, for the same reason as for general-purpose cores,
the ASM and therefore RCTMux are not privileged in the overall system: the DTU is
unprivileged.

7.6.2 Is the Privileged CPU Mode Required?

The discussion in the previous section raises the question why RCTMux needs to run in
the privileged CPU mode, if it has no power over the rest of the system. Without further
means, RCTMux needs to be protected from the VPEs running on its PE to ensure that
these VPEs cannot harm each other. For example, one VPE could otherwise block the
PE forever by preventing context switches to other VPEs.

In contrast to traditional kernels, RCTMux and also the CU-specific helper, does
not need access to multiple VPEs at the same time. The virtual-memory assistant only
performs translations for the currently running VPE. Similarly, RCTMux only needs to
save the state of the current VPE and restore the state later. If each VPE has its own
instance of the CU-specific helper and theM𝟑 kernel has a mechanism to remotely switch

116

Section 7.7 – Evaluation

between VPEs, the CU-specific helper does not need to be protected. In other words,
the CU does not need to enforce its different CPU modes properly (for example due to
Meltdown [89] and Spectre [78]), because each VPE can only harm its own CU-specific
helper. Thus, a malicious VPE can manipulate or destroy its own CU-specific helper,
which prevents that the VPE’s state is properly stored before a context switch. However,
a VPE cannot prevent that other VPEs successfully resume their execution on the PE.

To proof the feasibility of this approach, I implemented a CU-specific helper that
operates on exactly one VPE. Furthermore, I extended the DTU-CU interface by a reset
operation that allows the M𝟑 kernel to reset a PE into a defined state at any point in
time. On x86-64, the reset sets the root page table (CR3) and the instruction pointer.
Alternatively, the core could start executing code from a ROM that reads these values
from the DTU and sets the core’s registers correspondingly.

In summary, the M𝟑 kernel performs a context switch on a user PE by first inter-
rupting the current VPE and asking its CU-specific helper to save the state. Afterwards,
the kernel resets the PE, which sets the root page table appropriately for the address
space of the new VPE and the instruction pointer to the entry point of the CU-specific
helper. Since the CU-specific helper has already initialized the CU, it skips this step and
waits for an interrupt by the kernel. The kernel sends another interrupt request to ask
the CU-specific helper of the new VPE to restore its state and resume the execution.

7.7 Evaluation

This section evaluates the context-switching concept described in this chapter using
micro-benchmarks. The following chapter will look at larger scenarios and application-
level benchmarks to analyze the behavior in more realistic settings.

7.7.1 Communication with Suspended VPEs

The first question to answer is: how expensive is a context switch? To evaluate that, I
setup a benchmark that performs a remote procedure call (consisting of request and
response) with running or suspended VPEs in different settings. The kernel PE and
the PE that runs the benchmark always use PE-type C, containing a single out-of-
order x86-64 core clocked at 3GHz with 32 KiB L1 instruction cache, 32 KiB L1 data
cache, and 256 KiB L2 cache. The PE of the communication partner varies to show the
context switch on all PE types. PE-type A and B contain stream-processing and request-
processing accelerator, respectively, and are clocked at 1GHz. PE-type C is configured
as the two other type C PEs. As in the previous chapters, the DDR3_1600_8x8 model of
gem5 is used as the physical memory, clocked at 1GHz. As a reference point, I show
the time for core-local and cross-core IPC on the microkernel/-hypervisor NOVA [137]
as well, because NOVA has a well-optimized IPC mechanism. The results for NOVA
have been obtained on gem5 with the same core configuration as used in type-C PEs
(see Section 3.7.2).

Figure 7.4 shows the average time over 16 runs with warm caches. The times are
split into multiple components to explain the behavior. “Wake” denotes the time from
the moment the benchmark application fails to send the message to its suspended
communication partner until the wakeup of the target PE to perform a context switch.
“CtxSw” denotes the time for the actual context switch, “Fwd” the time to forward the
message to the communication partner, and “Comm” denotes the remaining time for
the communication itself. The first two rows in Figure 7.4 show the time for core-

117

Chapter 7 – Context Switching

M³−C (local)
M³−C (rem−sh)
M³−C (rem−ex)
M³−B (rem−sh)
M³−B (rem−ex)
M³−A (rem−sh)
M³−A (rem−ex)
NOVA (remote)

NOVA (local)

Time (µs)

0 1 2 3 4 5 6 7 8 9 10 11

Wake CtxSw Fwd Comm

Figure 7.4: Overhead of communication with running and suspended VPEs

local (“local”) and cross-core (“remote”) communication on NOVA2. The next six rows
show the times to communicate with a VPE on another PE of different PE types. For
each PE type, the first row shows the case where the communication partner has its
PE exclusively for itself (“rem-ex”), followed by the case where two VPEs share a PE
(“rem-sh”). In the former case, no context switch is required. In the latter case, the
benchmark communicates with the two VPEs in an alternating fashion, which requires
a context switch for every communication. The final row shows the time for a core-local
communication on M𝟑, requiring two context switches.

As can be seen in Figure 7.4 when comparing the rows labeled “M𝟑-* (rem-sh)”
with the rows labeled “M𝟑-* (rem-ex)”, communication on M𝟑 is significantly more
expensive if the communication partner is suspended due to the context-switching
overhead. The overhead is similar on all three PE types, but has different causes. At
first, PE-type C is clocked at 3GHz, while PE-type A and B are clocked at 1GHz, with
the consequence that PE-type C performs more work in a comparable period of time.
This stems primarily from the fact that PE-type C executes software, whereas PE-type
A and B use a finite state machine that performs the context switch in hardware. The
context switch itself is more expensive on PE-type A than on PE-type B, because the
content of the scratchpad memory in PE-type A needs to be saved and restored. On the
other hand, the communication overhead (“Comm”) is larger on PE-type B due to TLB
misses (the DTU’s TLB is not tagged and hence needs to be flushed on a context switch).
The communication overhead on PE-type C is even larger due to the DTU’s TLB misses,
which are caused if, for example, the DTU needs to store a received message. The reason
is that on PE-type C, in contrast to PE-type B, these TLB misses are not handled in
hardware, but the DTU injects an interrupt and lets the virtual-memory assistant handle
the TLB miss in software.

The core-local communication on M𝟑 (“M𝟑-C (local)“) is even more expensive, be-
cause it requires two context switches: one context switch from the benchmark applica-
tion that sends the request to the communication partner and another switch to send
the reply back to the benchmark application. However, the overhead is less than twice
as high, because the M𝟑 kernel knows that both communication partners share a PE. For
that reason the M𝟑 kernel can directly switch from VPE1 to VPE2 without asking VPE1
first whether it is currently idling, resulting in a shorter wakeup time (“Wake”). On the

2OnNOVA, the core-local communication requires two context switches. The cross-core communication
does not necessarily involve context switches, but has a high overhead due to the use of inter-processor
interrupts and kernel entries and exits.

118

Section 7.7 – Evaluation

1ms

2ms

4ms

8ms

Runtime (relative)

0.990 0.992 0.994 0.996 0.998 1.000

T
im

e
 s

li
ce

Figure 7.5: Total runtime of a simultaneous execution of two applications compared to
a sequential execution, using different time slices

other hand, the communication overhead (“Comm”) is larger, because both messages
need to be forwarded, leading to more interrupts caused by TLB misses in the DTU.

In summary, the context-switching overhead is much higher on M𝟑 than on NOVA,
because context switches are done remotely based on a communication protocol be-
tween the kernel and RCTMux. There is still room for optimizations by, for example,
using a tagged TLB in the DTU, though. I would also like to highlight that core-local
communication is fast on NOVA, whereas cross-core communication is fast on M𝟑, if
the communication partner is running. This suggests that a combination of these two
approaches could be used to get the advantages of both. I will discuss this combination
in more detail in the conclusion in Chapter 9.

7.7.2 Non-communicating Applications

After the analysis of the context-switching overhead in the previous section, this section
evaluates the impact on non-communicating applications. To this end, I use a compute-
intensive application and run this application on a single PE in two ways: first, I run
the same application two times in a row and second, I start the same application twice
and run them simultaneously, leading context switches between the two applications.
To evaluate the context switching overhead, I chose different time slices for the VPEs,
resulting in a different number of context switches. In this case, only type-C PEs are used
with the same configuration as in the previous section. Figure 7.5 shows the relative
runtime of the simultaneous execution compared with the sequential execution, using
three runs, preceded by one warm-up run. The standard deviation is less than 3 % and
hence not shown in the plot. As can be seen, even relatively short time slices of 1ms
(Linux’s completely fair scheduler uses time slices between 0.75ms and 6ms by default
[12]) introduce almost no runtime overhead.

7.7.3 Communicating Applications

The more interesting workload to analyze the impact of the context switching overhead
is a set of communicating applications, because they require more frequent context
switches. To this end, I run different pairs of applications that exchange data via pipe.
The used applications are:

1. rand: produces random numbers and writes them into a pipe,

2. cat: reads a file and writes it into a pipe,

3. wc: reads data from a pipe and counts the lines, words, and bytes, and

4. sink: reads data from a pipe and discards the data.

119

Chapter 7 – Context Switching

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

rand|wc

0

5

10

15
T

im
e

 (
m

s)

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

rand|sink

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

cat|wc

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

cat|sink

M³ (5) M³−srv (3) M³−all (2) Linux (2)

Figure 7.6: Runtime of different applications exchanging a varying amount of data via
pipe, with two cores on Linux and different user PE counts on M𝟑. The number of
cores/PEs is shown in parentheses.

This set of applications has been chosen to have one compute-intensive application and
one I/O-intensive application on each side of the pipe. Each of the four combinations
(rand|wc, rand|sink, cat|wc, and cat|sink) are run with different amounts of data
exchanged via pipe (512 KiB, 1024 KiB, 2048 KiB, and 4096 KiB). I compare the perfor-
mance to Linux and analyze the behavior on M𝟑 by varying the degree of PE sharing. On
both M𝟑 and Linux, the applications use an 8 KiB buffer to read from the pipe or write
into the pipe, because 8 KiB achieves the best performance for these benchmarks on
Linux. On M𝟑, the pipe uses a 512 KiB shared memory area and the pipe server provides
its clients access to at most 128 KiB at once. Figure 7.6 shows the runtime of these
benchmarks over three runs, preceded by one warm-up run. The standard deviation is
insignificant and hence shown in the plot. The x-axis of the plot shows the different
combinations and different data sizes, whereas the y-axis shows the total runtime. For
each variant and data size, there are four bars:

1. The first bar shows the runtime on M𝟑 using five user PEs. One PE is used for
M𝟑FS, one PE for the pipe server, one PE for the pager, and one PE for each
application.

2. The second bar shows the runtime on M𝟑 using three user PEs, letting the servers
share a PE. The applications still use one PE each.

3. The third bar shows the runtime on M𝟑 with two user PEs by letting all five VPEs
share these two PEs.

4. The fourth bar shows the runtime on Linux with two cores.

All PEs are type C PEs with the same configuration as in the previous sections. Linux
runs on a dual-core system, with 32 KiB L1 instruction cache and 32 KiB L1 data cache
each and a shared 512 KiB L2 cache. Linux is using 512 KiB instead of 256 KiB L2 cache
to make it comparable to M𝟑’s run with two PEs, having 256 KiB L2 each. However, the
runtime differences between 256 KiB and 512 KiB L2 cache for Linux are negligible for
these benchmarks. Note that M𝟑 always uses an additional PE for the kernel due to M𝟑’s
OS design.

As can be seen in Figure 7.6, M𝟑 outperforms Linux if it uses one PE per VPE. Based
on the micro-benchmarks from earlier chapters (for example, see Section 4.8), this result
is not surprising: M𝟑FS and the pipe server provide their clients direct access to large
amounts of data and the clients access this data via the DTU. If more VPEs share a PE as

120

Section 7.7 – Evaluation

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

rand|wc

0

5

10

15

20

T
im

e
 (

m
s)

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

rand|sink

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

cat|wc

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

cat|sink

M³−all (1) Linux (1)

Figure 7.7: Runtime of different applications exchanging a varying amount of data via
pipe, with one core on Linux and one user PE on M𝟑

in “M𝟑-srv (3)” and “M𝟑-all (2)”, M𝟑’s performance degrades due to the context switching
overhead. Interestingly, M𝟑’s performance is still roughly on one level with Linux’s
performance. The results also show that cat|sink is significantly slower on M𝟑 than
on Linux. The reason is, that both cat and sink are I/O intensive, leading to frequent
communication with servers and hence frequent context switches. However, I consider
this as a pathological case, because doing nearly nothing on both ends of the pipe is
rather uncommon. Another interesting result is that the colocation of all servers (M𝟑FS,
pipe server, and pager) on one PE as done in “M𝟑-srv (3)” leads to almost no runtime
increase.

The next step in this comparison is to run all processes/VPEs on a single core/PE.
Since the colocation of reader and writer eliminates their parallelism, the total runtime
increases and cannot directly be compared to the runtime with two cores/PEs. Hence, I
show these results separately in Figure 7.7, again as the average of three runs, preceded
by one warm-up run. The standard deviation is always below 2 % in this case and hence
not shown in the plot. Surprisingly, M𝟑 is again slightly faster than Linux if a single
core/PE is used for the benchmark with an increasing difference between M𝟑 and Linux
if the data size increases. This has two main reasons. First, M𝟑 does not migrate VPEs
between PEs anymore, which required costly cache write-backs and invalidates due
to the non-coherent caches. Second, when running reader and writer on a single core,
Linux switches between reader and writer in the granularity of the application’s buffer.
In other words, after every 8 KiB of data, Linux performs a context switching (including
an address space switch) between reader and writer. In contrast to that, M𝟑’s pipe server
provides each client access to 128 KiB at once, leading to fewer context switches.

The final question to answer is the amount of load that is put onto the kernel PE in
these different settings. As can be seen in Figure 7.8, if all VPEs run on separate PEs,
the kernel is barely used, ignoring the pathological case for now. The kernel load does
also not increase much if all servers share a single PE. However, running all five VPEs
on two PEs leads to an significant increase. If all five VPEs run on a single PE, the load
decreases again, because the kernel has one PE less to perform context switches on.
In the pathological case, the kernel load is higher, especially if a small amount of data
is exchanged. Note however, that the kernel is loaded for a shorter amount of time,
compared to the other benchmarks.

In summary, even if communicating applications share PEs, M𝟑 performs well in
most cases. However, the more context switches need to be performed, the more load is
put on the kernel. Additionally, if two heavily-communicating VPEs have to be run on
the same PE, the performance suffers and the kernel load increases. This suggests that

121

Chapter 7 – Context Switching

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

rand|wc

0.0

0.2

0.4

0.6

0.8

1.0
U

ti
li

za
ti

o
n

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

rand|sink

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

cat|wc

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

cat|sink

M³ (5) M³−srv (3) M³−all (2) M³−all (1)

Figure 7.8: Utilization of the kernel PE with different kinds of PE sharing on M𝟑. The
number of user PEs is shown in parentheses.

the kernel should track communication channels and the context switching rate to place
VPEs in a way that maximizes the performance and minimizes the kernel load. As has
been shown in the evaluation, running (non-compute-intensive) servers on one PE has
only a small impact on the performance and kernel load, suggesting that a colocation of
servers is a good strategy.

7.8 Summary

In this chapter, I explained how multiple VPEs can share a single PE by performing
context switches between the VPEs. In contrast to traditional operating systems, the
M𝟑 kernel does not perform the context switches on its own PE, but on the user PEs. To
this end, M𝟑 uses a component called remote-controlled time-multiplexer (RCTMux) on
each user PE for the CU-specific actions (e.g., saving CPU registers). Context switches
are always requested by the M𝟑 kernel and RCTMux acts on its behalf. Interestingly,
RCTMux is not a privileged component in the system, because the DTU in user PEs is
still unprivileged, which prevents RCTMux from adding or modifying communication
channels. Additionally, being able to reset a core into a defined state and using one
RCTMux instance per VPE allows to run RCTMux in the same protection domain as
the VPE. In other words, multiple mutually distrusting VPEs can be run on the same PE
without needing to thrust the core to enforce the different CPU modes correctly.

The evaluation has shown that M𝟑’s cross-core context switching mechanism is
significantly more expensive than the traditional context switching mechanism that op-
erates on the local core. However, for non-communicating applications, this introduces
almost no overhead. For communicating applications, I have shown that M𝟑’s overall
performance is still on the same level as Linux’s performance, except for pathological
cases. I have also shown that context-switching-heavy workloads put significant load
onto the kernel PE, suggesting that the kernel should avoid them by assigning VPEs
onto PEs according to their communication channels.

122

Chapter 8

Evaluation

The previous chapters presented the system architecture and evaluated its basic proper-
ties by using micro-benchmarks and by focusing on a single aspect of the system. This
chapter evaluates the system architecture as a whole and in more realistic settings. In
particular, this chapter addresses the following questions:

• What performance does the new system architecture achieve?

• How well does the M𝟑 kernel scale with the number of user PEs?

• How well does M𝟑 perform if PEs are shared?

• How does a real-world scenario with accelerators perform and scale?

• How efficient is the sharing of accelerators?

• How complex are the trusted software components of M𝟑?

8.1 Experimental Setup

Before I start with the evaluation, this section describes the evaluation platform and
introduces the system-call tracing infrastructure that is used to replay traces of Linux
applications on M𝟑.

8.1.1 Evaluation Platform

All benchmarks in the evaluation are performed with the cycle-accurate gem5-based
prototype platform, using gem5’s full-system mode and classical memory system. The
different benchmarks use system setups with different mixtures of PEs. However, the
configuration of the individual PEs is always the same. All type-C PEs (for general-
purpose cores) contain a single out-of-order x86-64 core clocked at 3GHz with 32 KiB
L1 instruction cache, 32 KiB L1 data cache, 256 KiB L2 cache, 8 KiB DTUCache and 32
TLB entries in the DTU. The MMU of the x86-64 core has 128 TLB entries. Type-B PEs
(for request-processing accelerators) are clocked at 1GHz, use 32 KiB L1 cache, and
128 TLB entries in the DTU1. Type-A PEs (for stream-processing accelerators) are also
clocked at 1GHz and contain 2 KiB scratchpad memory. All DTUs have 16 endpoints. I
use the DDR3_1600_8x8 model of gem5 as the physical memory, clocked at 1GHz.

1The reason for the different number of TLB entries is that the DTU in type-B PEs handles all memory
accesses of the CU, leading to many address translations. In type-C PEs, the DTU’s TLB is only used for
DTU transfers.

123

Chapter 8 – Evaluation

As mentioned in Chapter 1, the prototype implementation supports both x86-64 and
ARMv7. However, the implementation of the virtual-memory assistant is still missing
for ARMv7 and gem5 does not support the simulation of systems that contain multiple
instruction set architectures (ISAs). To prevent a distraction from the important points
in this work by a comparison of ISAs, I decided to only evaluate M𝟑 on x86-64.

Due to the strong coupling of gem5’s network-on-chip (NoC) model with the cache
coherency protocol and to keep the simulation times manageable, I connect the PEs via
a crossbar interconnect instead of a full NoC. A crossbar is feasible for small systems as
used in this evaluation, but too expensive for large systems, because of the quadratic
growth of wiring. Due to the still long simulation times I used representative, but
short-running benchmarks.

Whenever feasible, I compare M𝟑’s performance to Linux 4.10. I chose Linux, be-
cause Linux is a widespread and well-optimized operating system and therefore a good
performance baseline. Linux is run on a gem5-based single-core or dual-core system,
depending on the benchmark. To allow a fair comparison, the single core is configured
in the same way as a type-C PE for M𝟑 and the dual core is also configured in the same
way, except that both cores share 512 KiB L2 cache (which benefits Linux). Additionally,
Linux uses the same DRAM model.

8.1.2 Systrace Infrastructure

Many benchmarks are using the system-call tracing infrastructure called systrace, intro-
duced by Weinhold [148]. Systrace allows to run an application on Linux and trace its
system calls to replay them later, for example on M𝟑. The application is first run with
strace to determine the performed system calls including their arguments. Afterwards,
the application is executed again without strace to obtain timestamps before and after
each system call (Linux has been modified to support that). Note that these steps are
separated due to the overhead of strace. In a post-processing step, the system call
arguments and timestamps are merged into a data structure that allows to replay the
trace onM𝟑. The trace player uses the corresponding API onM𝟑 for all supported system
calls in the trace. The not yet supported system calls and the times between system calls
are spent with spinning. In other words, I assume that the unsupported system calls and
the application’s computation require the same time on Linux and M𝟑. Note that the
unsupported system calls are never important for the application’s performance. Since I
use the same core configuration for both Linux and M𝟑, the compute performance is the
same on Linux and M𝟑.

8.2 Performance

This section starts by analyzing the performance of the described system architecture.
To this end, I used systrace to trace different applications on Linux and replay them
on M𝟑 to show M𝟑’s performance in comparison to Linux. In a first step, I will show
“standalone” applications, followed by pipelines of applications.

8.2.1 Standalone Applications

The first set of benchmarks uses the following applications:

1. tar : creates a tar archive with files between 128 KiB to 8192 KiB (16MiB in total),
2. untar : unpacks the same archive,

124

Section 8.2 – Performance

L
x

M
³

tar

0

2

4

6

8

10

T
im

e
 (

m
s)

L
x

M
³

untar

L
x

M
³

shasum

L
x

M
³

sort

L
x

M
³

find

L
x

M
³

SQLite

L
x

M
³

LevelDB

App Xfers OS

Figure 8.1: Performance comparison to Linux using standalone applications

3. shasum: reads a 512 KiB file and computes its SHA256 hash,
4. sort: sorts a 256 KiB file with 408 lines,
5. find : searches 24 directories with 40 files each,
6. SQLite: creates a table and inserts and selects 32 entries, and
7. LevelDB: creates a table and inserts and selects 512 entries.

The applications tar, untar, shasum, sort, and find have been taken from BusyBox
1.26.2 [4]. SQLite is an embedded and highly reliable database engine [18]. LevelDB
is a light-weight and high-performance key-value store, created by Google [11]. The
benchmarks for SQLite and LevelDB have been created by myself, using SQLite 3.18.0
and LevelDB 1.19, respectively. This mixture of applications has been chosen to stress
the system in different ways: tar and untar are transfer intensive, shasum and sort are
compute intensive, find performs many file-system requests, and SQLite and LevelDB
show a mixture of these three patterns.

Due to the different OS designs, Linux andM𝟑 use a different number of cores/PEs for
the benchmarks. I will repeat the comparison with the same number of cores/PEs based
on context switching on M𝟑 in Section 8.4. Since all benchmarks are single threaded,
Linux uses a single core, whereas M𝟑 uses four PEs: one PE for the kernel, one for the
pager, one for M𝟑FS, and one for the application. However, M𝟑 does not take advantage
of multiple PEs, that is, at no point in time multiple PEs are doing useful work in parallel.
The benchmark uses only type C PEs for M𝟑 and a single core for Linux, all with the
default configuration as outlined in Section 8.1. Since M𝟑FS is an in-memory file system,
I compared it to Linux’s tmpfs. Both M𝟑FS and tmpfs are using a 4 KiB block size. M𝟑FS
has been configured to use extents of at most 512 KiB for both existing and created files.

Figure 8.1 shows the average runtime over three runs, preceded by one warm-up
run. The runtime does not include the time to start and shutdown the application,
because this time is independent of the application’s runtime, which is rather short
in these benchmarks to keep the simulation times acceptable. The runtime is broken
down into the application time (“App”), the time for data transfers (“Xfers”), and the OS
overhead (“OS”). As mentioned in Section 8.1, when replaying the trace, M𝟑 spins for
the time that is spent in the application on Linux and for the time of system calls that
are unsupported2 on M𝟑. Hence, for both M𝟑 and Linux, the times for these system calls

2In these benchmarks, the system calls access, brk, chdir, chmod, chown, dup2, fchown, fcntl,
fdatasync, futex, geteuid, getpid, getrlimit, gettimeofday, getuid, ioctl, and utimeswere unsup-
ported on M𝟑. The sum of the times for the ignored system calls were at most 0.4ms.

125

Chapter 8 – Evaluation

are accounted as application time in the plot. The standard deviation is below 3 % and
therefore not shown in the plot.

As can be seen in Figure 8.1, Linux and M𝟑 are mostly on the same level, but for tar
and untar M𝟑 outperforms Linux by roughly a factor of two. Having already discussed
and analyzed M𝟑’s advantage in data transfers in Chapter 4 on OS services, this result
is not surprising: M𝟑 shows both faster transfer times and less OS overhead for the
transfers. The former stems from the fact that the DTU has a dedicated data transfer
functionality, that (slightly) outperforms a memory-copy operation via caches. The
latter is achieved, because M𝟑FS grants its clients access to large contiguous file regions
at once. After the access has been granted, the client can directly access the data via the
DTU, which has almost no overhead. In contrast, Linux copies the data page by page
in the page cache, which results in more OS overhead. Note that the OS overhead is
higher on Linux despite the fact that tar and untar are using the sendfile system call
to transfer an entire file with one system call.

The remaining benchmarks exhibit smaller performance differences between M𝟑

and Linux. The performance of shasum and sort is dominated by the application time
and hence the overall runtime is comparable on both systems. find performs primarily
stat system calls, which behave similarly on both systems, except that the request
to the file system is sent via message on M𝟑 and performed via system call on Linux.
SQLite and LevelDB are again slightly faster on M𝟑 due to M𝟑’s faster data accesses.

8.2.2 Pipelines of Applications

After the standalone applications, this section evaluates the performance of pipelines of
applications in comparison to Linux. The following applications are combined:

1. cat: reads a 1MiB file and writes into a pipe,
2. grep: reads a 1MiB file and writes all lines that contain “ipsum” into a pipe,
3. awk: reads from a pipe and counts the lines that start with a “D”, and
4. wc: reads from a pipe and counts the lines, words, and bytes.

The applications have been taken from BusyBox 1.26.2 [4]. Similarly to the standalone
applications, Linux uses fewer cores/PEs than M𝟑 due to the different OS designs. Linux
is running on two cores to have separate cores for reader and writer, whereas M𝟑 uses
six PEs: one for the kernel, one for the pager, one for M𝟑FS, one for the pipe server,
and two for the applications. I will repeat these benchmarks with the same number
of cores/PEs for Linux/M𝟑 based on context switching on M𝟑 in Section 8.4. As in the
previous section, type C PEs are used for M𝟑 with the default configuration. Linux is
using the dual-core configuration. On both Linux and M𝟑 the benchmark starts the
writer and reader, connects them via a pipe, and pins them on dedicated cores/PEs. On
M𝟑, the pipe uses a 512 KiB shared memory area and the writer and reader get access to
128 KiB at a time.

To evaluate the performance, I ran all four combinations of the applications (cat|awk,
cat|wc, grep|awk, and grep|wc). The first two bars for each of these four combinations in
Figure 8.2 show the total runtime of the pipeline (“Total”) on Linux and M𝟑. The total
runtime does again not include the time to start and shutdown the two applications.
To analyze and explain the differences between Linux and M𝟑, the next two bars for
each of the four combinations show the time for the writer, whereas the final two bars
show the time for the reader. The time for reader and writer denotes the time from their
start until the exit system call. The times of the reader and writer are broken down

126

Section 8.3 – Scalability

L
x

M
³

L
x

−
w

r

M
³−

w
r

L
x

−
rd

M
³−

rd
cat|awk

0

2

4

6

8

10
T

im
e

 (
m

s)

L
x

M
³

L
x

−
w

r

M
³−

w
r

L
x

−
rd

M
³−

rd

cat|wc

L
x

M
³

L
x

−
w

r

M
³−

w
r

L
x

−
rd

M
³−

rd

grep|awk

L
x

M
³

L
x

−
w

r

M
³−

w
r

L
x

−
rd

M
³−

rd

grep|wc

App Idle OS Total

Figure 8.2: Performance comparison to Linux using a pipeline between two apps

into the time for the application (“App”), the idle time (“Idle”), and the OS overhead
(“OS”). The application time3 and the OS overhead have the same meaning as in the
previous section. The idle time is the time the reader or writer waited for each other.
The standard deviation is below 1 % and therefore not shown in the plot.

As can be seen in Figure 8.2, the performance on Linux and M𝟑 is roughly on the
same level for all four combinations. The writer exits earlier on M𝟑 for cat|awk and
cat|wc, because cat is not compute intensive and gets access to 128 KiB of the pipe’s
shared memory at a time. In contrast to that, Linux exchanges the data via the pipe
in a granularity of less than 4 KiB (with these applications). Hence, after the writer is
finished, the reader still has to process 128 KiB of data on M𝟑 and less than 4 KiB on
Linux. The granularity of the data exchange also leads to differences in grep|awk and
grep|wc. In these cases, the reader spends more time idling on M𝟑 than on Linux, which
matches roughly the time grep requires to process 128 KiB of data. In contrast to that,
Linux spends more time in the OS. Since reader and writer cannot work in parallel
during the first and last step of the data exchange and the data exchange granularity on
M𝟑 is larger than on Linux, M𝟑 cannot turn the lower OS overhead into an advantage
for grep|awk and grep|wc, in contrast to cat|awk and cat|wc (to a smaller degree).

8.3 Scalability

This section evaluates the scalability of the single kernel PE with respect to the number
of user PEs. As discussed in more detail in Chapter 9, my work spawned a new research
project that investigates the scalability of capability systems based on M𝟑. The key
idea is to partition the user PEs into groups, using one kernel PE per group with local
resources and capabilities. The kernel PEs communicate via message passing to enable
cross-group interaction in a way transparent for applications. In this section, I evaluate
how many user PEs a single kernel PE can manage without becoming the bottleneck.

Since the system’s scalability depends on more components than the kernel and
these components can be made scalable with means that are orthogonal to my system
architecture, I use the following techniques to focus on the kernel’s scalability:

1. Nomemory accesses for data transfers: Instead of accessing the files’ data and
the pipes’ shared memory areas in RDMA fashion via the DTU, the benchmarks

3In these benchmarks, the system calls brk, getuid, and ioctl were unsupported on M𝟑. The sum of
the times for the ignored system calls were at most 0.012ms.

127

Chapter 8 – Evaluation

spin for the corresponding time and therefore assume a perfectly scaling memory
architecture. A scalable memory architecture can be designed in different ways,
independent of my work. For example, instead of directly accessing a single
DRAM from all PEs, a hierarchy of caches could be placed in front of one or
multiple DRAMs.

2. Multiple independent file-system servers: Building a scalable file system is
a challenge by itself and out of the scope of this work. For example, M𝟑FS can
employ multiple worker VPEs and keep the global state consistent via messages.
To evaluate whether the file system or the kernel is the bottleneck in the individual
benchmarks, I start multiple independent file-system servers without synchro-
nization. In other words, I assume that the synchronization requires no additional
time.

3. Crossbar instead of a NoC: As mentioned in Section 8.1, the current prototype
is using a crossbar to connect all PEs instead of a full network-on-chip. Since a
crossbar uses a dedicated route between all pairs of PEs, communication causes
no contention.

An important point is, that all three techniques put more load on the kernel rather than
less. For example, a contended memory hierarchy would reduce the load on the kernel,
because the time for data transfers increases, which in turn increases the intervals the
kernel is contacted. In other words, the load on the kernel in these benchmarks is an
upper bound.

To evaluate the scalability of the kernel, I performed multiple kinds of experiments
that stress the kernel in different ways. First, I execute multiple instances of the bench-
marks used in the previous section and determine the parallel efficiency for weak scaling.
The parallel efficiency for 𝑛 application instances in parallel is defined as 𝑇1

𝑇𝑛 with 𝑇1
as the runtime of a single application instance running alone and 𝑇𝑛 as the average
runtime of the 𝑛 application instances running in parallel. In other words, I analyze the
slowdown of individual application instances due to resource contention. Ideally, the
runtime per application instance should stay constant with an increasing number of
instances, which corresponds to a parallel efficiency of 100 %. Second, I execute a web
server with a varying number of workers and evaluate the total number of requests per
second. Due to the long simulation times and the low variation on M𝟑 in the previous
benchmarks, I use only a single run in the scalability evaluation.

8.3.1 Standalone Applications

I start with the standalone applications from Section 8.2. The results for the standalone
applications are shown in Figure 8.3. Each plot shows the parallel efficiency depending
on the number of file system servers (1, 2, 4, or 8) to determine whether the kernel or
the file system is the bottleneck. The system for the benchmarks contains one PE for the
kernel, one for the pager, 𝑛 for M𝟑FS servers (“srv” in the figure), and 𝑚 for applications
(the x-axes in the figure). The PE configurations are the same as in the previous section.
Note that shasum and sort are shown in one plot, because both scale almost perfectly
(less than 1 % slowdown even with 32 applications).

As can be seen in Figure 8.3 and unsurprisingly after the analysis of these applications
in the previous section, the behavior of the applications can be divided into groups. tar
and untar are transfer intensive and therefore do neither cause much load in the kernel,
nor in the file system servers. Hence, with 32 instances of tar or untar in parallel, the

128

Section 8.3 – Scalability

0 4 8 12 16 20 24 28 32
0

25

50

75

100

P
a

ra
l.

 e
ff

. (
%

)

of applications (tar)

0 4 8 12 16 20 24 28 32
0

25

50

75

100

of applications (untar)

0 4 8 12 16 20 24 28 32
0

25

50

75

100

P
a

ra
l.

 e
ff

. (
%

)

of applications (shasum & sort)

0 4 8 12 16 20 24 28 32
0

25

50

75

100

of applications (find)

0 4 8 12 16 20 24 28 32
0

25

50

75

100

P
a

ra
l.

 e
ff

. (
%

)

of applications (SQLite)

0 4 8 12 16 20 24 28 32
0

25

50

75

100

of applications (LevelDB)

1 srv 2 srv 4 srv 8 srv

Figure 8.3: Parallel efficiency of the standalone applications, depending on the number
of application instances.

parallel efficiency is always above 80 % and above 93 % with eight M𝟑FS servers. shasum
and sort are compute intensive and therefore put even less load onto the kernel and
servers. As mentioned, even with 32 applications, the parallel efficiency is always above
99 %. find and SQLite behave differently, though. The reason is that both send requests
to the file system server with high frequency, leading to significant slowdowns with
less than one server per four applications. Since SQLite reopens files and directories
frequently, requiring capability exchanges and revokes, SQLite puts also more load
onto the kernel. Therefore, even eight servers only lead to a parallel efficiency of 59 %
for 32 SQLite instances. Finally, LevelDB shows a parallel efficiency of 87 % with 32
LevelDB applications and eight M𝟑FS servers, similar to tar and untar due to the long
computation times and data transfers.

8.3.2 Pipelines of Applications

After the standalone benchmarks, this section evaluates the parallel efficiency of pipe-
lines of applications, similar to Section 8.2. The shared memory area of the pipes is
again 512 KiB and the writer and reader get access to 128 KiB at a time. The results are
shown in Figure 8.4a. In this case, the system for the benchmarks contains one PE for
the kernel, one for the pager, one for M𝟑FS, one for the pipe server, and two PEs for
each pipe (the x-axis in the figure), that is, for each pair of applications. Since these
applications cause little load in the file-system server and the pipe server, I only show
the results with one instance of each.

As shown in Figure 8.4a, the parallel efficiency is above 94 % for all application
combinations when running 16 pipes (32 applications) in parallel. The reason is that
none of these applications are performing many requests to the file system server and

129

Chapter 8 – Evaluation

P
a

ra
l.

 e
f f

. (
%

)

of pipes
2 4 6 8 10 12 14 16

90

92

94

96

98

100

cat|wc cat|awk
grep|wc grep|awk

(a) Pipelines of applications

R
e

q
u

e
st

s
/

s
(x

 1
0

0
0

)

of nginx VPEs

0 8 16 24 32

0

64

128

192

256

1 srv 2 srv 4 srv 8 srv

(b) The nginx web server

Figure 8.4: Parallel efficiency of application pipelines and scalability of nginx

none are frequently performing operations on capabilities. Most of the time, these
applications compute or transfer data, which does not involve other components. The
communication with the pipe server occurs infrequently due to the coarse grained data
exchange (128 KiB) and the pipe server handles requests typically in less than 0.5 µs,
leading to a good scalability of the pipe server.

8.3.3 Web Server

This section evaluates the scalability of the kernel using a web server as the workload. I
chose nginx, because it is a fast, light-weight, and popular web server [120]. As for the
other application-level benchmarks, I ran nginx on Linux using systrace and replayed
it on M𝟑. In this case, I traced the system calls of nginx’s worker process that handles
the requests. The requests are sent by the Apache benchmark ab [1]. To test different
file sizes, I sent HTTP requests for files between 1 KiB and 1MiB in power-of-two steps.
For each file, ab sent three requests to nginx.

Since M𝟑 does not have network support yet, I used a load generator that sends these
requests to a replayer. The replayer replays the trace obtained from nginx’s worker
process, reading the requests from the load generator and writing the responses back to
the load generator. To communicate between the load generator and the replayer, one
message-passing channel is used for signaling and shared memory is used to exchange
the data (via the DTU).

To evaluate the scalability, I measured the total number of requests per second
with a varying number of replayer instances (nginx instances) in parallel, as shown in
Figure 8.4b. As with the standalone applications, I used a varying number of independent
M𝟑FS instances. In these benchmarks, the system contained one PE for the kernel, one
for the pager, 𝑛 for M𝟑FS (1, 2, 4, and 8),𝑚 for the nginx instances (the x-axis in the plot),
and sufficiently many PEs for the load generators to stress 𝑚 nginx instances. All PEs
are configured as before. The results in Figure 8.4b show that the requests per second
increase almost linearly with sufficiently many file-system servers. In other words, the
kernel is not significantly limiting the scalability of nginx.

8.4 Efficiency

In the previous sections, I used dedicated PEs for OS servers to evaluate the performance
and scalability if sufficiently many PEs are available. In this section, I analyze the impact
on the performance and scalability if PEs need to be shared using M𝟑’s context switching
mechanism. In other words, I evaluate how efficiently M𝟑 can utilize the available PEs.

130

Section 8.4 – Efficiency

tar untar shasum sort find SQLite LevelDB

0

1

2

3
R

e
la

ti
v

e
 r

u
n

ti
m

e

M³ (3 PEs) M³ (2 PEs) M³ (1 PE) Linux (1 core)

Figure 8.5: Performance of the standalone applications with a varying number of user
PEs. The runtime is shown in relation to the runtime on M𝟑 with three user PEs.

cat|awk cat|wc grep|awk grep|wc

0.90

0.95

1.00

1.05

1.10

R
e

la
ti

v
e

 r
u

n
ti

m
e

M³ (5 PEs) M³ (3 PEs) M³ (2 PEs) Linux (2 cores)

Figure 8.6: Performance of pipelines of applications with a varying number of user PEs.
The runtime is shown in relation to the runtime on M𝟑 with five user PEs.

8.4.1 Single Application Instances

The first question to answer is: how does the performance of the standalone applications
and the pipelines of applications used in Section 8.2 change, if OS servers do not run on
dedicated PEs, but share the PEs with the applications? To answer this question, I ran
the benchmarks again and reduced the number of PEs in two steps. In the first step, I
ran all OS servers on the same PE and in the second step, I ran the OS servers and the
applications on a single PE.

The results for the standalone applications are shown in Figure 8.5, which shows the
average runtime of three runs, preceded by one warm-up run, in relation to the average
runtime on M𝟑 with three user PEs (one PE for M𝟑FS, one PE for the pager, and one PE
for the application). The first step (“M𝟑 (2 PEs)” in Figure 8.5) runs all OS servers on the
first PE and the application second PE. The second step (“M𝟑 (1 PE)”) runs all OS servers
and the application on a single PE. As a reference, I also show the performance on Linux
with one core again. As the results show, using a single dedicated PE for both servers
has almost no impact on the performance. Running both servers on the same PE as the
application leads to a performance degradation in some cases. For tar and untar, the
performance is reduced by 17 % and 12 %, respectively, but is still about twice as fast as
on Linux. In other words, M𝟑’s performance benefits for data-intensive applications that
have been shown in Section 8.2 shrink slightly, because of M𝟑’s slow remote context
switches. shasum and sort show almost no performance degradation, whereas find and
SQLite experience a significant slowdown. The reason is, that both find and SQLite
communicate heavily with M𝟑FS, leading to many context switches. The performance
of LevelDB degrades slightly when using a single PE, but is still better than on Linux.

Figure 8.6 shows the results for the pipelines of applications, relative to the runtime

131

Chapter 8 – Evaluation

1 2 4 8 16 32
0

25

50

75

100
P

a
ra

l.
 e

f f
. (

%
)

of applications

tar untar f ind sqlite
leveldb shasum sort

(a) Standalone applications

P
a

ra
l.

 e
f f

. (
%

)

of pipes
2 4 6 8 10 12 14 16

80

85

90

95

100

cat|wc cat|awk
grep|wc grep|awk

(b) Pipelines of applications

Figure 8.7: Parallel efficiency of the standalone applications and application pipelines
without additional PEs for servers

on M𝟑 with five user PEs (one PE for M𝟑FS, one PE for the pipe server, one PE for the
pager, and two PEs for the applications). Analogous to the standalone applications, the
first step (“M𝟑 (3 PEs)” in Figure 8.6) runs all OS servers on the first PE and the two
applications on the other two PEs. The second step (“M𝟑 (2 PEs)”) runs all servers and
the two applications on two PEs. In this case, all servers and applications can run on
both PEs and the kernel performs context switches and migrations as necessary (see
Section 7.4.3). As for the standalone applications, the runtimes are the averages from
three runs, preceded by one warm-up run. In this case, the performance degradation is
at most 6 % when using two user PEs instead of five. Therefore, the performance on M𝟑

with two user PEs is still on the same level as Linux with two cores.

8.4.2 Multiple Application Instances

I have shown in Section 8.3 that the M𝟑 kernel scales well in most cases to up to 32
parallel applications. However, I used dedicated PEs for the OS servers, preventing to
use these PEs for applications. In this section, I evaluate the parallel efficiency that can
be achieved if the application PEs are shared with the OS servers. To this end, I ran
the standalone and pipeline benchmarks again without using dedicated PEs for the OS
servers. In other words, the system consists of 𝑛 + 1 PEs: one kernel PE and 𝑛 user PEs
for application instances. Each application instance is pinned on its PE, whereas the OS
servers can freely migrate between the 𝑛 user PEs.

The results are depicted in Figure 8.7, which shows the parallel efficiency using
the runtime of a single application instance with dedicated PEs for OS servers as the
baseline. In other words, a parallel efficiency of 100 %means that the average runtime of
all application instances without dedicated PEs for OS servers is the same as the runtime
of a single application instance with dedicated PEs for OS servers. Note that Figure 8.7a
does not show the results for higher application counts, if the results were already
unacceptable for lower application counts. Additionally, remember that Section 8.3
showed the scalability for the standalone benchmarks with a varying number of M𝟑FS
instances. To keep the plot simple, Figure 8.7a only shows the highest parallel efficiency
that was achieved with any number of M𝟑FS instances.

As depicted in Figure 8.7a, find and SQLite show disappointing results. The parallel
efficiency starts at 33 % and 29 %, respectively, and further degrades with more applica-
tion instances. As already outlined in the previous section, letting a single instance of
these applications share a PE with OS servers results in bad performance, because of
the many calls to the OS servers, requiring many context switches. Since these context

132

Section 8.4 – Efficiency

switches already cause a significant load in the kernel, running multiple applications
results in even worse performance. The results for tar, untar, and LevelDB are better
due to less frequent calls to OS servers, but also lead to unacceptable results with more
than eight application instances. In contrast to that, shasum and sort scale well even
when sharing the PE with OS servers. As shown in Figure 8.7b, letting pipelines of
applications share their PEs with OS servers also leads to good results.

A counter-intuitive effect in these benchmarks is that an increasing number of
application or pipe instances sometimes leads to better performance. For example,
LevelDB’s parallel efficiency increases from a single application instance to two instances,
as shown in Figure 8.7a. The reason is that the performance depends on whether a
call to an OS server leads to a context switch on the caller’s PE (PE-local call), to a
context switch on another PE (remote call), or no context switch at all (remote fast call)
because the server is already running on a different PE. The PE-local call is the most
expensive type, because it requires two context switches (from the application to the
server and back). The remote call is cheaper, because it only requires a single context
switch, whereas the remote fast call is the cheapest type of call. Which of these call
types is used depends on the exact timing of the call and the calls of other applications.
However, the M𝟑 kernel still lacks good heuristics to decide which of these call types
should be used. At the moment, the kernel uses the PE-local call whenever a remote
call is not immediately possible, because no other PE is idling. As the other PEs in these
benchmarks are typically busy with running other applications, the PE-local call is used
in most cases. Hence, there is still room for optimization.

8.4.3 System Efficiency

As shown in the previous section, some workloads yield a good parallel efficiency if
PEs are shared among applications and OS servers. In other cases, PE sharing leads to a
degradation of the parallel efficiency. Furthermore, Section 8.3 showed that the parallel
efficiency depends on the number of M𝟑FS instances if OS servers run on dedicated
PEs. This raises the question how efficiently M𝟑 can run a given set of applications by
choosing the best number of OS servers and placing the OS servers in the best possible
way. I evaluate that by a measure I call system efficiency. The system efficiency is defined
as 𝑛

𝑚 ⋅ 𝑒, whereas 𝑛 denotes the number of application instances, 𝑚 denotes the total
number of used PEs, and 𝑒 denotes the achieved parallel efficiency4. In other words, the
system efficiency determines how efficient the system runs a specific workload with
a specific number of PEs. In this work, I only vary the number and placement of OS
servers and always use dedicated PEs for all application instances. For example, running
eight application instances on eight PEs with a parallel efficiency of 80 % results in a
system efficiency of 8

8 ⋅ 0.8 = 0.8. If these eight instances achieve a parallel efficiency of
85 % with two additional PEs for OS servers, the system efficiency is only 8

10 ⋅ 0.85 = 0.68.
Hence, this case prefers to share the application PEs with OS servers.

To determine the optimal number and placement of OS servers, I calculate the
system efficiency for the different number of OS servers as done in Section 8.3 and
calculate the system efficiency when sharing application PEs with OS servers as done
in Section 8.4.2. The system efficiency with dedicated PEs for OS servers is calculated
as 𝑛

𝑛+1+𝑠 ⋅ 𝑒, because it requires 𝑛 PEs for applications, one kernel PE and 𝑠 server PEs.
For shared PEs, the system efficiency is calculated as 𝑛

𝑛+1 ⋅ 𝑒, because it only requires 𝑛
4Remember that parallel efficiency is defined as 𝑒 = 𝑇1

𝑇𝑛 with 𝑇1 as the runtime of a single application
instance running alone and 𝑇𝑛 as the average runtime of 𝑛 application instances running in parallel.

133

Chapter 8 – Evaluation

20 36 20 38
22 42

22

42

20 38

17 33 17 33 17 33 17 36 17 33 17 33

0

20

40

60

80

100

ta
r

u
n

ta
r

fi
n

d

sq
li

te

le
v

e
ld

b

sh
a

su
m

so
rt

ca
t−

w
c

ca
t−

a
w

k

g
re

p
−

w
c

g
re

p
−

a
w

k

S
y

st
e

m
 e

ff
ic

ie
n

cy
 (

%
)

16 apps 32 apps

Figure 8.8: System efficiency for 16 and 32 application instances, using the best possible
number and placement of OS servers. The number on top of each bar shows the total
number of used PEs.

PEs for applications/servers and one kernel PE. Figure 8.8 shows the highest system
efficiency for each benchmark, using the best result of the just described calculations
for 16 and 32 application instances. The number on top of each bar in the figure denotes
the number of PEs used to achieve this result. Note that for the pipe benchmarks, 16
application instances denotes 8 pipes and 32 application instances denotes 16 pipes.

As can be seen in Figure 8.8, for most applications, the system efficiency is above
75 %, for the compute-intensive applications even above 90 %. Additionally, the results
show that the pipe benchmarks mostly prefer to share the application PEs with OS
servers, whereas the standalone benchmarks mostly prefer dedicated PEs for OS servers.
The system efficiency for find, SQLite, and LevelDB is rather low due to their frequent
calls of OS servers. Note however, that system efficiency is defined rather strict in
this evaluation, because the time spent in OS servers is classified as “useless”, which
is not generally true. Additionally, I assume that all PEs can be fully utilized at the
same time and over longer periods of time. Intel processors starting with the Nehalem
microarchitecture already use Intel’s Turbo Boost technology to increase the clock
frequency to the highest level only if permitted by the thermal and power constraints.
Current predictions of the dark silicon effect [59, 142] suggest that this trend continues
and leaves significant portions of the chip area “dark” for most of the time. In this case,
dedicating a few PEs to OS servers that are typically underutilized or are clocked at
a lower frequency, might be a good strategy to clock the application PEs with a high
frequency over longer periods of time.

8.5 Autonomous Image Processing

This section shows the benefits of autonomous accelerators based on a real-world sce-
nario. I am using an image-processing scenario as it is imaginable in data centers, similar
to Google’s TPU [69] workloads. The cloud provider offers a set of image-processing
accelerators as a service and allows customers to perform large-scale image processing
on these accelerators. An efficient method for large images is FFT convolution [103],
which performs a 2D fast Fourier transformation (FFT) on the image, multiplies the
result pointwise with an image filter, and performs the inverse FFT. Depending on the
filter, FFT convolution can be used for example for edge detection or low-pass filtering.

To evaluate this scenario, I use three types of stream-processing accelerators called

134

Section 8.5 – Autonomous Image Processing

1

R
u

n
ti

m
e

 (
m

s)

0
15
30
45
60
75

2 3 4

Assist. Auton.

(a) Runtime (NoC)

1

C
P

U
 t

im
e

 (
re

l)

0.0
0.2
0.4
0.6
0.8
1.0

2 3 4

Assist. Auton.

(b) CPU time (NoC)

1

R
u

n
ti

m
e

 (
m

s)

0
15
30
45
60
75

2 3 4

Assist. Auton.

(c) Runtime (PCIe)

1

C
P

U
 t

im
e

 (
re

l)

0.0
0.2
0.4
0.6
0.8
1.0

2 3 4

Assist. Auton.

(d) CPU time (PCIe)

Figure 8.9: Total runtime (a and c) and the required CPU time (b and d) for different
numbers of accelerator chains when integrating the accelerators into the NoC and
attaching them via PCIe

FFT, MUL, and IFFT. As described in Chapter 6, the accelerators use a local scratchpad
memory (SPM) of 2 KiB in this case (the block size for the 32 × 32 point FFT) and use
the file protocol to stream the data block-wise from the input stream via the SPM to
the output stream. I used Aladdin [129] to determine the computation times for the
three accelerators offline. As described in Section 6.7.1, Aladdin uses a configuration
file to analyze trade-offs between power, chip area, and performance by, for example,
specifying loop unrolling factors. To get reasonable results, I generated all sensible
configurations and picked the sweet spot between performance and the product of chip
area and power consumption. I obtained 5856 cycles for FFT and IFFT and 1189 cycles
for MUL.

These three types of accelerators run VPEs that form an FFT-MUL-IFFT chain to
process a 4MiB large image file and store the resulting image as a file as well. In this
experiment, I run 1 to 4 such chains simultaneously without context switching, thus
using 1 to 4 instances of each accelerator type. To show the benefits of autonomous
accelerators, I compare M𝟑’s autonomous approach with the assisted approach. The
assisted approach drives the accelerators from software using a single general-purpose
core. Hence, software is responsible for loading the input data into the SPM, starting the
accelerator via a message, asking the accelerator’s DTU to move the result to the next
SPM, and to write the final result to the output file. The autonomous approach connects
the DTU endpoints of the accelerators as follows. The input of the first and the output
of the last accelerator is connected to a file. The middle accelerator is connected directly
to its neighbors, as explained in Section 6.6.2.

I simulate two ways to attach accelerators to the system: network-on-chip (NoC) and
PCI express (PCIe). Integrating accelerators with the CPU into a NoC leads to superior
performance due to the lower latency. Connecting accelerators as an add-on card via
PCIe to the host system provides more flexibility, because accelerators can be designed
independently of the CPU. I compare the assisted and autonomous approach in terms of
performance and CPU time for both the NoC version and the PCIe version. Figure 8.9
shows the overall runtime (a and c for NoC and PCIe, respectively) and the CPU time
spent to drive the accelerators (b and d), depending on the number of accelerator chains.
I show the averages of three runs, preceded by one warm-up run. The standard deviation
is below 3 %. I simulate the PCIe-attached add-on card by connecting the accelerators
via a bridge with 500 ns delay to the host system, which is the typical one-way latency
for PCIe gen 3 [50, 54, 76, 125]. The one-way latency within the NoC, as simulated by
the crossbar, is about 10 ns. For both the NoC and the PCIe version, the DRAM is part
of the host system and stores the in-memory file system.

As depicted in Figure 8.9a, using the assisted approach leads to a slightly worse

135

Chapter 8 – Evaluation

1

R
u

n
ti

m
e

 (
re

l)

0.98

1.00

1.02

1.04

1.06

1.08

2 3 4

1ms 2ms 4ms

(a) Stream processing (NoC)

1

R
u

n
ti

m
e

 (
re

l)

0.98

1.00

1.02

1.04

1.06

1.08

2 3 4

1ms 2ms 4ms

(b) Stream processing (PCIe)

Sten
0.98

1.00

1.02

1.04

1.06

1.08

R
u

n
ti

m
e

 (
re

l)

MD FFT SPMV

1ms 2ms 4ms

(c) Request processing (NoC)

Figure 8.10: Context switching overhead for stream processing, depending on the
number of accelerator chains, and request processing, depending on the workload. Each
plot shows the overhead for different time slice lengths (1ms to 4ms).

overall runtime with an increasing number of accelerator chains when integrating the
accelerators into the NoC. When using PCIe, the overall runtime increases significantly
with the number of accelerator chains, leading to a slowdown of factor 4.7 with four
chains. In contrast, the autonomous approach always achieves the same runtime,
independent of the number of chains. Even more importantly, the assisted approach
keeps the CPU busy most of the time. Within the NoC, the CPU is utilized 100 % of the
time starting at four accelerator chains, whereas with PCIe, the CPU is already utilized
100 % of the time starting with two chains. The autonomous approach does not cause
significant CPU load in either case. Additionally, Figure 8.9c shows that the autonomous
approach outperforms the assisted approach for PCIe-based accelerators even if the
assisted approach does not fully utilize the CPU. The reason is the 500 ns delay when
communicating with the accelerators, which prevents the assisted approach from fully
utilizing the accelerators.

Note that the performance can still be improved for both the assisted and the
autonomous approach. For the assisted approach, batching could be used to reduce
the interaction frequency with the accelerators. However, batching is only possible
by increasing the SPM sizes of the accelerators, which is expensive in terms of area
and energy and increases the time the accelerator is not interruptible. Additionally, the
assisted approach can trade more CPU time for more accelerator performance by using
multiple cores to drive the accelerators, until the PCIe bus becomes the bottleneck. The
autonomous approach does not suffer from the trade-off between SPM size and CPU
utilization and can further improve the performance by overlapping data transfers to
the DRAM instead of issuing one transfer at a time.

8.6 Accelerator Sharing

After showing the benefits of autonomous image processing, this section evaluates the
context-switching overhead if accelerators need to be shared. To this end, I compare the
runtime of two sequential accelerator usages with two interleaved usages. I start with
the image-processing scenario from the previous section. In this case, I only use the
autonomous approach and put each chain of VPEs into the same gang to benefit from
gang scheduling (see Section 7.4.5). Figure 8.10a and Figure 8.10b show the average
context-switching overhead using three runs, preceded by one warm-up run. The
standard deviation is less than 2 %. I vary the time slice length for context switching
between 1ms and 4ms. As the results show, using a still rather short time slice of 4ms

136

Section 8.7 – Software Complexity

Component SLOC
Kernel 5398
PEs & VPEs 1839
Syscalls 970
Capabilities 676
Remote control 658
Memory 551

Pager 852
M𝟑FS 1794
Pipe server 619
(a) Complexity of kernel and servers

Component SLOC
CU-specific helper 1049
x86-64-specific code 362
ARMv7-specific code 149
RCTMux 176
VMA (x86-64) 301

Base libraries 5204
x86-64-specific code 209
ARMv7-specific code 178

libm3 5843
(b) Complexity of support components

Table 8.1: Complexity of software components

leads to less than 0.9 % overhead when integrating the accelerators into the NoC and
less than 2.9 % overhead when attaching them via PCIe.

For the request-processing accelerators, I use the same workloads as in Chapter 6
and the accelerator support module performs all invocations of the accelerator logic
in a single batch from software. Like for the image-processing scenario, the input
and output data is stored in files. Figure 8.10c shows the average context-switching
overhead using three runs, preceded by one warm-up run. The standard deviation is
less than 1 %. Similarly to the stream-processing accelerators integrated into the NoC,
the overhead is less than 0.4 % with a time slice of 4ms. Note that I only evaluate this
case by integrating these accelerators into the NoC, because these accelerators perform
fine-grained memory accesses to the files that are stored in the host system. Storing the
data into a memory on the PCIe-attached addon card is supported as well, but out of
scope in this work. As in other system architectures, it requires to copy the data to the
addon card in advance and to copy the result back to the host system afterwards.

8.7 Software Complexity

Finally, I evaluate the complexity of the software components that are or can be part
of the trusted computing base (TCB). A simple and widely used metric to measure the
complexity of software is the number of code lines. I use the tool cloc [2], which counts
the physical lines of source code (SLOC), excluding blank lines and comments. Note
that the results depend on the coding style and programming language and therefore
only allow rough comparisons of different software components.

Table 8.1 shows the SLOC numbers for the different components of M𝟑. For some
of the components I show the sizes of interesting subcomponents. The kernel is part
of the TCB of all applications, because the kernel has the full control over the system.
If an application uses a server such as the pager or M𝟑FS, this server is also part of
the application’s TCB, because the application depends on the server’s correctness.
However, in contrast to the kernel, a server has typically less power over an application.
For example, a malicious pipe server can prevent that an application can successfully use
pipes, but cannot access the application’s private data or influence the application. The
CU-specific helper on a specific PE is in the TCB of all applications running on this PE.
For example, the CU-specific helper for ARMv7 is not in the TCB of applications running
on x86 PEs. Finally, M𝟑 provides multiple libraries for the other software components.

137

Chapter 8 – Evaluation

The base libraries are used by the kernel, the CU-specific helper, servers, and applications.
These libraries provide routines to access the DTU, generic data structures, and other
generic utilities that can be used in any context. In contrast, libm3 is only used by
servers and applications and uses system calls to implement its functionality. For that
reason, the kernel cannot use libm3.

As shown in Table 8.1, the M𝟑 kernel has almost no ISA-specific code, except for
a few lines in the base libraries that are used by the kernel. ISA-specific code is not
required, because the M𝟑 kernel is a simple program that runs alone on a dedicated PE
and interacts with the user PEs via DTU-based message passing and memory accesses.
The small amount of ISA-specific code allows to port the kernel to any general-purpose
ISA with little effort. Another interesting property of M𝟑 is that the kernel with about
10 000 lines in total (the sum of the lines for the kernel and the base libraries) is similarly
small as NOVA [137], one of the smallest L4 kernels, with about 9000 lines. At the same
time, M𝟑 supports more complex platforms with a large variety of CUs, ranging from
complex general-purpose cores to fixed-function accelerators. In contrast, NOVA only
supports homogeneous x86-based platforms.

138

Chapter 9

Conclusion and Future Work

This chapter starts by summarizing the most important points and discusses the advan-
tages and disadvantages that the described system architecture provides. Afterwards, I
elaborate on extensions and future work.

9.1 Conclusion

In this work, I described and evaluated a new system architecture that integrates accel-
erators as first-class citizens. The system architecture uses three key principles:

1. adding new hardware component, called data transfer unit (DTU), next to each
compute unit (CU), leading to a system that consists of multiple and heterogeneous
processing elements (PEs) with uniform interfaces,

2. running the kernel on a dedicated kernel PE that controls applications and accel-
erators on the user PEs remotely by configuring their DTUs, and

3. enabling DTU-based communication channels between user PEs, established by
the kernel and bypassing the kernel during the actual communication.

The uniform interface that the DTU provides allows my system architecture to inte-
grate very heterogeneous CUs, ranging from general-purpose cores to fixed-function
accelerators, as first-class citizens. The investigation of this system architecture lead to
various insights, which I discuss in the following.

Access to OS services and direct communication The two main features of the
DTU are message passing between CUs and RDMA-like memory access. Based on these
features, I showed how a generic and accelerator-friendly file protocol (see Section 4.3)
allows all types of CUs to access arbitrary file-like objects such as files, pipes, or sockets.
The direct access to OS services is one of the key principles to run accelerators autono-
mously, that is, without continuous assistance by the CPU. Furthermore, the uniform
communication interface allows easy interaction between all CUs. I have also shown in
Section 6.6.2 that the file protocol can be extended for direct accelerator-to-accelerator
communication, which leads to performance improvements and reduces the system
load over a pipe-based communication, if multiple accelerators operate in a chain (see
Section 6.7.3).

139

Chapter 9 – Conclusion and Future Work

Context switching on all CUs Although the kernel-bypassing communication via
the DTU has proven beneficial for performance and the autonomous operation of ac-
celerators (see Section 8.5), the combination with context switching is challenging. I
showed in Chapter 7 that VPE-aware communication, message forwarding by the kernel,
and idle notifications are sufficient to successfully combine kernel-bypassing commu-
nication with context switching. Furthermore, I showed that the context-switching
concept supports context switching on all types of CUs by performing the potentially
complex decisions in software by the M𝟑 kernel and only simple, but CU-dependent
save and restore actions in hardware. The evaluation in Section 8.6 demonstrated that
accelerator sharing leads to an overhead of less than 1 % with time slices of at least
4ms and when integrating the accelerators into the NoC. Attaching accelerators via a
PCIe-like interconnect leads to an overhead of less than 2.9 %.

Autonomous accelerators I have shown in Chapter 6, on the example of request-
processing accelerators, how fine-grained interruptibility can be combined with au-
tonomous operation. This combination achieves the best performance and allows at the
same time to interrupt the accelerator with low latency in case a more important job for
the accelerator arrives. Additionally, I have demonstrated that stream-processing accel-
erators can run autonomously based on the direct access to OS services and unassisted
accelerator-to-accelerator communication. The evaluation in Section 8.5 showed that
the autonomous operation improves the performance by a factor of 4.7 and reduces the
CPU load by a factor of 30 when attaching image-processing accelerators via PCIe. My
approach also offers to trade larger file extents or larger shared-memory areas when
using pipes for better performance and improved autonomy: increasing the size of the
extent or the shared-memory area reduces the number and frequency of interactions
with the server.

Easy integration of accelerators Tiled architectures [143, 151] are already used
today, because they enable a modular system design and an easy integration of different
CUs into one system. My approach takes tiled architectures one step further by addi-
tionally providing accelerator designers with the necessary interfaces to integrate an
accelerator as a first-class citizen. In other words, accelerator designers only need to
use these interfaces to get access to OS services, to enable context switching support, or
to communicate with arbitrary other CUs.

Support of non-coherent andmixed-ISA systems The prototype implementation
does not take advantage of cache coherency, but handles the underlying platform as a
distributed system. Additionally, the M𝟑 kernel is almost ISA-independent and the CU-
specific helper has only a few hundred lines of ISA-specific code. This design allows M𝟑

to support non-coherent systems, mixed-ISA systems, systems with multiple coherence
domains, and distributed-memory systems such as Tomahawk comparatively easily.
Furthermore, system designers are not forced to provide global cache coherency, which
can be challenging for very heterogeneous platforms.

Performance with sufficiently many PEs Evaluating the performance of my sys-
tem architecture in Section 8.2 revealed that most workloads achieve a comparable
performance as Linux on traditional architectures, if sufficiently many PEs are available
to use a dedicated PE for each application and server. For data-intensive file system

140

Section 9.1 – Conclusion

workloads, M𝟑 outperforms Linux by a factor of two by taking advantage of the DTU
and providing applications direct access to large amounts of file data at once.

Scalability with sufficiently many PEs Similarly to the delivered performance,
Section 8.3 showed that the M𝟑 kernel scales well for most workloads, achieving a
parallel efficiency of above 90 % with applications on 32 user PEs, as long as sufficiently
many PEs are available to run OS services on dedicated PEs. Some workloads such as
SQLite that perform many capability operations, achieve a parallel efficiency of 83 %
with 16 application instances, but only 59 % with 32 instances. In other words, the single
kernel PE becomes a bottleneck in this case with more than 16 application instances.

Performance and scalabilitywith PE sharing The evaluation also revealed a short-
coming of the current OS design: if applications need to share PEs with servers, the
performance degrades significantly for OS-intensive workloads as shown in Section 8.4.1.
For example, the runtime of find and SQLite increases by about a factor of three if these
applications share a PE with the pager and file system server. This slowdown is caused
by the context switches between applications and servers that are performed remotely
by the M𝟑 kernel and therefore significantly slower than traditional core-local context
switches. Performing context switches remotely and centralized by the M𝟑 kernel leads
to scalability problems as well. As has been evaluated in Section 8.4.2, the current OS
design cannot run multiple OS-intensive applications efficiently if their PEs need to be
shared with servers. Despite these performance and scalability problems for some work-
loads, remote context switches are required to support context switches on accelerators.
However, these problems indicate that a special case is required to run OS-intensive
general-purpose workloads efficiently even if PEs need to be shared. I discuss a solution
to this problem in more detail in the next section.

Dedicated kernel PE Running the kernel on a dedicated PE is one of the key princi-
ples to support arbitrary user PEs and has numerous benefits. For example, the kernel
does not share hardware resources such as registers, caches, and TLBs with applications,
which improves performance and prevents side-channel attacks on the kernel based
on these resources, such as Spectre [78] and Meltdown [89], by design. Furthermore,
kernel PEs and user PEs can be specialized independently. However, a dedicated kernel
PE can reduce the system’s scalability even though the kernel is primarily responsible
to setup communication channels. Additionally, a dedicated kernel PE can lead to less
system utilization, because applications cannot run on the kernel PE. However, the dark
silicon effect [59, 142] might already prevent OSes from fully utilizing all PEs on future
platforms.

Dedicated user PEs vs. user PE sharing As has been shown in the evaluation, M𝟑

achieves the best performance if all applications and servers run on dedicated user
PEs and performance typically degrades if PEs need to be shared. For these reasons,
M𝟑 prefers to pin applications and servers onto dedicated PEs and distribute them
horizontally in the system instead of co-locating them on a single PE. The horizontal
distribution is used by other research projects as well [35, 96, 150], but whether this
approach is preferable on future platforms is an open question. On the one hand,
increasing core counts, the dark silicon effect, and recent security vulnerabilities based
on speculative execution and resource sharing [78, 89, 149] suggest that horizontal

141

Chapter 9 – Conclusion and Future Work

distribution of applications will be the default in the future. On the other hand, co-
location and resource sharing is still important today to use systems efficiently.

Reduced OS complexity I have shown that the uniform interface provided by the
DTU simplifies the management of heterogeneous systems. This makes the M𝟑 ker-
nel independent of the user PEs it manages and results in a similar kernel size as
NOVA [137], one of the smallest L4 kernels (see Section 8.7). Despite the comparable
size, M𝟑 supports more complex platforms with a large variety of CUs, ranging from
complex general-purpose cores to fixed-function accelerators, whereas NOVA only
supports homogeneous x86-based platforms.

Reduced trusted computing base My system architecture isolates PEs at the network-
on-chip (NoC) by controlling the PEs’ access to PE-external resources through the DTU.
In contrast to traditional architectures, this allows to remove the CUs in user PEs from
the trusted computing base (TCB), because the means of these CUs (e.g., different CPU
modes) are not required for isolation. However, I described in Section 5.11 that additional
means are required for PE-type C, which reuses the memory management unit (MMU)
of general-purpose cores for virtual-memory support. Since the MMU of the supposedly
untrusted general-purpose core determines the physical addresses on memory accesses,
the DTU needs to restrict these addresses to prevent that the untrusted core can access
all physical memory in the system.

Reuse of existing hardware components My system architecture reuses existing
hardware components such as general-purpose cores, caches, memories, network-on-
chips, etc. without requiringmodifications. Additionally, an existing accelerator logic can
be reused without changes as explained in Section 6.4. However, I also presented possible
improvements that may require changes. For example, reducing the context-switching
latency of an accelerator can require changes to the accelerator logic, independent of my
system architecture, as described in Section 6.5.2. Similarly, I explained in Section 7.6
that the ability to reset a general-purpose core allows to share the core among multiple
applications without being forced to trust the core to properly enforcement its different
CPU modes. Whether the reset requires changes to the core is an open question.

Architecture is based on custom hardware Finally, the proposed system architec-
ture is based on the addition of a DTU next to each CU, which prevents M𝟑 to run on
commercial-off-the-shelf (COTS) hardware. However, upcoming interconnects such
as GenZ [6] already provide the DTU’s most important features: message passing and
RDMA-like memory access and the ability to control these features to build secure
systems. In other words, it is imaginable that M𝟑 can be adapted for these interconnects
to run on future COTS hardware without requiring a DTU.

9.2 Extensions and Future Work

After the discussion of the system architecture with its advantages and disadvantages,
this section elaborates on extensions that either already exist, but were not ready in
time for this disseration, or are imaginable for future work.

142

Section 9.2 – Extensions and Future Work

Support for peripheral devices Based on the work of Lukas Landgraf and Georg
Kotheimer, I was able to take the idea of the system architecture further by integrating
peripheral devices as PEs as well. Lukas focused on the integration of an IDE controller
to support persistent storage, whereas Georg added support for network interface
cards [79]. Both works are based on a hardware proxy between the peripheral device
and the DTU that translates port-mapped I/O (PMIO), memory mapped I/O (MMIO),
direct memory access (DMA), and interrupts to mechanisms of the DTU. The generality
of the proxy enables the integration of arbitrary PCI devices into the system architecture
without requiring modifications to the PCI device.

Network stack In Georg’s undergraduate thesis [79], he did not stop at the hardware
support for networking, but also ported lwIP [49], a lightweight TCP/IP stack, to M𝟑.
Initial measurements of latency and throughput in comparison to Linux showed similar
or superior results.

File system for persistent storage Based on the support for IDE controllers by
Lukas Landgraf, Sebastian Reimers designed and implemented extensions to the in-
memory file system M𝟑FS for persistent storage in his bachelor thesis [121]. The focus
of his work was the addition of a page cache to support persistent storage efficiently,
while at the same time maintaining M𝟑FS’ advantages in terms of performance and
autonomous accelerators.

Core-local context switching As discussed in the previous section, M𝟑’s perfor-
mance and scalability degrades for some workloads if PEs are shared. This problem
stems from the fact that M𝟑 performs context switches on the user PEs remotely from
the kernel PE. These context switches are significantly more expensive than core-local
context switches and the single kernel PE quickly becomes the bottleneck with an
increasing number of user PEs that demand context switches. Although the remote
context switches are required for accelerators, general-purpose cores typically have
all necessary architectural features to support core-local context switches. For these
reasons, a follow-up project could introduce a special case for general-purpose cores
by extending the CU-specific helper to a second-level kernel. Each second-level kernel
could get a set of VPEs from the M𝟑 kernel and switch between these VPEs locally
without involving the M𝟑 kernel. Additionally, the second-level kernel could provide an
L4-like IPC mechanism between these VPEs. In other words, this extension can be seen
as a combination of M𝟑 and traditional OSes such as L4 [77, 83, 137] or Barrelfish [35].
However, further research is necessary to determine how independent of the M𝟑 kernel
the second-level kernel can operate and whether a privileged DTU is required.

Scaling to larger systems This work uses a single kernel PE, which inherently limits
the system’s scalability with the number of user PEs. As evaluated in Section 8.3,
the M𝟑 kernel scales well to 32 user PEs for most workloads, because the kernel is
primarily used to establish communication channels and not involved in the actual
communication. However, scaling to more user PEs requires multiple kernel PEs and
their synchronization. Matthias Hille is addressing this challenge in his dissertation by
partitioning the user PEs into groups and by using one kernel PE per group with local
resources and capabilities. The kernel PEs communicate via message passing to enable
cross-group interaction in a way transparent for applications. We have shown that this
approach achieves a parallel efficiency of 70 % to 78 % when examining a system with

143

Chapter 9 – Conclusion and Future Work

576 PEs executing 512 application instances, while using 11 % of the system’s PEs for
the OS [66].

Support for GPUs and FPGAs The goal of this work is to integrate all types of
CUs as first-class citizens into the system, which enables access to OS services, direct
communication, and context switching for all CUs. As a proof of concept, I demonstrated
these benefits for the two extreme points in the design space of CUs in this work. On
the one end of the spectrum, complex general-purpose cores provide all architectural
features that are required for an OS kernel. Fixed-function accelerators on the other end
of the spectrum have none of these features and do not even execute software. For these
reasons, I believe that the concepts and mechanisms developed in this thesis can be
applied to other types of CUs as well. For example, FPGAs are similar to fixed-function
accelerators with the difference that the logic on an FPGA can be reconfigured at runtime.
I believe that GPUs can be integrated by adding one DTU for each of the groups of cores
that execute the same instruction stream (Warp in Nvidia’s terminology). However, how
exactly FPGAs and GPUs can be integrated in the best possible way is an open question
and demands further research.

Support of PEs with multiple cores or hyper-threads In this work, each general-
purpose PE uses a single core without hardware multithreading. As mentioned in
Section 3.4.8, the DTU can be shared among multiple hardware threads by, for example,
employing per-thread DTU registers, but sharing buffers and logic. Note that this
approach is transparent to software. Another option that is not transparent to software
is to use the DTU as is for multiple cores or hardware threads and multiplex the DTU in
software. For example, a full OS can be run on such a PE, as discussed in the following,
that performs all DTU accesses in the kernel and protects these accesses accordingly
with synchronization primitives.

Running a full OS on a user PE The current prototype runs only a single application
in each VPE. As described in this work, M𝟑 does not require an OS kernel on the user
PEs, but only a few hundred lines of support code (the CU-specific helper) on each PE.
For that reason, it is imaginable to run a full OS on a user PE, represented as a single
VPE by M𝟑. For example, running Linux on a user PE by integrating the support code
into the Linux kernel would allow to run legacy applications or to reuse a device driver
from Linux. Adding a DTU driver to the Linux kernel would enable the communication
between Linux and M𝟑 applications or accelerators. In such a scenario the DTU acts
as an additional layer of protection on top of the protection features of the CU. This
additional layer allows to isolate Linux from the rest of the system with the means of
the DTU without being required to trust the CU. In other words, this approach goes one
step further than virtualization, because virtualization is inherently based on the CU’s
protection features. However, how peripheral devices can be shared securely among
multiple parties with this approach is an open research question.

Support for legacy applications Besides running a full OS on a user PE, legacy
applications can be supported by providing a POSIX-emulation layer on top of libm3.
Such an emulation layer already exists for the file-system API in form of the systrace
infrastructure, which allows to trace Linux applications and replay their system calls on
M𝟑. Furthermore, initial support for the C standard library musl has been provided by
Sherif Abdalazim [23].

144

Acknowledgements

First, I would like to thank my advisor Professor Hermann Härtig for giving me the
opportunity to work at the operating systems chair and for supporting me during my
research. In particular, I am grateful for the enthusiastic and inspiring athmosphere he
created and for the freedom that he granted us all. I would also like to thank all members
of the operating systems chair for the various interesting and fruitful discussions and
for all the fun we had during the last years. Additionally, I thank Marcus Völp for his
support and guidance during the early phase of my work.

Furthermore, I would like to thank the Vodafone Chair Mobile Communications
Systems at TU Dresden and in particular Benedikt Nöthen for the interesting collabora-
tion on the Tomahawk platform and for giving me the opportunity to put my ideas into
real hardware.

I am also grateful that I had the opportunity to work with many talented and
motivated students. Christian Menard implemented the first prototype of the DTU
model for gem5. René Küttner added initial support for context switching. Lukas
Landgraf added support for storage devices, whereas Georg Kotheimer added network
support. Sherif Abdalazim ported the musl C library to M𝟑 and finally, Sebastian Reimers
extended the existing in-memory file system, M𝟑FS, for storage devices. Thank you all!

I would also like to thank Jan Bierbaum, Hermann Härtig, Matthias Hille, Maksym
Planeta, Michael Roitzsch, Timothy Roscoe, Till Smejkal, Carsten Weinhold, and Hannes
Weisbach for proof-reading parts of my dissertation.

Finally and most importantly, I want to thank my parents and my wife Daniela for
always believing in me and supporting me. Additionally, I thank my children Nele and
Lara for distracting me from work whenever necessary. Without you, this dissertation
would not have been possible!

Glossary

M𝟑FS is short for M𝟑’s file system and the name for the in-memory file system on M𝟑.

M𝟑 is short formicrokernel-based system for heterogeneousmanycores and the name
for the operating system prototype in my work.

ASM is short for accelerator support module and is a piece of hardware that is used in
accelerator PEs to invoke the accelerator logic and interact with the DTU. The
ASM comes in two flavors for the two considered accelerator types: request-
processing accelerator support module (RASM) and stream-processing accelerator
support module (SASM).

Capabilities are used by M𝟑 to manage the application’s access to resources. A capa-
bility is a pair, consisting of a pointer to the resource and permissions for this
resource. M𝟑 offers operations to exchange capabilities between applications and
also to undo these exchanges.

CU is short for compute unit and is used in this work to subsume all hardware compo-
nents that perform computations. Examples are general-purpose cores, digital
signal processors, graphics processing units, field-programmable gate arrays, and
fixed-function accelerators.

DTU is short for data transfer unit, which is used as uniform hardware interface for
all compute units and allows the communication via messages and bulk data
transfers between the compute units.

EP is short for endpoint and is used to establish communication channels between
processing and memory elements. Each data transfer unit has a set of endpoints
represented as hardware registers to store the required information for the com-
munication such as the destination element.

FPGA is short for field-programmable gate array, which is an integrated circuit designed
to be configured (many times) after manufacturing [5].

Gate is a kernel object in M𝟑 to represent DTU-based communication channels. A
receive gate allows to receive messages, a send gate allows to send messages to
a specific receive gate, and a memory gate allows to access PE-external memory.
Before a gate can be used, a DTU endpoint needs to be configured for the gate.

IPC is short for inter-process communication and denotes in my work the message-
based communication between two virtual processing elements via the DTU,
analogous to IPC on L4 [85] via the kernel.

147

Glossary

Kernel PE is short for kernel processing element and denotes the PE that runs the M𝟑

kernel, in contrast to user PEs that run applications and servers.

ME is short for memory element and represents a physical memory (e.g., DRAM or
NVRAM) that is reachable via interconnect, analogously to a processing element.

MMIO is short for memory-mapped input/output, which is a way for the CPU to
interact with peripheral devices. With MMIO, the registers of the device are
mapped into the physical address space and the CPU interacts with the device via
ordinary memory loads and stores. In the current implementation, MMIO is used
to interact with the DTU.

MMU is short for memory management unit, which is a hardware component that
provides memory protection and translates virtual addresses to physical addresses.
MMUs are typically tightly integrated with a general-purpose core.

NoC is short for network-on-chip and allows a network-based communication between
the processing and memory elements on a chip.

OS is short for operating system.

PE is short for processing element and represents the combination of a compute unit,
local memory (scratchpad memory or caches), and a data transfer unit. Therefore,
a PE is comparable to a tile in tiled architectures.

PE-type A denotes a PE that is primarily intended for Accelerators. The compute unit
in PE-type A uses an untranslated access to local scratchpad memory, which is
exclusively used by this PE.

PE-type B denotes a PE that is intended for compute units, for which virtual memory
is desired, but unsupported by the compute unit itself. Type B PEs integrate the
data transfer unit between the CU and caches and the DTU performs an address
translation on the way.

PE-type C denotes a PE that is intended for Complex general-purpose cores that have
a memory management unit and tightly integrated caches and should be reused
without any modification. In this case, the data transfer unit relies on the virtual
memory assistant that runs on the CU to translate virtual addresses.

RDMA is short for remote direct memory access and is supported in this work by
the read and write commands of the data transfer unit. These commands allow
to access data in other processing and memory elements without involving any
compute unit.

Server is in this work used to denote an application that provides a service. For example,
the server M𝟑FS provides a file system service to applications. Since the only
difference between applications and servers is that a server has registered a service
at some point, I often subsume both under the term “application”.

Service is in this work used to denote the function provided by a server.

148

Glossary

SPM is short for scratchpad memory and is often used in accelerators as a temporary
memory for the data of the computation, because SPM can be easily tailored to
the accelerator’s requirements. In this work and in the Tomahawk platform, SPM
can also be used by general-purpose cores as dedicated physical memory for all
code and data of the application running on the core.

TCB is short for trusted computing base, which is a common concept in security
research and subsumes all components (hardware, firmware, or software) the
security of a system depends on.

Tomahawk is a heterogeneous multiprocessor system-on-chip (MPSoC) designed at
TU Dresden and is primarily intended for mobile communication applications.
Tomahawk consists of multiple processing elements integrated into a network-
on-chip and a memory controller that provides access to an external DRAM.

User PE is short for user processing element and denotes a PE that run an application
or server, in contrast to the kernel PE that runs the M𝟑 kernel.

VMA is short for virtual memory assistant and is a small piece of code running on type
C PEs to assist the data transfer unit in the virtual address translation and page
fault handling.

VPE is short for virtual processing element and is an abstraction used by the M𝟑

kernel to manage the access to user processing elements. A VPE is a resource
container and an execution context and hence a combination of a process and a
thread in traditional operating systems. VPEs are used for both general-purpose
and accelerator PEs and provide the illusion that an entire PE, consisting of the
compute unit, memory, and data transfer unit, belongs to the owner of the VPE.

149

Bibliography

[1] ab - Apache HTTP server benchmarking tool.
https://httpd.apache.org/docs/2.4/programs/ab.html.
Accessed: 06/22/2018.

[2] AlDanial/cloc: cloc counts blank lines, comment lines, and physical lines of source
code in many programming languages.
https://github.com/AlDanial/cloc.
Accessed: 08/24/2018.

[3] Benchmarking GPUDirect RDMA on Modern Server Platforms.
https://devblogs.nvidia.com/parallelforall/
benchmarking-gpudirect-rdma-on-modern-server-platforms/.
Accessed: 21/09/2018.

[4] BusyBox.
https://www.busybox.net.
Accessed: 10/27/2018.

[5] Field-programmable gate array.
https://en.wikipedia.org/w/index.php?title=Field-programmable_
gate_array&oldid=863571676.
Accessed: 10/12/2018.

[6] Gen-Z Consortium: Computer Industry Alliance Revolutionizing Data Access.
https://genzconsortium.org/.
Accessed: 08/03/2018.

[7] HSA foundation ARM, AMD, Imagination, MediaTek, Qualcomm, Samsung, TI.
http://www.hsafoundation.com.
Accessed: 12/15/2017.

[8] InfiniBand Architecture Specification.
https://www.infinibandta.org/ibta-specification.
Accessed: 21/09/2018.

[9] Intel® 64 and IA-32 Architectures Software Developer’s Manual.
https://software.intel.com/sites/default/files/managed/39/c5/
325462-sdm-vol-1-2abcd-3abcd.pdf.
Accessed: 01/10/2018.

[10] An introduction to the Intel® QuickPath interconnect.
https://www.intel.de/content/dam/doc/white-paper/
quick-path-interconnect-introduction-paper.pdf.
Accessed: 01/19/2015.

151

https://httpd.apache.org/docs/2.4/programs/ab.html
https://github.com/AlDanial/cloc
https://devblogs.nvidia.com/parallelforall/benchmarking-gpudirect-rdma-on-modern-server-platforms/
https://devblogs.nvidia.com/parallelforall/benchmarking-gpudirect-rdma-on-modern-server-platforms/
https://www.busybox.net
https://en.wikipedia.org/w/index.php?title=Field-programmable_gate_array&oldid=863571676
https://en.wikipedia.org/w/index.php?title=Field-programmable_gate_array&oldid=863571676
https://genzconsortium.org/
http://www.hsafoundation.com
https://www.infinibandta.org/ibta-specification
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://www.intel.de/content/dam/doc/white-paper/quick-path-interconnect-introduction-paper.pdf
https://www.intel.de/content/dam/doc/white-paper/quick-path-interconnect-introduction-paper.pdf

Bibliography

[11] LevelDB.
https://leveldb.org.
Accessed: 06/15/2018.

[12] Linux source code: kernel/sched/fair.c (v4.16.13) - Bootlin.
https://elixir.bootlin.com/linux/v4.16.13/source/kernel/sched/
fair.c.
Accessed: 05/30/2018.

[13] Mill computing, inc.
https://millcomputing.com.
Accessed: 08/30/2018.

[14] Nvidia Pascal microarchitecture.
https://en.wikipedia.org/w/index.php?title=Pascal_
(microarchitecture)&oldid=859816379.
Accessed: 10/10/2018.

[15] OpenCAPI consortium.
https://opencapi.org/.
Accessed: 12/15/2017.

[16] RDMA over Converged Ethernet (RoCE).
https://cw.infinibandta.org/document/dl/7148.
Accessed: 21/09/2018.

[17] RISC-V Foundation | Instruction Set Architecture (ISA).
https://riscv.org/.
Accessed: 08/09/2018.

[18] SQLite.
https://www.sqlite.org.
Accessed: 07/12/2017.

[19] Tech Brief: AMD FireProTM SDI – Link and AMD DirectGMA Technology.
https://www.amd.com/Documents/SDI-tech-brief.pdf.
Accessed: 21/09/2018.

[20] Verilog.
https://en.wikipedia.org/w/index.php?title=Verilog&oldid=
861112673.
Accessed: 10/10/2018.

[21] VHDL.
https://en.wikipedia.org/w/index.php?title=VHDL&oldid=860613986.
Accessed: 10/10/2018.

[22] Xtensa customizable processor.
https://ip.cadence.com.
Accessed: 01/19/2015.

[23] Sherif Abdalazim. Porting Musl to the M3 microkernel.
https://os.inf.tu-dresden.de/papers_ps/sherif_muslm3.pdf, 2018.

152

https://leveldb.org
https://elixir.bootlin.com/linux/v4.16.13/source/kernel/sched/fair.c
https://elixir.bootlin.com/linux/v4.16.13/source/kernel/sched/fair.c
https://millcomputing.com
https://en.wikipedia.org/w/index.php?title=Pascal_(microarchitecture)&oldid=859816379
https://en.wikipedia.org/w/index.php?title=Pascal_(microarchitecture)&oldid=859816379
https://opencapi.org/
https://cw.infinibandta.org/document/dl/7148
https://riscv.org/
https://www.sqlite.org
https://www.amd.com/Documents/SDI-tech-brief.pdf
https://en.wikipedia.org/w/index.php?title=Verilog&oldid=861112673
https://en.wikipedia.org/w/index.php?title=Verilog&oldid=861112673
https://en.wikipedia.org/w/index.php?title=VHDL&oldid=860613986
https://ip.cadence.com
https://os.inf.tu-dresden.de/papers_ps/sherif_muslm3.pdf

Bibliography

[24] Reto Achermann. Message passing and bulk transport on hetero-
geneous multiprocessors. http://www.barrelfish.org/publications/
ma-acreto-transport-heterogeneous-mp.pdf, 2014.

[25] Jacob T. Adriaens, Katherine Compton, Nam Sung Kim, and Michael J. Schulte.
The case for GPGPU spatial multitasking. In Proceedings of the 18th International
Symposium on High Performance Computer Architecture, HPCA’12, pages 1–12.
IEEE, 2012.

[26] Andreas Agne, Markus Happe, Ariane Keller, Enno Lubbers, Bernhard Plattner,
Marco Platzner, and Christian Plessl. ReconOS: An operating system approach
for reconfigurable computing. IEEE Micro, 34(1):60–71, 2014.

[27] R. Alpert, C. Dubnicki, E.W. Felten, and K. Li. Design and implementation of
NX message passing using Shrimp virtual memory mapped communication. In
Proceedings of the 1996 International Conference on Parallel Processing, volume 1
of ICPP’96, pages 111–119, Aug 1996.

[28] Oliver Arnold, Emil Matus, Benedikt Noethen, Markus Winter, Torsten Limberg,
and Gerhard Fettweis. Tomahawk: Parallelism and heterogeneity in communi-
cations signal processing MPSoCs. ACM Transactions on Embedded Computing
Systems (TECS), 13(3s):107:1–107:24, Mar 2014.

[29] Nils Asmussen, Hermann Härtig, and Marcus Völp. Turning x86 into a hardware
simulator for future manycores. In Proceedings of the 3rd Workshop on Systems
for Future Multicore Architectures, SFMA’13, 2013.

[30] Nils Asmussen, Michael Roitzsch, and Hermann Härtig. M3x: Autonomous
accelerators via context-enabled fast-path communication. In 2019 USENIX Annual
Technical Conference, USENIXATC’19, pages 617–632, Renton, WA, 2019. USENIX
Association.

[31] Nils Asmussen, Marcus Völp, Benedikt Nöthen, Hermann Härtig, and Gerhard
Fettweis. M3: A hardware/operating-system co-design to tame heterogeneous
manycores. In Proceedings of the Twenty-First International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, ASPLOS’16,
pages 189–203. ACM, 2016.

[32] Francisco J. Ballesteros, Noah Evans, Charles Forsyth, Gorka Guardiola, Jim
McKie, Ron Minnich, and Enrique Soriano-Salvador. Nix: A case for a manycore
system for cloud computing. Bell Labs Technical Journal, 17(2):41–54, 2012.

[33] Antonio Barbalace, Marina Sadini, Saif Ansary, Christopher Jelesnianski, Akshay
Ravichandran, Cagil Kendir, Alastair Murray, and Binoy Ravindran. Popcorn:
Bridging the programmability gap in heterogeneous-ISA platforms. In Proceedings
of the Tenth European Conference on Computer Systems, EuroSys’15, pages 29:1–
29:16, New York, NY, USA, 2015. ACM.

[34] Can Basaran and Kyoung-Don Kang. Supporting preemptive task executions and
memory copies in GPGPUs. In Proceedings of the 2012 24th Euromicro Conference
on Real-Time Systems, ECRTS’12, pages 287–296, Washington, DC, USA, 2012.
IEEE Computer Society.

153

http://www.barrelfish.org/publications/ma-acreto-transport-heterogeneous-mp.pdf
http://www.barrelfish.org/publications/ma-acreto-transport-heterogeneous-mp.pdf

Bibliography

[35] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca
Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Singhania.
The multikernel: A new OS architecture for scalable multicore systems. In
Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles,
SOSP’09, pages 29–44, New York, NY, USA, 2009. ACM.

[36] Andrew Baumann, Chris Hawblitzel, Kornilios Kourtis, Tim Harris, and Timothy
Roscoe. Cosh: Clear OS data sharing in an incoherent world. In Proceedings of
2014 Conference on Timely Results in Operating Systems, TRIOS’14, Broomfield,
CO, 2014. USENIX Association.

[37] Shai Bergman, Tanya Brokhman, Tzachi Cohen, and Mark Silberstein. SPIN:
seamless operating system integration of peer-to-peer DMA between SSDs and
GPUs. In Proceedings of the Seventeenth USENIX Annual Technical Conference,
volume 17 of USENIX ATC’17, 2017.

[38] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. The gem5 simulator. SIGARCH Computer Architecture
News, 39(2):1–7, u 2011.

[39] Jeff Bonwick, Matt Ahrens, Val Henson, Mark Maybee, and Mark Shellenbaum.
The zettabyte file system. In Proceedings of the 2nd USENIX Conference on File
and Storage Technologies, volume 215 of FAST’03, 2003.

[40] Jeronimo Castrillon, Matthias Lieber, Sascha Klüppelholz, Marcus Völp, Nils As-
mussen, Uwe Assmann, Franz Baader, Christel Baier, Gerhard Fettweis, Jochen
Fröhlich, Andrés Goens, Sebastian Haas, Dirk Habich, Hermann Härtig, Mattis
Hasler, Immo Huismann, Tomas Karnagel, Sven Karol, Akash Kumar, Wolfgang
Lehner, Linda Leuschner, Siqi Ling, Steffen Märcker, Christian Menard, Johannes
Mey, Wolfgang Nagel, Benedikt Nöthen, Rafael Peñaloza, Michael Raitza, Jörg
Stiller, Annett Ungethüm, Axel Voigt, and Sascha Wunderlich. A hardware/soft-
ware stack for heterogeneous systems. IEEE Transactions on Multi-Scale Comput-
ing Systems, 4(3):243–259, Jul 2018.

[41] Eric S. Chung, Peter A. Milder, James C. Hoe, and Ken Mai. Single-chip heteroge-
neous computing: Does the future include custom logic, FPGAs, and GPGPUs? In
Proceedings of the 43rd Annual IEEE/ACM International Symposium on Microar-
chitecture, MICRO’10, pages 225–236. IEEE, 2010.

[42] Joel Coburn, Srivaths Ravi, Anand Raghunathan, and Srimat Chakradhar. Seca:
security-enhanced communication architecture. In Proceedings of the 2005 In-
ternational Conference on Compilers, Architectures and Synthesis for Embedded
Systems, CASES’05, pages 78–89. ACM, 2005.

[43] Emilio G. Cota, Paolo Mantovani, Giuseppe Di Guglielmo, and Luca P. Carloni. An
analysis of accelerator coupling in heterogeneous architectures. In Proceedings of
the 52nd Annual Design Automation Conference, DAC’15, pages 202:1–202:6, New
York, NY, USA, 2015. ACM.

[44] Yi Cui, Zhaohui Zhong, Deli Wang, Wayne U. Wang, and Charles M. Lieber. High
performance silicon nanowire field effect transistors. Nano letters, 3(2):149–152,
2003.

154

Bibliography

[45] Bruno da Silva, An Braeken, Erik H. D’Hollander, Abdellah Touhafi, Jan G. Cor-
nelis, and Jan Lemeire. Comparing and combining GPU and FPGA accelerators in
an image processing context. In Proceedings of the 23rd International Conference
on Field Programmable Logic and Applications, FPL’13, pages 1–4. IEEE, 2013.

[46] R.H. Dennard, V.L. Rideout, E. Bassous, and A.R. LeBlanc. Design of ion-implanted
MOSFET’s with very small physical dimensions. IEEE Journal of Solid-State
Circuits, 9(5):256–268, Oct 1974.

[47] Matthew DeVuyst, Ashish Venkat, and Dean M. Tullsen. Execution migration
in a heterogeneous-ISA chip multiprocessor. In Proceedings of the Seventeenth
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS’12, pages 261–272, New York, NY, USA, 2012. ACM.

[48] Jaeyoung Do, Yang-Suk Kee, Jignesh M. Patel, Chanik Park, Kwanghyun Park,
and David J. DeWitt. Query processing on smart SSDs: Opportunities and chal-
lenges. In Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data, pages 1221–1230, New York, NY, USA, 2013. ACM.

[49] Adam Dunkels. Design and implementation of the lwIP TCP/IP stack. Swedish
Institute of Computer Science, 2:77, 2001.

[50] Keith G. Erickson, M. Dan Boyer, and D. Higgins. NSTX-U advances in real-
time deterministic PCIe-based internode communication. Fusion Engineering and
Design, 133:104–109, 2018.

[51] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam,
and Doug Burger. Dark silicon and the end of multicore scaling. In Proceedings
of the 38th Annual International Symposium on Computer Architecture, ISCA’11,
pages 365–376, New York, NY, USA, 2011. ACM.

[52] Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen Hunt,
James R. Larus, and Steven Levi. Language support for fast and reliable message-
based communication in Singularity OS. In Proceedings of the 1st ACM SIGOP-
S/EuroSys European Conference on Computer Systems, EuroSys’06, pages 177–190,
New York, NY, USA, 2006. ACM.

[53] L. Fiorin, G. Palermo, S. Lukovic, V. Catalano, and C. Silvano. Secure memory
accesses on networks-on-chip. IEEE Transactions on Computers, 57(9):1216–1229,
Sept 2008.

[54] Mario Flajslik and Mendel Rosenblum. Network interface design for low latency
request-response protocols. In Proceedings of the 2013 USENIX Annual Technical
Conference, USENIX ATC’13, pages 333–346, San Jose, CA, 2013. USENIX.

[55] Claudio Föllmi. Applying the multikernel approach to a heteroge-
neous OMPA4460 SoC. http://www.barrelfish.org/publications/
ba-foellmic-hetero-panda.pdf, 2013.

[56] Isaac Gelado, Enric Morancho, and Nacho Navarro. Experimental support for
reconfigurable application-specific accelerators. In Proceedings of the Workshop
on the Interaction between Operating Systems and Computer Architecture, in con-
juction with the International Symposium on Computer Architecture, WIOSCA’06,
pages 50–57, 2006.

155

http://www.barrelfish.org/publications/ba-foellmic-hetero-panda.pdf
http://www.barrelfish.org/publications/ba-foellmic-hetero-panda.pdf

Bibliography

[57] Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo, Jinyoung Lee, Jonghyun
Yoon, Jeong-Uk Kang, Moonsang Kwon, Chanho Yoon, Sangyeun Cho, Jaeheon
Jeong, and Duckhyun Chang. Biscuit: A framework for near-data processing
of big data workloads. In Proceedings of the 43rd International Symposium on
Computer Architecture, ISCA’16, pages 153–165, Piscataway, NJ, USA, 2016. IEEE
Press.

[58] Sebastian Haas, Tobias Seifert, Benedikt Nöthen, Stefan Scholze, Sebastian Höpp-
ner, Andreas Dixius, Esther Pérez Adeva, Thomas Augustin, Friedrich Pauls, Sadia
Moriam, Mattis Hasler, Erik Fischer, Yong Chen, Emil Matúš, Georg Ellguth,
Stephan Hartmann, Stefan Schiefer, Love Cederström, Dennis Walter, Stephan
Henker, Stefan Hänzsche, Johannes Uhlig, Holger Eisenreich, Stefan Weithoffer,
Norbert Wehn, René Schüffny, Christian Mayr, and Gerhard Fettweis. A het-
erogeneous SDR MPSoC in 28 nm CMOS for low-latency wireless applications.
In Proceedings of the 54th Annual Design Automation Conference 2017, DAC’17,
pages 47:1–47:6, New York, NY, USA, 2017. ACM.

[59] Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and Anastasia Ailamaki.
Toward dark silicon in servers. IEEE Micro, 31(4):6–15, July 2011.

[60] Norman Hardy. KeyKOS architecture. ACM SIGOPS Operating Systems Review,
19(4):8–25, Oct 1985.

[61] Hermann Härtig, Michael Hohmuth, Norman Feske, Christian Helmuth, Adam
Lackorzynski, Frank Mehnert, and Michael Peter. The nizza secure-system ar-
chitecture. In Proceedings of the 1st International Conference on Collaborative
Computing: Networking, Applications and Worksharing, CollaborateCom’05, pages
10–pp. IEEE, 2005.

[62] Hermann Härtig, Michael Roitzsch, Carsten Weinhold, and Adam Lackorzynski.
Lateral thinking for trustworthy apps. In Proceedings of the IEEE 37th International
Conference on Distributed Computing Systems, ICDCS’17, pages 1890–1899. IEEE,
2017.

[63] John Heinlein, Kourosh Gharachorloo, Scott Dresser, and Anoop Gupta. Integra-
tion ofmessage passing and sharedmemory in the Stanford FLASHmultiprocessor.
In Proceedings of the Sixth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS’94, pages 38–50, New
York, NY, USA, 1994. ACM.

[64] Jörg Henkel, Heba Khdr, Santiago Pagani, and Muhammad Shafique. New trends
in dark silicon. In Proceedings of the 52nd ACM/EDAC/IEEE Design Automation
Conference, DAC’15, pages 1–6. IEEE, 2015.

[65] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew S. Tanen-
baum. MINIX 3: A highly reliable, self-repairing operating system. SIGOPS
Operating Systems Review, 40(3):80–89, u 2006.

[66] Matthias Hille, Nils Asmussen, Pramod Bhatotia, and Hermann Härtig. SemperOS:
A distributed capability system. In 2019 USENIX Annual Technical Conference,
USENIX ATC’19, pages 709–722, Renton, WA, 2019. USENIX Association.

[67] Galen Hunt, George Letey, and Ed Nightingale. The seven properties of highly
secure devices. Technical report MSR-TR-2017-16, 2017.

156

Bibliography

[68] K.U. Jarvinen and J.O. Skytta. High-speed elliptic curve cryptography accelerator
for koblitz curves. In Proceedings of the 16th International Symposium on Field-
Programmable Custom Computing Machines, pages 109–118, April 2008.

[69] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt
Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,
William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,
Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve
Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle
Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian,
Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric
Wilcox, and Doe Hyun Yoon. In-datacenter performance analysis of a tensor
processing unit. In Proceedings of the 44th Annual International Symposium on
Computer Architecture, ISCA’17, pages 1–12, New York, NY, USA, 2017. ACM.

[70] Heiko Kalte and Mario Porrmann. Context saving and restoring for multitasking
in reconfigurable systems. In Proceedings of the International Conference on Field
Programmable Logic and Applications, FPL’05, pages 223–228. IEEE, 2005.

[71] Tomas Karnagel, Rene Mueller, and GuyM. Lohman. Optimizing GPU-accelerated
group-by and aggregation. ADMS@ VLDB, 8:20, 2015.

[72] Shinpei Kato, Michael McThrow, Carlos Maltzahn, and Scott A Brandt. Gdev:
First-class GPU resource management in the operating system. In Proceedings of
the 2012 USENIX Annual Technical Conference, USENIX ATC’12, pages 401–412.
Boston, MA;, 2012.

[73] Antoine Kaufmann, Simon Peter, Naveen Kr. Sharma, Thomas Anderson, and
Arvind Krishnamurthy. High performance packet processing with FlexNIC. In
Proceedings of the Twenty-First International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS’16, pages 67–81,
New York, NY, USA, 2016. ACM.

[74] John H. Kelm, Daniel R. Johnson, William Tuohy, Steven S. Lumetta, and Sanjay J.
Patel. Cohesion: An adaptive hybrid memory model for accelerators. IEEE micro,
31(1):42–55, 2011.

[75] Sangman Kim, Seonggu Huh, Yige Hu, Xinya Zhang, Emmett Witchel, Amir
Wated, and Mark Silberstein. GPUnet: Networking abstractions for GPU pro-
grams. In Proceedings of the 11th USENIX Conference on Operating Systems Design
and Implementation, OSDI’14, pages 201–216, Berkeley, CA, USA, 2014. USENIX
Association.

[76] Seonbong Kim and Joon-Sung Yang. Optimized I/O determinism for emerging
NVM-based NVMe SSD in an enterprise system. In Proceedings of the 55th Annual
Design Automation Conference, DAC’18, page 56. ACM, 2018.

157

Bibliography

[77] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4: Formal
verification of an OS kernel. In Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles, SOSP’09, pages 207–220, New York, NY, USA,
2009. ACM.

[78] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
Spectre attacks: Exploiting speculative execution. CoRR, abs/1801.01203, 2018.

[79] Georg Kotheimer. Network support on M3.
https://os.inf.tu-dresden.de/papers_ps/kotheimer_beleg.pdf, 2018.

[80] Anil Krishna, Timothy Heil, Nicholas Lindberg, Farnaz Toussi, and Steven Van-
derWiel. Hardware acceleration in the IBM PowerEN processor: Architecture
and performance. In Proceedings of the 21st international conference on Parallel
architectures and compilation techniques, PACT’12, pages 389–400. ACM, 2012.

[81] Nasser Kurd, Muntaquim Chowdhury, Edward Burton, Thomas P Thomas,
ChristopherMozak, Brent Boswell, PraveenMosalikanti, Mark Neidengard, Anant
Deval, Ashish Khanna, et al. Haswell: A family of IA 22 nm processors. IEEE
Journal of Solid-State Circuits, 50(1):49–58, 2015.

[82] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo, J. Chapin,
D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy. The
Stanford FLASH multiprocessor. In Proceedings of the 21st Annual International
Symposium on Computer Architecture, ISCA’94, pages 302–313, Los Alamitos, CA,
USA, 1994. IEEE Computer Society Press.

[83] Adam Lackorzynski and Alexander Warg. Taming subsystems: Capabilities as
universal resource access control in L4. In Proceedings of the Second Workshop on
Isolation and Integration in Embedded Systems, IIES’09, pages 25–30, New York,
NY, USA, 2009. ACM.

[84] Butler Lampson, Martín Abadi, Michael Burrows, and Edward Wobber. Authen-
tication in distributed systems: Theory and practice. In Proceedings of the Thir-
teenth ACM Symposium on Operating Systems Principles, SOSP’91, pages 165–182,
New York, NY, USA, 1991. ACM.

[85] Jochen Liedtke. On micro-kernel construction. In Proceedings of the Fifteenth
ACM Symposium on Operating Systems Principles, SOSP’95, pages 237–250, New
York, NY, USA, 1995. ACM.

[86] Kevin Lim, DavidMeisner, Ali G. Saidi, Parthasarathy Ranganathan, and Thomas F.
Wenisch. Thin servers with smart pipes: Designing SoC accelerators for mem-
cached. In Proceedings of the 40th Annual International Symposium on Computer
Architecture, ISCA’13, pages 36–47, New York, NY, USA, 2013. ACM.

[87] Felix Xiaozhu Lin and Xu Liu. Memif: Towards programming heterogeneous
memory asynchronously. In Proceedings of the Twenty-First International Confer-
ence on Architectural Support for Programming Languages and Operating Systems,
ASPLOS’16, pages 369–383, New York, NY, USA, 2016. ACM.

158

https://os.inf.tu-dresden.de/papers_ps/kotheimer_beleg.pdf

Bibliography

[88] Felix Xiaozhu Lin, Zhen Wang, and Lin Zhong. K2: A mobile operating system
for heterogeneous coherence domains. ACM Transactions on Computer Systems,
33(2):4:1–4:27, u 2015.

[89] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
Meltdown. CoRR, abs/1801.01207, 2018.

[90] Richard J. Lipton and Lawrence Snyder. A linear time algorithm for deciding
subject security. Journal of the ACM (JACM), 24(3):455–464, 1977.

[91] Daofu Liu, Tianshi Chen, Shaoli Liu, Jinhong Zhou, Shengyuan Zhou, Olivier
Teman, Xiaobing Feng, Xuehai Zhou, and Yunji Chen. PuDianNao: A polyva-
lent machine learning accelerator. In Proceedings of the Twentieth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS’15, pages 369–381. ACM, 2015.

[92] Xiaocheng Liu, Ziming Zhong, and Kai Xu. A hybrid solution method for CFD
applications on GPU-accelerated hybrid HPC platforms. Future Generation Com-
puter Systems, 56:759–765, 2016.

[93] Zhiduo Liu, Aaron Severance, Satnam Singh, and Guy GF Lemieux. Accelerator
compiler for the venice vector processor. In Proceedings of the ACM/SIGDA
international symposium on Field Programmable Gate Arrays, FPGA’12, pages 229–
232. ACM, 2012.

[94] Björn Lüssem, Max L. Tietze, Hans Kleemann, Christoph Hoßbach, Johann W.
Bartha, Alexander Zakhidov, and Karl Leo. Doped organic transistors operating
in the inversion and depletion regime. Nature communications, 4:2775, 2013.

[95] K. Mackenzie, J. Kubiatowicz, M. Frank, W. Lee, W. Lee, A. Agarwal, and M.F.
Kaashoek. Exploiting two-case delivery for fast protected messaging. In Pro-
ceedings of the Fourth International Symposium on High-Performance Computer
Architecture, HPCA’98, pages 231–242, Feb 1998.

[96] Stephen Mallon, Vincent Gramoli, and Guillaume Jourjon. DLibOS: Performance
and protection with a network-on-chip. In Proceedings of the 23rd International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS’18, pages 737–750, New York, NY, USA, 2018. ACM.

[97] Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas Dilger, Alex
Tomas, and Laurent Vivier. The new ext4 filesystem: current status and future
plans. In Proceedings of the Linux Symposium, volume 2, pages 21–33, 2007.

[98] Timothy G. Mattson, Rob Van derWijngaart, and Michael Frumkin. Programming
the Intel 80-core network-on-a-chip terascale processor. In Proceedings of the 2008
ACM/IEEE Conference on Supercomputing, SC’08, pages 38:1–38:11, Piscataway,
NJ, USA, 2008. IEEE Press.

[99] Dominik Menzi. Support for heterogeneous cores for Barrelfish. http://www.
barrelfish.org/publications/menzi-master-heterogeneouscores.pdf,
2011.

159

http://www.barrelfish.org/publications/menzi-master-heterogeneouscores.pdf
http://www.barrelfish.org/publications/menzi-master-heterogeneouscores.pdf

Bibliography

[100] Inanc Meric, Natalia Baklitskaya, Philip Kim, and Kenneth L. Shepard. RF perfor-
mance of top-gated, zero-bandgap graphene field-effect transistors. In Proceedings
of the 2008 IEEE International Electron Devices Meeting, IEDM’08, pages 1–4. IEEE,
Dec 2008.

[101] Paul A. Merolla, John V. Arthur, Rodrigo Alvarez-Icaza, Andrew S. Cassidy, Jun
Sawada, Filipp Akopyan, Bryan L. Jackson, Nabil Imam, Chen Guo, Yutaka Naka-
mura, Bernard Brezzo, Ivan Vo, Steven K. Esser, Rathinakumar Appuswamy, Brian
Taba, Arnon Amir, Myron D. Flickner, William P. Risk, Rajit Manohar, and Dhar-
mendra S. Modha. A million spiking-neuron integrated circuit with a scalable
communication network and interface. Science, 345(6197):668–673, 2014.

[102] Mitesh R. Meswani, Sergey Blagodurov, David Roberts, John Slice, Mike Igna-
towski, and Gabriel H. Loh. Heterogeneous memory architectures: A HW/SW ap-
proach formixing die-stacked and off-packagememories. In Proceedings of the 21st
International Symposium on High Performance Computer Architecture, HPCA’15,
pages 126–136. IEEE, 2015.

[103] Kenneth Moreland and Edward Angel. The FFT on a GPU. In Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, pages
112–119. Eurographics Association, 2003.

[104] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight
dynamic binary instrumentation. In Proceedings of the 28th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI’07, pages
89–100, New York, NY, USA, 2007. ACM.

[105] Edmund B. Nightingale, Orion Hodson, Ross McIlroy, Chris Hawblitzel, and
Galen Hunt. Helios: Heterogeneous multiprocessing with satellite kernels. In
Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles,
SOSP’09, pages 221–234, New York, NY, USA, 2009. ACM.

[106] Benedikt Noethen, Oliver Arnold, Esther Perez Adeva, Tobias Seifert, Erik Fischer,
Steffen Kunze, Emil Matus, Gerhard Fettweis, Holger Eisenreich, Georg Ellguth,
et al. 10.7 A 105GOPS 36mm 2 heterogeneous SDR MPSoC with energy-aware
dynamic scheduling and iterative detection-decoding for 4G in 65nm CMOS.
In IEEE International Solid-State Circuits Conference Digest of Technical Papers,
ISSCC’14, pages 188–189. IEEE, 2014.

[107] Vincent Nollet, Paul Coene, Diederik Verkest, Serge Vernalde, and Rudy Lauw-
ereins. Designing an operating system for a heterogeneous reconfigurable SoC.
In Proceedings of the International Parallel and Distributed Processing Symposium,
IPDPS’03, pages 7–pp. IEEE, 2003.

[108] Eriko Nurvitadhi, David Sheffield, Jaewoong Sim, Asit Mishra, Ganesh Venkatesh,
and Debbie Marr. Accelerating binarized neural networks: comparison of FPGA,
CPU, GPU, and ASIC. In Proceedings of the 26th International Conference on
Field-Programmable Logic and Applications, FPT’16, pages 77–84. IEEE, 2016.

[109] Lena E. Olson, Jason Power, Mark D. Hill, and David A. Wood. Border control:
Sandboxing accelerators. In Proceedings of the 48th International Symposium on
Microarchitecture, MICRO’15, pages 470–481, New York, NY, USA, 2015. ACM.

160

Bibliography

[110] John K. Ousterhout et al. Scheduling techniques for concurrent systems. In
ICDCS, volume 82, pages 22–30, 1982.

[111] Sreepathi Pai, Matthew J. Thazhuthaveetil, and R. Govindarajan. Improving
GPGPU concurrency with elastic kernels. In Proceedings of the Eighteenth In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS’13, pages 407–418, New York, NY, USA, 2013. ACM.

[112] Jason Jong Kyu Park, Yongjun Park, and Scott Mahlke. Chimera: Collaborative
preemption for multitasking on a shared GPU. In Proceedings of the Twentieth
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS’15, pages 593–606, New York, NY, USA, 2015. ACM.

[113] Mike Parker, Al Davis, and Wilson Hsieh. Message-passing for the 21st century:
Integrating user-level networks with SMT. In Proceedings of the 5th Workshop
on Multithreaded Execution, Architecture and Compilation, 2001.

[114] Simon Peter, Jialin Li, Irene Zhang, Dan RK Ports, Doug Woos, Arvind Krishna-
murthy, Thomas Anderson, and Timothy Roscoe. Arrakis: The operating system
is the control plane. ACM Transactions on Computer Systems, 33(4):11, 2016.

[115] Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken Thompson, Howard
Trickey, and Phil Winterbottom. Plan 9 from Bell Labs. Computing systems,
8(2):221–254, 1995.

[116] J. Porquet, A. Greiner, and C. Schwarz. NoC-MPU: A secure architecture for
flexible co-hosting on shared memory MPSoCs. In Proceedings of the Design,
Automation & Test in Europe Conference & Exhibition, DATE’11, pages 1–4, March
2011.

[117] Andrew Putnam, Aaron Smith, and Doug Burger. Dynamic vectorization in
the E2 dynamic multicore architecture. SIGARCH Computer Architecture News,
38(4):27–32, a 2011.

[118] Wajahat Qadeer, Rehan Hameed, Ofer Shacham, Preethi Venkatesan, Christos
Kozyrakis, and Mark Horowitz. Convolution engine: Balancing efficiency and
flexibility in specialized computing. Communications of the ACM, 58(4):85–93,
Mar 2015.

[119] Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-Yeon Wei, and David
Brooks. Machsuite: Benchmarks for accelerator design and customized architec-
tures. In Proceedings of the IEEE International Symposium on Workload Charac-
terization, IISWC’14, pages 110–119. IEEE, 2014.

[120] Will Reese. Nginx: the high-performance web server and reverse proxy. Linux
Journal, 2008(173):2, 2008.

[121] Sebastian Reimers. Extension of an accelerator-friendly in-memory file system
for persistent storage.
https://os.inf.tu-dresden.de/papers_ps/reimers_m3fs.pdf, 2018.

[122] Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS: The Linux B-tree filesystem.
ACM Transactions on Storage (TOS), 9(3):9:1–9:32, Aug 2013.

161

https://os.inf.tu-dresden.de/papers_ps/reimers_m3fs.pdf

Bibliography

[123] Phil Rogers and AC Fellow. Heterogeneous system architecture overview. In Hot
Chips, volume 25, 2013.

[124] Christopher J. Rossbach, Jon Currey, Mark Silberstein, Baishakhi Ray, and Emmett
Witchel. PTask: Operating system abstractions to manage GPUs as compute de-
vices. In Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles, SOSP’11, pages 233–248, New York, NY, USA, 2011. ACM.

[125] L. Rota, M. Vogelgesang, LE. Ardila Perez, M. Caselle, S. Chilingaryan, T. Dritschler,
N. Zilio, A. Kopmann, M. Balzer, and M. Weber. A high-throughput readout
architecture based on PCI-Express Gen3 and DirectGMA technology. Journal of
Instrumentation, 11(02):P02007, 2016.

[126] Robert Schöne, Daniel Molka, and Michael Werner. Wake-up latencies for pro-
cessor idle states on current x86 processors. Computer Science-Research and
Development, 30(2):219–227, 2015.

[127] Sudharsan Seshadri, Mark Gahagan, Meenakshi Sundaram Bhaskaran, Trevor
Bunker, Arup De, Yanqin Jin, Yang Liu, and Steven Swanson. Willow: A user-
programmable SSD. In Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation, OSDI’14, pages 67–80, 2014.

[128] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. LegoOS: A dis-
seminated, distributed OS for hardware resource disaggregation. In 13th USENIX
Symposium on Operating Systems Design and Implementation, OSDI’18. USENIX
Association, 2018.

[129] Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and David Brooks. Aladdin:
A pre-RTL, power-performance accelerator simulator enabling large design space
exploration of customized architectures. In Proceedings of the 41st Annual In-
ternational Symposium on Computer Architecture, ISCA’14, pages 97–108. IEEE,
2014.

[130] Yakun Sophia Shao, Sam Likun Xi, Vijayalakshmi Srinivasan, Gu-Yeon Wei, and
David Brooks. Co-designing accelerators and SoC interfaces using gem5-aladdin.
In Proceedings of the 49th Annual IEEE/ACM International Symposium on Microar-
chitecture, MICRO’16, pages 1–12. IEEE, 2016.

[131] Min Si and Yutaka Ishikawa. Design of direct communication facility for many-
core based accelerators. In Processing of the IEEE 26th International Parallel and
Distributed Processing Symposium Workshops & PhD Forum, IPDPSW’12, pages
924–929. IEEE, 2012.

[132] Mark Silberstein. OmniX: An accelerator-centric OS for omni-programmable
systems. In Proceedings of the 16th Workshop on Hot Topics in Operating Systems,
HotOS’17, pages 69–75, New York, NY, USA, 2017. ACM.

[133] Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett Witchel. GPUfs: Inte-
grating a file system with GPUs. In Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS’13, pages 485–498, New York, NY, USA, 2013. ACM.

162

Bibliography

[134] Harald Simmler, Lorne Levinson, and Reinhard Männer. Multitasking on FPGA
coprocessors. In Field-Programmable Logic and Applications: The Roadmap to
Reconfigurable Computing, pages 121–130, Berlin, Heidelberg, 2000. Springer
Berlin Heidelberg.

[135] Hayden Kwok-Hay So and Robert Brodersen. A unified hardware/software
runtime environment for FPGA-based reconfigurable computers using BORPH.
ACM Transactions on Embedded Computing Systems, 7(2):14:1–14:28, Jan 2008.

[136] Livio Soares and Michael Stumm. FlexSC: Flexible system call scheduling with
exception-less system calls. In Proceedings of the 9th USENIX Conference on
Operating Systems Design and Implementation, OSDI’10, pages 1–8, Berkeley, CA,
USA, 2010. USENIX Association.

[137] Udo Steinberg and Bernhard Kauer. NOVA: A microhypervisor-based secure
virtualization architecture. In Proceedings of the 5th European Conference on
Computer Systems, EuroSys’10, pages 209–222, New York, NY, USA, 2010. ACM.

[138] Jeffrey Stuecheli, Bart Blaner, CR Johns, and MS Siegel. CAPI: A coherent accel-
erator processor interface. IBM Journal of Research and Development, 59(1):7–1,
2015.

[139] Herb Sutter. The free lunch is over: A fundamental turn toward concurrency in
software. Dr. Dobb’s journal, 30(3):202–210, 2005.

[140] Ivan Tanasic, Isaac Gelado, Javier Cabezas, Alex Ramirez, Nacho Navarro, and
Mateo Valero. Enabling preemptive multiprogramming on GPUs. In Proceedings
of the 41st International Symposium on Computer Architecture, ISCA’14, pages
193–204. IEEE, 2014.

[141] Michael B. Taylor. Is dark silicon useful? harnessing the four horsemen of the
coming dark silicon apocalypse. In Proceedings of the 49th ACM/EDAC/IEEE
Design Automation Conference, DAC’12, pages 1131–1136. IEEE, 2012.

[142] Michael B. Taylor. A landscape of the new dark silicon design regime. IEEE Micro,
33(5):8–19, Sept 2013.

[143] Michael B. Taylor, Walter Lee, Jason Miller, David Wentzlaff, Ian Bratt, Ben
Greenwald, Henry Hoffmann, Paul Johnson, Jason Kim, James Psota, Arvind
Saraf, Nathan Shnidman, Volker Strumpen, Matt Frank, Saman Amarasinghe, and
Anant Agarwal. Evaluation of the raw microprocessor: An exposed-wire-delay
architecture for ILP and streams. In Proceedings of the 31st Annual International
Symposium on Computer Architecture, ISCA’04, Washington, DC, USA, 2004. IEEE
Computer Society.

[144] Tung Thanh-Hoang, Amirali Shambayati, Calvin Deutschbein, Henry Hoffmann,
and Andrew A. Chien. Performance and energy limits of a processor-integrated
FFT accelerator. In Proceedings of the 2014 IEEE High Performance Extreme Com-
puting Conference, HPEC’14, pages 1–6. IEEE, 2014.

[145] Nicolas Vasilache, Jeff Johnson, Michael Mathieu, Soumith Chintala, Serkan
Piantino, and Yann LeCun. Fast convolutional nets with fbfft: A GPU performance
evaluation. arXiv preprint arXiv:1412.7580, 2014.

163

Bibliography

[146] Ashish Venkat and Dean M. Tullsen. Harnessing isa diversity: Design of a
heterogeneous-isa chip multiprocessor. In Proceeding of the 41st Annual Inter-
national Symposium on Computer Architecuture, ISCA’14, pages 121–132, Piscat-
away, NJ, USA, 2014. IEEE Press.

[147] Ganesh Venkatesh, Jack Sampson, Nathan Goulding-Hotta, Sravanthi Kota
Venkata, Michael Bedford Taylor, and Steven Swanson. QsCores: Trading dark sil-
icon for scalable energy efficiency with quasi-specific cores. In Proceedings of the
44th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO’11,
pages 163–174. IEEE, 2011.

[148] Carsten Weinhold. Reducing size and complexity of the security-critical code
base of file systems.
https://os.inf.tu-dresden.de/papers_ps/weinhold-phd.pdf, 2013.

[149] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Raoul Strackx, Thomas F. Wenisch, and Yuval Yarom.
Foreshadow-ng: Breaking the virtual memory abstraction with transient out-of-
order execution. Technical report, 2018.

[150] David Wentzlaff and Anant Agarwal. Factored operating systems (fos): The case
for a scalable operating system for multicores. ACM SIGOPS Operating Systems
Review, 43(2):76–85, Apr 2009.

[151] David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao, Bruce Edwards,
Carl Ramey, Matthew Mattina, Chyi-Chang Miao, John F. Brown III, and Anant
Agarwal. On-chip interconnection architecture of the tile processor. IEEE Micro,
27:15–31, 10 2007.

[152] Jonathan Woodruff, Robert N.M. Watson, David Chisnall, Simon W. Moore,
Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neumann, Robert Nor-
ton, and Michael Roe. The CHERI capability model: Revisiting RISC in an age
of risk. In Proceeding of the 41st Annual International Symposium on Computer
Architecuture, ISCA’14, pages 457–468, Piscataway, NJ, USA, 2014. IEEE Press.

[153] Lisa Wu, Raymond J. Barker, Martha A. Kim, and Kenneth A. Ross. Navigating
big data with high-throughput, energy-efficient data partitioning. In Proceedings
of the 40th Annual International Symposium on Computer Architecture, ISCA’13,
pages 249–260, New York, NY, USA, 2013. ACM.

[154] Wei Yu and Yun He. A high performance CABAC decoding architecture. IEEE
Transactions on Consumer Electronics, 51(4):1352–1359, Nov 2005.

[155] Gerd Zellweger, Simon Gerber, Kornilios Kourtis, and Timothy Roscoe. Decou-
pling cores, kernels, and operating systems. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementation, OSDI’14, pages 17–
31, Berkeley, CA, USA, 2014. USENIX Association.

164

https://os.inf.tu-dresden.de/papers_ps/weinhold-phd.pdf

	List of Figures
	List of Tables
	Introduction
	Motivation
	Increasing Heterogeneity
	Future Hardware Platforms
	Problems of Current OS Designs

	Approach
	Contributions

	Related Work
	Operating Systems
	Hardware Components

	Isolation and Communication
	Motivation
	Threat Model
	Overview and Comparison
	Privilege Levels
	Isolation
	Communication
	Role of the Kernel
	Trusted Computing Base

	Data Transfer Unit
	Integration
	Endpoints
	Commands
	Receiving Messages
	Replying to Messages
	Credit System
	Command Abortion
	Discussion

	The Operating System M3
	System Calls
	Capabilities
	Virtual PEs
	Gates
	Memory Management
	Endpoint Multiplexing
	Discussion

	Interplay
	Evaluation
	Prototype Platforms
	System Call and IPC Performance
	Power Consumption and Chip Area

	Summary

	Operating-System Services
	Motivation
	Services
	Service and Session
	Service Protocol

	File Protocol
	Design Goals
	The Protocol
	File Multiplexing

	File System
	Overview
	Data Organization
	File Session
	Metadata Session
	Limitations

	Pipe
	Overview
	Data Access

	Virtual File System
	Files and File Systems
	Selective Inheritance

	Discussion
	File System Access Control
	M3FS for Storage Devices
	POSIX Compatibility

	Evaluation
	File System Read/Write/Copy
	File Fragmentation
	Pipe

	Summary

	Virtual Memory
	Motivation
	Goals
	Overview
	Related Work
	Integration
	Uniform Addressing
	Data Transfers
	Address Translation
	PE-Type B
	PE-Type C

	Virtual-Memory Management
	Overview
	Mapping Capabilities
	Page Table Entries
	Pager
	Message Passing

	Interplay
	Revisiting the TCB
	Discussion
	The VMA in Existing OSes
	Caches in Type B PEs
	Page Faults in Type B PEs
	Cache Coherency

	Evaluation
	Measurement Setup
	Revisiting System Calls
	Revisiting File Systems and Pipes
	TLB Misses and Page Faults
	VPE::run and VPE::exec

	Summary

	Autonomous Accelerators
	Motivation and Related Work
	Accelerator Types
	Memory Access
	Implementation Paradigm

	Goals
	Overview
	Accelerator Usage
	VPEs for Accelerators

	Request-Processing Accelerators
	Integration
	Interruptibility
	Usage

	Stream-Processing Accelerators
	Integration
	Direct Data Exchange
	Shell Extension

	Evaluation
	Accelerator Logic
	Request-Processing Accelerators
	Stream-Processing Accelerators

	Summary

	Context Switching
	Motivation
	Related Work
	Overview
	Context-Enabled Communication
	VPE-aware Communication
	Message Forwarding
	VPE Migration
	Computing vs. Idling
	Gang Scheduling
	Revisiting Command Abortion

	RCTMux Implementation
	General-Purpose Cores
	Accelerators

	Revisiting the TCB
	How Powerful is RCTMux?
	Is the Privileged CPU Mode Required?

	Evaluation
	Communication with Suspended VPEs
	Non-communicating Applications
	Communicating Applications

	Summary

	Evaluation
	Experimental Setup
	Evaluation Platform
	Systrace Infrastructure

	Performance
	Standalone Applications
	Pipelines of Applications

	Scalability
	Standalone Applications
	Pipelines of Applications
	Web Server

	Efficiency
	Single Application Instances
	Multiple Application Instances
	System Efficiency

	Autonomous Image Processing
	Accelerator Sharing
	Software Complexity

	Conclusion and Future Work
	Conclusion
	Extensions and Future Work

	Acknowledgements
	Glossary
	Bibliography

