
A Case for Utility:
Study on Real-Time Scheduling a Real-World Problem

Michael Roitzsch
Operating Systems Group

Technische Universität Dresden
mroi@os.inf.tu-dresden.de

Abstract

Within the real-time community, research on scheduling
algorithms is often motivated from a theoretical perspective.
The practitioners on the other hand are repeatedly unaware
of the results obtained from such research and thus revert
to ad-hoc and application-specific solutions. This gap im-
pedes progress for both groups, so to help bridge it, this
work intends to provide a study of an interesting commod-
ity application — video playback — and its scheduling im-
plications. Having a background in both real-time schedul-
ing theory and video processing and decoding, we can ap-
proach the problem from both ends.

1. Introduction

Video playback is a use case of increasing ubiquity.
Users watch video on a diverse set of devices and in dif-
ferent contexts. As video shows a rendition of things we
are used to seeing daily in the real world, users demand a
high standard of playback quality. The framerate should be
high and jitter-free, turning video playback into a real-time
problem with obvious deadlines. If the video content is de-
coded on a resource-limited device like a portable player
or a phone, users desire the highest possible quality given
the constraints of the device. Thus, the scheduling needs to
consider an adaptive decoding process.

Scheduling theory however is often difficult for prac-
titioners to understand and apply to real-world problems.
Task models and scheduling algorithms are described
purely mathematically and the typical evaluation approach
is to create and analyze random task sets. This is not a
flaw in the real-time research. It just means that extra care
end experience are required, when an application or system
developer with a problem at hand is looking for the right
scheduling algorithm. But these practitioners often lack this
experience and rather use ad-hoc, application specific solu-
tions, thus partly reinventing the wheel, ignoring existing

and sometimes more powerful solutions from researchers.
Practitioners without an education in real-time theory also
shy away from directly contributing to their system’s choice
of scheduling principles. They often grudgingly accept the
system substrate they are given, even though it is inadequate
for their needs.

There is a clear benefit in bringing these worlds closer
together. With this work, we want to support this process
by studying video playback as one very common use case
of today’s computers. With this, we hope to demonstrate to
the practitioners, how different scheduling algorithms can
be applied to the problem and what the results are com-
pared to current application specific solutions. Although
those specific solutions solve the problem in many cases,
they have the downside of not being tied in with the system-
wide scheduler and thus being disconnected from a global
view on the available resources. When multiple applica-
tions consume those resources, such a global view is the
only way to negotiate between competing demands.

System architects for commodity operating systems on
the other hand must implement a global scheduling regime
that can accommodate many different applications. For
those, our work strives to provide feedback on the suitability
of different scheduling models for the video use case. We
do not want to start from scratch and develop a scheduler
custom-tuned to video playback, as this would possibly dis-
criminate other applications. Our goal here is to point out
strengths and weaknesses of existing schedulers towards a
quantification of utility we will present in more detail in
Section 5.

Our contribution is therefore a study of the suitability
of various scheduling algorithms for the problem of video
playback. We want to bridge the lack of insight from ei-
ther camp: We want to help the practitioners understand
the consequences of the choice of scheduler and we want to
help the theorists understand the specific properties of the
given use case and their impact on the scheduling.

Before we get to the core part of the paper, the next Sec-
tion will introduce video as a real-time load in more detail.

1

2. Video as a Real-Time Task

Video playback is employed as a demo workload by sys-
tem architects, but often as a black-box application. Here,
we want to provide some insight into the real-time charac-
teristics and the inherent problems for scheduling.

2.1. Task Characteristics

Video is typically consumed in conjunction with an ac-
companying audio track. Compared to video, the resource
demand of audio playback is considerably lower, thus we do
not consider it directly in this work. But it still has an impact
on the video scheduling: The audio track forces the video
to strictly adhere to its specified frame rate. If a video with-
out audio experiences resource problems, we can choose to
run it 10 % slower and few people will notice. If audio is
present, such a choice would require one of the following
three degradations of audio playback:

• The video is allowed to fall behind the audio, thus
playing out-of-sync with the sound.

• Gaps are inserted into the audio stream.

• The audio is resampled to play 10 % slower, causing a
drop of almost two halftones.

Neither of those options is particularly attractive. Gaps and
out-of-sync sound are extremely disruptive to the experi-
ence and an intonation drop of two halftones is recognizable
even to musically untrained ears. Therefore, the video must
play by its specified frame rate as soon as audio is present.
We assume such a setup.

Due to that constant frame rate, the frames bear natu-
ral deadlines. Between those deadlines, the frames must be
decoded, which is the major computational load for video
playback. The playback process can therefore be modeled
as a series of strictly periodic jobs. For some types of video,
the frames are divided into slices, which can be decoded
separately, thus implying multiple sub-jobs within one pe-
riod.

Looking at release times of jobs, we can observe a pecu-
liarity. If we assume pre-recorded video that is played from
local storage, conceptually all frames of the entire video are
released as soon as the user hits the play button. There are
dependencies within the frames as they typically must be
decoded with some ordering constraints, but nothing is pre-
venting the player from decoding a frame long before it is
due for display. The release times are therefore not aligned
to the deadlines of previous frames. We can model them as
such, if a scheduling algorithm’s task model dictates that,
but this clearly adds artificial constraints limiting the ad-
mission. This will be one of the aspects we plan to evaluate.
Obviously, decoding frames ahead of time requires buffer-
ing, whose limits should be part of the model. In the ex-
treme case of only one in-flight frame, the release times fall

!"
#
$
%
&'
(
)
*
+

,

-,

.,

/,

0%1(23*4&53$%&63*&738839%1(*29:

, ., ;, <,

Figure 1. Long-Tail Distribution of Frame De-
coding Times

into the traditional pattern of matching the previous dead-
line.

In practice, the decoding pipeline of a video player in-
corporates multiple stages, from demultiplexing over de-
coding down to the output to the GPU. These stages can
execute within dedicated threads, so the actual threading in-
side the player may differ from the conceptual task model
drafted above. Decoding is by far the dominating step, so
our simplified view is justified. One can also consider this
as scheduling parts of the video data stream being processed
rather than the actual threads who execute the processing.

2.2. Problems with Video

Regarding scheduling, video playback brings along two
inherent problems:

• The decoding time of individual frames and thus the
execution times of our periodic jobs can vary signifi-
cantly.

• Dropping jobs by skipping or preempting them means
that some frames will not be decoded. This has a non-
trivially predictable and sometimes severe impact on
video quality and can therefore not be done arbitrarily.

The first problem is illustrated by Figure 1. Within the
distribution of frame decoding times, the mean and max-
imum value exhibit a ratio of 1 : 2.3. With such behav-
ior, scheduling with hard deadlines induces heavy over-
provisioning. Thus, video decoding seems to be better
suited to firm and soft real-time. Some algorithms of those
paradigms however require in-advance knowledge of the
execution times of upcoming jobs. These are not easy to ob-
tain for video. We developed a prediction technology which
we will detail in Section 3.

The second problem of not being able to drop arbitrary
frames is a property of modern video codecs. We work with
H.264 [8], a widely deployed modern video coding stan-
dard. It is used in the majority of modern media applications

2

!
"#

$
%&
"'
%(

")
)"
*
$
+
,
'
-
*
.

/

0/

1/

2/

345#$

6/// 66// 60// 67// 61// 68//

Figure 2. Decoding Time Fluctuations for a
Section of an Example Video

ranging from iPod mobile videos over online movie trailers
to Blu-Ray discs. This standard poses unique challenges,
because previous video standards like MPEG-2 featured a
class of frames (B-frames) that could be discarded with-
out further consequences to the decoding process. A lot of
earlier research results on resource adaptation and real-time
scheduling relies on this fact [4]. With H.264, any frame of
the video is potentially used as a reference to decode future
frames, so no frames can be easily discarded. This is one
of the reasons for H.264’s greater coding efficiency, so it is
an indispensable characteristic. Dropping a frame anyway
results in quality degradations of future frames. We have
devised a method, which will be discussed in Section 4, to
make this quality impact manageable.

3. Video Decoding Time

Decoding time represents the machine’s stake in the
video playback task. CPU time is the prominent resource
for scheduling, other demands of the decoding process
like memory allocations are fairly static. Decoding mod-
ern video shows properties of interpreting descriptive code.
Very simplified, the application of certain feature blocks of
the standard is decided during decoding based on bits in the
video stream. Therefore, a video codec’s CPU load depends
highly on the video stream being processed. As shown in
Figure 2, execution times exhibit both short-term and mid-
term fluctuations. The short-term variation is caused by dif-
ferent frame types and other mode decisions of the encoder.
The mid-term behavior is due to the bit budgeting the en-
coder performs to mitigate differences in frame complexity.

3.1. Decoding Time Prediction

To provide advance knowledge of the execution time of
upcoming decoding jobs, we developed a prediction tech-
nology [5]. The overall idea is to find a vector of metrics
extractable from the bitstream for each frame. This vec-

tor’s dot product with a vector of fixed coefficients gives
an estimate of the decoding time. The coefficients are de-
termined by the predictor automatically in a training phase
and are then stored and used for subsequent predictions. We
achieve prediction accuracies, where over 90 % of the pre-
dictions have a relative error of 20 % or less.

3.2. Scheduling Implications

Scheduling with hard deadlines means always planning
for the worst case. Because of the long-tail distribution of
execution times, the worst case for video decoding exceeds
the average case. Such a scheduling would result in heavy
overprovisioning of resources. When decoded frames are
buffered and the decoder can thus work ahead, the system
can at least accumulate the slack time and models like jitter-
constrained streams [2] can be employed.

Scheduling under a firm deadline regime can mitigate
the overprovisioning at the cost of a tolerated reduction in
quality by potentially discarding some frames. If some tar-
diness of frames can be tolerated, even soft deadlines can
be applied. The advance knowledge of upcoming execu-
tion times is used by some algorithms like SRMS [1]. They
will not release jobs in the first place, if they will overrun
their deadlines. Other algorithms like QRMS [3] will as-
sign an execution time budget to jobs, release them opti-
mistically and then preempt them as soon as the budget is
depleted. Those partial results may be useful or may be
thrown away. In the latter case, a job was released and con-
sumed CPU time, but did not contribute to the visible result.
We consider this gap between effective and apparent utiliza-
tion an interesting property of some scheduling algorithms
with firm deadlines.

4. Visual Quality

Perceived visual quality represents the user’s stake in the
video playback process. As noted earlier, the internals of
H.264 cause quality to decrease whenever a decoding job is
discarded or preempted prematurely. Current player imple-
mentations will wait until the next decoder reset whenever a
frame does not meet its deadline. This avoids displaying de-
graded frames, but is typically even more disruptive, as full
decoder resets are seconds apart in common H.264 streams.
Another way to trade quality for decoding time is required.

4.1. Fallback Decoding

We developed an alternative, degraded decoding mode
for H.264 frames that is faster than full decoding [6]. It
is based on some additional data embedded into the video
stream that allows the decoder to quickly stitch together
a fallback frame using image content available in the de-
coder’s reference frames. In addition to providing this fast

3

fallback mode, we can also quantify the impact on visual
quality for the affected frame and the quality loss propa-
gated to future frames via referencing.

4.2. Scheduling Implications

The fallback decoding implies a mandatory minimum
decoding time. The full decoding can then be modeled as
an optional step, which plays into the hands of imprecise
computation approaches. However, the fallback part can be
skipped if the full decoding part succeeds, which is different
from the traditional imprecise method. It is advantageous
that the fallback decoding differs from full decoding in that
it exhibits a narrower execution time distribution. Schedul-
ing it with hard deadlines therefore induces less overpro-
visioning. If even the fallback is scheduled firm and a job
does not meet the deadline, the decoder can still revert to
waiting for the next decoder reset.

The quantification of quality loss caused by fallback de-
coding a frame implies priorities amongst the individual
jobs. As the user’s goal is maximized quality, scheduling
models that respect such inter-job priorities are favorable.
This leads us to the question of evaluation. We need to
compare scheduling algorithms according to how well they
solves the given problem.

5. Evaluation Plan

As this is very much work-in-progress, we can only
present an evaluation plan here. We want to select a set of
scheduling algorithms and explore different options on how
the various constraints and options discussed above can be
mapped to the algorithms’ respective task models. Follow-
ing that, we will simulate the scheduling using data from
real videos. We provide the schedulers with a description of
the decoding cost in terms of execution time, either aggre-
gated as a distribution or in the form of a trace, depending
on the algorithm’s needs. To those schedulers whose task
model can handle it, we also provide the utility of each job
in terms of contributed visual quality.

Since we are decoding the videos for the user, the bench-
mark metric to compare the schedulers will be the achieved
visual quality. We objectively measure quality with the
SSIM metric [7], which matches human perception better
than the simplistic PSNR. To represent the current prac-
titioner’s approach, we also have an application-specific
scheduler for video playback [6]. This can serve as a base-
line. We want to see, how various other schedulers perform,
we intend to point out weaknesses, suggest improvements.
Schedulers we are considering include QRMS [3], SRMS
[1], (m,k)-firm approaches, reward-based, and multiversion
scheduling. Time-utility approaches appear related, but ac-
tually, our notions of utility is completely orthogonal to the
execution time. There is no function mapping execution

time to utility, because the video quality is a function of the
video itself, not the decoding effort.

6. Conclusion

We want to study the suitability of different schedulers
for the problem of video decoding. We compare the sched-
ulers based on the utility provided to the user: visual qual-
ity. The goal of the study is to help bridge the gap between
scheduling theorists, who gain an insight in the video work-
load and a real-world contest amongst scheduling models,
and the practitioners, who become motivated to look at real-
time research results and can make a better educated choice
on the scheduler to use when designing a system.

References

[1] A. K. Atlas and A. Bestavros. Statistical Rate Monotonic
Scheduling. In Proceedings of the 19th IEEE Real-Time Sys-
tems Symposium (RTSS 98), Madrid, Spain, December 1998.
IEEE Computer Society.

[2] C.-J. Hamann. On the Quantitative Specification of Jitter Con-
strained Periodic Streams. In Proceedings of the 5th Interna-
tional Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS 97),
Haifa, Israel, January 1997. IEEE Computer Society.

[3] C.-J. Hamann, M. Roitzsch, L. Reuther, J. Wolter, and H. Här-
tig. Probabilistic Admission Control to Govern Real-Time
Systems under Overload. In Proceedings of the 19th Euromi-
cro Conference on Real-Time Systems (ECRTS 07), Pisa, Italy,
July 2007.

[4] D. Isović and G. Fohler. Quality aware MPEG-2 Stream
Adaptation in Resource Constrained Systems. In Proceed-
ings of the 16th Euromicro Conference on Real-Time Systems
(ECRTS), July 2004.

[5] M. Roitzsch and M. Pohlack. Principles for the Prediction
of Video Decoding Times applied to MPEG-1/2 and MPEG-
4 Part 2 Video. In Proceedings of the 27th IEEE Real-Time
Systems Symposium (RTSS 06), Rio de Janeiro, Brazil, De-
cember 2006. IEEE Computer Society.

[6] M. Roitzsch and M. Pohlack. Video Quality and System Re-
sources: Scheduling two Opponents. Journal of Visual Com-
munication and Image Representation, 19(8):473–488, De-
cember 2008. Special issue: Resource-Aware Adaptive Video
Streaming.

[7] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli.
Image Quality Assessment: From Error Visibility to Struc-
tural Similarity. IEEE Transactions on Image Processing,
13(4):600–612, 2004.

[8] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra.
Overview of the H.264/AVC Video Coding Standard. IEEE
Transactions on Circuits and Systems for Video Technology,
13(7):560–576, July 2003.

4

	. Introduction
	. Video as a Real-Time Task
	. Task Characteristics
	. Problems with Video

	. Video Decoding Time
	. Decoding Time Prediction
	. Scheduling Implications

	. Visual Quality
	. Fallback Decoding
	. Scheduling Implications

	. Evaluation Plan
	. Conclusion

