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Abstract—The long term vision of energy/utility accrual
scheduling is to use all system resources in a way that is
most beneficial to the system’s users. For that, a mapping of
user requests all the way down to system resources is required
and, vice versa, the energy requirements of resources must be
attributed to the corresponding user requests. However, despite
the attractiveness of this general approach, the complexities
involved in these translations are scary. Sketching our approach
to energy/utility accrual scheduling, we argue in this paper
that many complexities of traditional power models can be
avoided if we consider the potential of a resource to generate
utility rather than the utility generating operation. Introducing
modes for the resources CPU and network, we found that the
energy required to keep these resources operational is a good
approximation of their overall energy demand.
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I. INTRODUCTION

“Is it more purposeful to power up the 3G network to
obtain additional bandwidth for a higher resolution video
or should the remaing battery power better be spent to
adjust the display’s contrast and brightness setting to the
environmental lighting?” Utility accrual scheduling gives a
comprehensive answer to this question: do what is most
beneficial for the users.

In economics, utility is a measure to express society sat-
isfaction when given a certain combination of commodities.
Utility accrual scheduling translates this concept into the
realm of resource scheduling. Optimization criteria of clas-
sical resource scheduling, such as minimizing the number
of deadline misses, maximizing throughput, or minimizing
request latencies, are translated into maximizing the accrued
utility of all activities.

Several utility accrual scheduling algorithms can be found
in the literature (see Jensen et al. [1] for an excellent
overview). Application areas range from datacenter cool-
ing [2], grid [3] to wireless networks [4]. However, when
it comes to energy as the primary resource, the complex-
ities of translating consumed device energy back to users’
requests negate most of the benefits obtained from utility
accrual scheduling. For example, in [5] Pathak et al. report
difficulties in attributing deferred network activities, tail
power states and wakelocks of 3G networks to individual
transmissions. In [6], Wu et al. introduce energy utility ratios
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as a linear relation between execution at a given voltage and
frequency setting and consumed energy. However, clock-
gated hardware resources, deep pipelines and cache hierar-
chies break this linearity even for relatively simple scenarios.

Figure 1 shows the request handling costs in CPU cycles
for ApacheBench [7] when stressing a single instance of
the lighttpd web server. Mapping accrued execution
time to utility, as advocated in [6], we would expect a
constant service time and energy per request. The total
consumed energy would then increase linearly with the
number of requests offset of course by the server keepup
power. However, Fig. 1 clearly shows that requests are
serviced more efficiently under higher loads when caching
effects and clock gating during idle times become effective.
We shall return to this point in Section IV.

The key insight, which we convey in this paper, is our
finding that the overall energy demand of system resources
is often dominated by the energy required to keep these
resources operational. By scheduling operation modes, that
is, the potential of resources to generate utility, we avoid
many of the complexities of traditional power models and
put energy/utility accrual scheduling back on the horizon.

In the next section, we sketch our preliminary approach
on energy/utility accrual scheduling and, in particular, on
how perceived utility translates into resource demands. In
Section III, we introduce mode-utilities as a manageable ap-
proximation of system energy demands. We evaluate the idea
of mode-utility based energy modelling for the resources
CPU and network in Section IV. We conclude this paper



with directions for future work in Section V.

II. TOWARDS ENERGY/UTILITY ACCRUAL SCHEDULING

Viewed from some distance, energy/utility accrual
scheduling works as follows: Every user of the system
produces a statement of how happy she is when her desired
mix of applications performs in a certain way. These state-
ments can be made explicitly by turning appropriate knobs
in the applications, or they can be gathered automatically
from previously recorded profiles or by interpreting the
current user behavior. The result is a favoring of application
performances.

For example, let us assume a user switches focus to a
video player, pushing other windows into the back. Inter-
preting this behavior as a sign that the user is more happy if
she receives a better video quality, we adjust the weighting
factor for this application and of all other applications of
this user to obtain a new utility factor for the video player
in the application mix.

The second ingredient to energy/utility accrual scheduling
is a characterization of every application output according to
how valuable this output might be for users. For our video
player example, this is the observed video quality measured
for example as the structural similarity index (SSIM) [8].
Mapping this quality metric into the interval [0,1] and
weighting it as described above, we obtain a utility value
for this application.

For applications to produce outputs of a certain quality,
they have to execute in a manner that is in principle able
to achieve the desired quality or a better one. We call
these manners application modes and derive a compatibility
criterion in Section III. In general, several users may simul-
taneously request outputs from a single application. In these
situations, the application mode must be chosen such, that
the application is able to produce the desired outputs at least
in their desired quality. However, it is out of the scope of
this paper to quantify whether application modes have the
same scheduling simplifying effects as hardware resource
modues.

To produce output of a certain quality, applications need
resources either in the form of hardware resources or in
the form of other applications, servers or operating-system
functionalities, which we summarize as software resources.
At the lowest level, only hardware resources remain. While
the translation of resource requirements between different
levels of the resource hierarchy is an interesting problem in
its own right, in this paper we want to concentrate on the
hardware level, assuming simple scenarios in the software
layer.

Decoupling this hardware layer from the software stack
allows us to create a scheme that has no strong depen-
dency towards a specific hardware platform but where the
translation between hardware and software layers serves as
an abstraction between the resource requirements of the
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Figure 2: Decomposition of utility accrual scheduling into
utility/resource, resource/resource-demand (RDF) and re-
source/energy functions

software and the energy characteristics of the hardware
devices. Figure 2 illustrates this decomposition. Demands of
applications and services with which users directly interact
are ranked according to the utility they provide. Resource
to resource-demand functions translate these requests down
to demands of hardware resources, which consume their
fraction of the system’s overall energy demand. The w in
the graph denotes a weight of a single user on the system,
while the (u,w) tuples denote a tuple weight and utility
which indicate a users preferences for a service.

In general, the type of resources and the kind of requests
can be specific for each client-server pair. However, we
identified three metrics that are meaningful for all resources:
latency, bandwidth and an admittedly ominous quality value,
which is one (correct response) or zero (no / wrong response)
for most resource requests. Scenarios where values except
zero or one are purposeful include video players, where the
SSIM is translated into the interval [0, 1], or information
processing, where accuracies significantly below 100% are
sufficient.

As this paper focuses on low-level resources, detemining
the precise resource to resource-demand functions is out of
the scope of this paper. In fact, further work is required on
characterizing more dynamic workloads such as database
systems with changing data sets. For our evaluation, we
collected measurement data to characterize how higher-
level system components stress the underlying hardware
resources.

For predicting future workloads, we plan to incorporate
existing approaches [9] or, if this turns out to be too
demanding, use heuristics such as the current application
behavior.

Energy modelling is also discussed in a large body of



related work. Most are concerned with building models that
allow deducing the current energy consumption from a set
of runtime measured properties (c.f. [10]). The recently
introduced energy sensors (e.g., Intel’s Running Average
Power Limit (RAPL)) offers a more effective alternative to
obtain energy demands [11] by observing and calibrating the
power consumed by the monitored hardware resources on
the very system we want to perform scheduling upon [12].

In the next section, we introduce our approach to mode
based energy/utility functions (EUFs) for hardware re-
sources.

IIT. MODES — A HEURISTIC FOR UTILITY

Our idea for modeling resource-level EUFs is based on
the following two observations:

1) Most hardware resources support a number of different
operation modes in which they generate utility if a
given workload is placed on these resources; and

2) Keeping a resource in a certain mode consumes the
bulk of the resource’s total energy.

For example, CPUs can be run at different voltage and
frequency levels, put in various sleep states or halted (e.g.,
with the help of special instructions indicating that no further
work is to be expected). Displays can provide different
degrees of brightness and contrast, and wireless network
interfaces can emit signals at different strengths.

By our definition, any possible configuration of a hard-
ware resource is considered a distinct mode. Running in
such a mode enables the resource to provide a potential
utility to its users. Following Observation 2, which we
validate in Section IV, it is legitimate to approximate the
energy consumed by a resource in a certain mode by a
constant. Workload dependent fluctuations are insignificant
with respect to this constant. We can therefore establish
a mapping between the energy consumed to keep up the
resource in a certain operation mode and the utility potential
that this resource may generate in this mode. Hence, modes
can be used as a simple heuristic for resource-level EUFs.

To calibrate our model, we cycle all resources through
their available modes during startup and measure the energy
consumption for these modes with the help of system built-
in energy sensors. This already works for CPU energy
consumption as described in [12]. We hope that in the
future device vendors will make such information available
at runtime as well. For now we rely on external energy
models for those devices where no sensors are available.

Modes only represent the potential for applications to
generate real utility. The task of the EUF-aware scheduler
is therefore to map resource demands to the respective
operation mode. The freedom it has in this choice gives
room for further optimizations. For example, assume an
application requests 2 billion CPU cycles. Depending on
other constraints, such as real-time deadlines, the scheduler
may achieve this by assigning the application a CPU at

2.0 GHz for one second or a 1.0 GHz clocked CPU for two
seconds. It may even assign a 3.0 GHz clocked CPU for
0.67 seconds and halts this CPU for the remaining time.
We are confident that this degree of freedom will allow us
to combine our scheduling approach with others, such as
Jensen’s TUF-based scheduling [13].

As the above example shows, modes may be equivalent
or at least subsume each other. However, there are also
devices that exhibit incompatible modes. For instance, Pixel
Qi’s multimode display [14] can be operated either in
transmissive or in reflexive mode, but obviously not in
both simultaneously as this would require a “Schroédinger
backlight”, which can simultaneously be both turned on and
off.

For finding compatible modes, we therefore arrange
modes in a lattice!. where the bottom element | stands
for off and the top element T indicates an invalid mode.
The scheduler may therefore follow this lattice to pick the
least upper bound of all requested modes. In a lattice, least
upper bounds are defined for all finite subsets of modes. The
configuration is valid, if no resource is in mode T.

Pathak et al. [5] pointed out that energy consumption
cannot always easily be attributed to a running application
and exemplify this with the help of a GSM modem’s
data transfers. The key observation we draw from their
benchmark is that to avoid costly mode switches the modem
remains in a high power mode even when no requests are
sent. Other tail power effects arise from deferred garbage
collection activities (e.g., in solid state disks). Lending ideas
from real-time garbage collection [15], our approach is to
overapproximate these costs and attribute a portion of these
costs to each application request.

Finally, the system we envision our scheduler to run in,
should also support adaptive applications that can provide
varying levels of utility depending on constraints such as
whether the system is currently running in battery mode
or plugged into a power supply. Such adaptivity requires
feedback between the scheduler and applications and we
believe it fits into our model as well: Applications can
specify multiple sets of resource requirements for different
levels of provided utility. Furthermore, the scheduler may
provide feedback to applications on the current system
utilization and other external factors. This information may
then be used by applications to select the adaptivity level
they want to use.

IV. EVALUATION

One of the essential building blocks of our energy/utility
aware scheduler is our novel concept of utility-generating
device modes. In this section we evaluate this approach for
CPU and the network interface card, two of the most difficult
resources to model when it comes to energy.

1A partial order < over a set X forms a lattice if for every subset S C X
there is a unique least upper bound LI(S) in X.
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Figure 3: SPEC CPU 2006 Benchmarks at different frequencies

To support our claims that it is legitimate to approximate
a resource’s total energy consumption by a constant mode
energy, we measured CPU power consumption of 3 different
benchmark suites on an Intel i5-2400S with 2.5 GHz nominal
frequency using the RAPL_PKG energy counter and a
Linux 3.3.4 busybox installation, which we ran in an initial
ramdisk. Linux was booted with idle=halt to prevent the
kernel from entering deep C states during idle times. While
our general concept also supports C-states, they require
switching statistics and a more complex analysis to attribute
how long the CPU did enter which of these states during
our benchmarks. These statistics are available from recent
Linux kernels, but do only increase complexity of the model,
by introducing numerous additional modes. For a general
evaluation we decided to keep the number of modes low to
make the concept more easily tangible. In all benchmarks
only one CPU core was active. All others had been disabled
in the BIOS. An extension of our results to modes where
more than one core is active is straight forward. In addition
to the nominal frequency, we used ACPI frequency scaling
to also measure the 2.0 GHz level and the 3.2 GHz turbo
mode. The turbo mode results have to be taken with a grain
of salt, because turbo overclocks the CPU only for short
burst intervals and clocks down again when this is no longer
safe. We did not evaluate any statistics on how long turbo
remains at which frequency.

Figure 3 shows the results for the SPEC CPU 2006 integer
benchmarks (CINT 2006). Shown is the measured power
(shaded bars) and our approximation based on the fraction
of non-halted vs. halted clock cycles (plain bars) for the
three different frequencies (2.0 GHz, 2.5 GHz and 3.2 GHz
(turbo)). For our approximation, halted clock cycles were
accounted with the idle power of the CPU 7.5 W, while non-
halted cycles were accounted with the help of a reference
benchmark. We crafted this reference benchmark to put as
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Figure 4: Lighttpd with different amounts of requests
per second

much pressure on the interger units of the CPU as possible
by executing a tight loop of independent integer instructions
that completely fits into the caches. We did not stress the
floating point units, SSE and AVX or the cache subsystem
as we regard these as different resources. While this method
will not yield the highest possible power consumption of
the core, we found it to be a good approximation for Spec
CINT. The bottom part of Fig. 3 substantiates this point by
showing the relative error between our approximation and
the measurements. With the exception of libquantum, the
error is within a £5 % margin, with most benchmarks being
as close to +2 %. The cache analysis performed by Jaleel
[16] indicates that libquantum has a workingset of 32MB and
benefits only from a cache of this size or larger. This would
indicate that a large number of cache misses are responsible
for the unusual energy behavior of this application.

These cache misses would constitute increased stress on
the memory and cache subsystems and could thus be again
regarded as a seperate mode. For our initial evaluation we
decided to not incorporate a memory mode, but leave a more
complete model of different CPU parts for future work
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Figure 5: MySQL with varying transactions per second

Figures 4 and 5 show the results of our approach in two
application scenarios: servicing 284 byte static webpages
from Apache Bench (ab) with the help of the 1ighttpd
web server (Fig. 4) and the MySQL-based OLTP benchmark
from the sysbench suite with max-requests set to 50000
(Fig. 5). Shown is the consumed power for different request
rates and the fraction of halted cycles. The prediction error
is again within £2 %.

In addition to these cycle based evaluations, we also
performed an estimation based on the number of transactions
per second (T'PS). The previous benchmarks indicated a
transaction handling time (C'PT'S) of 6.72 million clock
cycles, an idle power P;q. of 7.639W and a tight loop
power Pigpns of 12.5654 W at 2.5 GHz. Using 3 threads, we
generated 176.75 TPS from which we calculated the ratio of
used clock cycles as

_ TPS-CPT
- f

r

so that the equation
Pest :Pidle*(]- _T)+Ptight*r

gives us the estimated CPU power of 9.98 W. This confirms
our measured energy of 9.86 W with an error of only 1.2 %.

To show that modes are also applicable for predicting
a typical server application mix, we ran lighttpd and
MySQL at the same time and on the same server. We
addressed the challenge that web request per second (RPS)
are not linearly correlated with cycles per request (CPR) with
a profile where this translation was recorded. This profile
was recorded over multiple sample runs and recording the
number of running CPU cycles consumed and the request
rates of the clients. From these we created a model that
translates requests per second to CPU cycles. We recognize
that this model is rather crude, but, as stated above, the
prediction of resource usage is out of the scope of the paper
and already covered by others [9] and further research is
already ongoing in that area.

The estimation of the total power consumption is

Pest = Pidle * (1 — Tsql — Tweb) + Pload * (Tweb + qul)

where

RPS-CPR
f

With 10.6 W, our estimation for servicing 3000 web
requests and 150 SQL transactions per second is only 1.2 %
off the measured power of 10.47 W.

The above results confirm our approximation with an error
margin of £5% for most analysed applications with the
exception of libquantum.

As a further device we also want to present our early
results on the energy characteristics of an Intel Gigabit
Ethernet card (EXPI9301CTBLK). To obtain these charac-
teristics we instrumented a PCI-Express riser card.

We executed a UDP bandwidth benchmark (iperf) using
this instrumented NIC, both in send and receive mode.

Figure 6 shows the correlation between bandwidth and en-
ergy consumption we measured. Figure 6a gives a complete
detailed overview of the characteristics. Please mind the
logarithmic x-Axis. It shows that the card basically combines
two sets of energy characteristics: One for the low bandwidth
range and a second in the middle to high bandwidth range.
Figures 6b and 6¢ show the linear representation of the
whole graph and the low bandwidth section respectively. We
see, that when only looking at the respective characteristics,
energy consumption scales nearly linearly.

As with the CPU, we attribute this linear increase with
bandwidth to a combination of two modes: idle, and trans-
fering, and attribute the efficiency gain in the mid to high
level to a reduced number of wakelocks.

At this point we want to note, that the energy characteris-
tics of network devices vary greatly between even different
generations of the same card series, as well as the kernel
driver version under investigation. Some of our network
cards showed no variations of energy characteristics at all,
displaying a static energy consumption that did not change
beyond the margin of error after the link was established,
irrespective of the actual usage of the link.

ryeb =

V. CONCLUSIONS & FUTURE WORK

This paper introduces mode energy and the potential
utility that a resource generates when operating in a certain
mode as a manageable approximation for utility-accrual
energy-efficient scheduling. We evaluated our approach with
the help of the Spec CINT 2006 benchmarks and in two
real world scenarios showing an error margin of +2 % for
most applications and of +5 % for all except libquantum.
We have also shown early network card results that promise
compatibility of these devices with our modes model as well.
The calibration of mode energies can be done by simple mi-
crobenchmarks using on-chip energy sensors such as RAPL.
We confirmed our claim that mode energy dominates the
overall energy consumption of a resource and that therefore
utility accrual scheduling should focus on scheduling the
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Figure 6: Energy characteristics of the EXPI9301CTBLK
Intel Gigabit Ethernet card in different scales

potential to generate utility rather than the complex utility
generating workloads.

In future work we plan to extend our approach to further
resources like disks and the display. The results of our
preliminary analyses make us confident that our approach
extends also to these resources.
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