
Can We Put Concurrency Back
Into Redundant Multithreading?

Björn Döbel, Hermann Härtig
TU Dresden, Germany

{doebel,haertig}@tudos.org

Abstract
Software-implemented fault tolerance (SIFT) mechanisms
allow to tolerate transient hardware faults in commercial off-
the-shelf (COTS) systems without using specialized resilient
hardware. Unfortunately, existing SIFT methods at both the
compiler and the operating system levels are often restricted
to single-threaded applications and hence do not apply to
multithreaded software on modern multicore platforms.

We present RomainMT , an operating system service that
provides replication for unmodified multithreaded applica-
tions. Replicating these programs is challenging, because
scheduling-induced non-determinism may cause replicated
threads to execute different valid code paths. This compli-
cates the distinction between valid behavior and the effects
of hardware errors.

RomainMT solves these problems by transparently mak-
ing multithreaded execution deterministic. We present two
alternative mechanisms that differ in the assumptions made
about the respective applications and investigate their per-
formance implications. Our evaluation using the SPLASH2
benchmark suite shows that the overhead for triple-modular
redundancy (TMR) is 24% for applications with two applica-
tion threads and 65% for four application threads.

1 Introduction
The hardware components that form modern multiprocessor
systems can suffer from transient errors caused by cosmic ra-
diation, hardware aging, and thermal effects [7,38,41]. With
decreasing feature sizes and increasing hardware complexity
these single-event upsets (SEUs) are no longer only a prob-
lem for avionics and space travel. Catastrophic SEUs were
reported in data centers [19], scientific computing [17], as well
as automotive systems [45]. Future technology scaling will
amplify this problem: at a structure size of 8 nm only half
of a CPU’s circuits may be powered at the same time [15].
The resulting fluctuations in supply voltage will increase
hardware fault rates. Transient errors are furthermore not
limited to CPUs. Industry studies showed that hardware

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
ESWEEK’14, October 12 - 17 2014, New Delhi, India Copyright is held
by the owner/author(s). Publication rights licensed to ACM. ACM 978-1-
4503-3052-7/14/10. . . $15.00. http://dx.doi.org/10.1145/2656045.2656050

components, such as memory and disks, also exhibit transient
failures before breaking completely [19,34].

Researchers and vendors devised fault tolerance solutions
ranging from specialized hardware [3] to compiler and run-
time solutions for commercial-off-the-shelf (COTS) platforms.
Such mechanisms often use one or more forms of redundancy
either in time (repeated execution [36]), space (replication
on different hardware units [40]), or data (fault-tolerant en-
coding [16]).

Our work focuses on fault tolerance for modern multicore
computers, which are used in today’s high-end embedded and
mobile platforms. These devices share two main properties
that limit the choice of fault tolerance method: first, they
consist solely of COTS hardware components (and IP cores)
and we cannot rely on fault tolerance through hardware
extensions. Second, such systems mainly run binary software
that is obtained through internet downloads and application
stores. This property rules out compiler-level solutions, which
usually require the program’s source code to be available.
We address these issues using software-implemented binary-
level replication based on our previous Romain replication
service [12].

Romain as well as many other SIFT mechanisms were
evaluated using single-threaded workloads only [12,16,36,40].
This contradicts the needs of modern software: even in the
embedded domain we find multicore computers that can be
efficiently used by multithreaded applications. These pro-
grams often exhibit non-determinism that makes replication
challenging.

In this paper we present RomainMT , an extension to Ro-
main that replicates multithreaded binary applications. Ro-
mainMT leverages deterministic multithreading techniques
from Olszewski et al.’s Kendo [33] to transparently make
multithreaded software deterministic.

This paper makes the following contributions:

1. We extend Romain to support multithreaded replica-
tion for pthread [26] applications. We intercept syn-
chronization operations in replicas using debug traps
and use the replication master to enforce determinism.

2. We show that this straightforward solution leads to
high runtime overheads. We then present an alterna-
tive solution that leverages a replication-aware thread
library to lower this runtime cost.

3. Evaluating our implementation with the SPLASH2
benchmark suite [44] we find the overhead for triple-
modular redundant (TMR) replication is 24% when
replicating two application threads and 97% when repli-
cating four application threads. We find that lock
density is a main contributor to overhead.

In the remainder of this paper we first give an overview
of Romain’s approach to OS-assisted replication and relate
our work to other research in the context of fault tolerance
against SEUs and deterministic multithreading in Section 2.
We introduce enforced and cooperative determinism as two
alternatives to enforcing deterministic replicated execution
in Section 3 and evaluate our implementation using the
SPLASH2 benchmarks in Section 4. In Section 5 we discuss
limitations of our approach.

2 Related Work
We now introduce OS-assisted replication as implemented
by Romain and motivate the underlying SEU fault model.
Thereafter we describe how multithreading affects replicated
execution and how deterministic multithreading methods can
alleviate these issues.

2.1 SEU Fault Tolerance
Single-event upsets are used to model transient errors that
stem from cosmic radiation [41], hardware aging [38], and
thermal effects. SEUs are distributed uniformly over time
and chip area, but their probability varies with geographical
location and altitude. In line with related work [36] we make
the assumption that SEUs happen seldom so that only a
single error is active at one point in time. In contrast to
related work, we do not assume memory to be protected
against SEUs using error-correcting codes (ECC) [29] as
such hardware is often too expensive (in terms of energy
consumption and chip area) for embedded or mobile devices.

A common approach to tolerating SEUs is to increase
fault masking by applying redundancy. This can for in-
stance be achieved by adding custom hardware units, such as
DIVA’s checker cores [3] or Razor’s flip-flops for monitoring
gate switch times [14]. High-availability systems, such as
IBM’s z-Series [20] and HP NonStop [6] additionally provide
software-level solutions, which increase fault tolerance if de-
velopers use specific programming models. In contrast to
these mechanisms, our goal is to provide fault tolerance for
unmodified binary applications on top of COTS hardware.

At the software level, compiler developers have proposed
techniques to generate fault-tolerant code. These approaches
include adding data encoding [16] and generating additional
code that checks computed data [36] and the validity of jump
targets at runtime [32]. These compiler techniques require the
target application’s source code to be available. In contrast
to compiler methods, we aim to provide fault tolerance for
practical systems where software is often distributed in binary
form and comes from a variety of vendors so that enforcing
common compiler constraints is not a viable solution.

Studies [1,37,43] tried to understand the impact of SEUs on
system behavior. One major result from these studies is that
a significant amount of SEUs (usually around 20-30%) does
not lead to misbehavior of the affected system. These benign
faults are masked by hardware or software before producing
wrong results. Redundant multithreading (RMT) [35] tries to
leverage this fact: replicas execute in independent threads
as long as they only compute internal results. The threads’
states are only compared whenever they try to generate
externally visible results, for instance by performing system
calls.

RMT implementations exist at the hardware [35] and com-
piler [42, 46] levels and in the form of runtime extensions
for Linux [40], L4 [12], and MPI [17]. The runtime-level
approaches share our goal of providing replication transpar-

Replica Replica Replica

Master
User mode

Kernel mode
L4 Microkernel

=

CPU 0 CPU 1 CPU 2

Figure 1: Replicated Application

ently to arbitrary binary applications. Unfortunately, most
software RMT implementations share one limitation: they
lack support for replicating multithreaded applications. The
purpose of this paper is to dispose of this limitation.

2.2 OS-Assisted Replication
Due to space constraints we can only give a brief overview
of how Romain achieves replication as an operating system
service. For details please refer to our original paper [12].

Romain replicates unmodified binary applications on top
of the L4 microkernel as shown in Figure 1. A user-level
master process launches N instances (replicas) of a binary
application. Each replica executes in its own address space
to achieve fault isolation. Replicas are scheduled on different
physical CPUs to decrease runtime overhead through parallel
execution.

The L4 microkernel provides a mechanism that allows the
master process to intercept any externalization event, such
as system calls, page faults, and other CPU traps. Apart
from this mechanism, Romain does not require specialized
features and runs on COTS x86-32 hardware.1

Romain replicates single-threaded applications. The mas-
ter process ensures that replicas obtain identical inputs even
from non-deterministic function calls, such as gettimeof-
day(). As a result, correctly functioning replicas execute
the same code and hence generate the same externalization
events. Whenever a replica raises an externalization event,
the master blocks it until all replicas have reached their
next externalization event. The master then compares the
replicas’ architectural states to detect and correct errors be-
fore handling these events (e.g., by resolving page faults or
redirecting a system call to the L4 kernel).

Replicated execution on different CPUs allows the master
process to detect and correct errors that arise in functional
units of a CPU, such as bit flips in registers or errors during
instruction decoding. To also protect replicas against SEUs
in memory, Romain adapts replica memory management.
Every replica works on a dedicated copy of its memory.
Hence, a memory fault will only affect a single replica and
the resulting misbehavior can still be detected and corrected
by the master process.

The replication framework does not protect the Romain
master process as well as the underlying microkernel against
hardware errors. This part of the system, called the Reliable
Computing Base (RCB), needs to be protected separately.
Protection of the RCB [10] is orthogonal to the work pre-
sented in this paper.

1L4 itself also runs on x86-64 and ARM. We therefore believe
that our solution is also applicable to these architectures with
the respective porting effort.

int x = 1;
pthread_mutex_t m = PTHREAD_MUTEX_DEFAULT;

void *thread_A(void *data)
{

pthread_mutex_lock (&m);
x = x + 1;
pthread_mutex_unlock (&m);
return NULL;

}

void *thread_B(void *data)
{

pthread_mutex_lock (&m);
x = x * 2;
pthread_mutex_unlock (&m);
return NULL;

}

Listing 1: Data-race free thread example

2.3 The Multithreading Problem
Multithreaded programs consist of concurrently executing
threads, which are scheduled non-deterministically by the
underlying OS. Due to this fact, in every application run,
threads may obtain inputs in different order and in turn
generate different output depending on scheduling order.

Listing 1 shows an example to illustrate the problem. Sup-
pose there are two threads executing the functions concur-
rently. Mutex m makes sure that accesses to the variable x are
serialized. Depending on the exact scheduling, the threads
may execute either in order A;B (yielding x == 4) or B;A
(yielding x == 3).

Now assume we replicate this program and run two repli-
cas. One replica may execute A;B, while the second replica
may execute B;A. When the variable x is then used for an
externalization event, the replication master will detect this
divergence and flag a potential hardware fault. In the best
case this will cause unnecessary runtime overhead for recov-
ery. In the worst case, the replicas may have diverged in a
way that does not allow recovery at all.

To solve this problem, we need to make sure that threads
behave deterministically. Deterministic multithreading pro-
vides this property and has been extensively researched. We
now review deterministic multithreading approaches to find
out which best fits our goal of transparently replicating
binary-only multithreaded applications.

2.4 Deterministic Multithreading
Eve [23] provides deterministic execution in a distributed
environment and leverages request batching to optimize per-
formance. Batching is unfortunately no option for replicating
applications as an operating system service, because we can-
not batch system calls without changing system semantics.

Tern [9] and Storyboard [22] exploit application knowledge
to determine possible schedules and modify the locking library
to enforce those schedules by assigning locks to threads in
a pre-determined order. The required pre-analysis places a
burden on the user and during analysis the application is not
protected against hardware faults.

Determinator [4], dOS [5], and Conversion [28] provide
operating system interfaces for applications to fork private
copies of memory regions, modify these regions, and later
merge them back into the original copies. Replication on
these systems does not suffer from non-determinism. How-
ever, these solutions restrict developers to use a specific
parallel programming model that leverages fork/join memory
semantics.

DThreads [27] provides a replacement for the commonly
used pthread thread library and ensures deterministic or-
dering of memory accesses by transparently providing such
fork/join semantics. DThreads’ threads work on private
memory copies that are deterministically merged whenever a
pthread synchronization operation is called. Unfortunately,
maintaining per-thread memory copies increases applications’
memory footprint: In the worst case, running N threads in
DThreads will require N times the amount of memory as the
original program. If we combine this approach with Romain’s
replication and run M replicas, we end up requiring M ×N
memory. This may seriously restrict the applicability of such
a solution in embedded systems, where additional memory
may be scarce.

Kendo [33] provides a weaker form of determinism. A
multithreaded application that is free of data races under
a given locking scheme will execute deterministically if we
make sure that locks are acquired in the same order upon
every run. Kendo threads run in the same address space and
share global resources. Kendo furthermore provides lower
runtime overheads for deterministic execution. We therefore
decided to accept the restriction to race-free programs and
base our replicated multithreading solution on Kendo.

While deterministic multithreading research is often moti-
vated using replication as an example, only few solutions ac-
tually implement this use case. One of these few is Mushtaq’s
extension to Linux, which provides a leader-follower-based
multithreaded replication scheme similar to RomainMT [30].
Their mechanism differs from RomainMT in that they use
checkpoint/rollback for recovery. Predictions about the fu-
ture of checkpoint/rollback show that this overhead may
become dominating in future highly parallel systems [13]. In
contrast, RomainMT provides the user with the option to
choose between double-redundancy (costing fewer resources,
but requiring an additional checkpoint mechanism) and triple-
modular redundancy (allowing for forward recovery by ma-
jority voting).

Mushtaq’s work has another drawback: they use fork()-
based checkpoints in Linux. The checkpointed address space
is only created as a copy-on-write copy of the caller. Hence,
all memory that is never modified does not need to be copied,
which reduces runtime overhead. While this approach is fast,
it makes the solution vulnerable to memory SEUs. Whenever
an untouched page gets corrupted and leads to a program
failure, their solution rolls back to the last checkpoint and this
checkpoint will suffer from corruption as well. Unfortunately,
the authors discuss neither this issue nor its implications
(reliance on ECC-protected memory) in their paper.

3 Multithreaded Replication
RomainMT shares Kendo’s assumption that applications are
race-free under a given locking scheme. This means that
whenever two threads access the same location in shared
memory, they use a pair of lock/unlock operations to protect
this access. We base our work on the commonly used pthread
library and its mutex operations. Thereby, our findings also
apply to higher-level thread packages, such as Intel’s thread
building blocks [21], which internally use pthread.
RomainMT makes use of the fact that on modern oper-

ating systems vendors distribute dynamically linked binary
applications. These programs assume that the platform
vendor provides a concrete instance of the most common
libraries, such as the pthread library. By providing a deter-
ministic pthread library on our target system we can make

T1.1

T1.2

T1.3

T2.1

T2.2

T2.3

Replica 1 Replica 2

Thread
Group 2

Master

Externalization
Event (Syscall /
Page Fault / Trap)

Application
Thread 3 in
Replica 2

Figure 2: Terminology overview

all dynamically linked programs deterministic and still do
not require modifications to the actual applications.

A closer look at four different Linux installations with sev-
eral thousands of applications shows that this approach covers
all but four applications and therefore suffices for our needs.
We also implemented a modification to RomainMT that uses
binary-patching to redirect statically linked pthread calls to
our deterministic thread library, but we do not discuss this
solution any further for space reasons.

We now describe how RomainMT extends Romain to
achieve deterministic multithreaded replication. We first
present the main terminology in Section 3.1. In Section 3.2
we describe how enforced determinism transforms lock oper-
ations into externalization events that the replication mas-
ter uses to make execution deterministic. Section 3.3 then
presents cooperative determinism, which avoids this expensive
transformation.

3.1 Terminology
In the context of this paper a“thread“ has different roles: first,
a concurrent application executes multiple threads inside its
address space. Second, the replication service creates multiple
replicas of the application and a copy of each application
thread exists inside each replica.

Figure 2 gives an overview of the terminology we use in
the rest of this paper. A single application instance (its
threads and the respective address space) is called a replica.
Each replica executes multiple application threads. The set
of threads that conceptually execute the same code within
different replicas are called a thread group.

Once we achieve deterministic multithreading, the threads
of each thread group will obtain identical inputs, generate
identical output and can therefore be compared for error
detection. Each thread group is handled independently by
the master process. While one thread group’s externalization
event is handled, the other thread groups continue to execute
or raise and handle different events.

3.2 Enforced determinism
Our first approach to enable multithreaded replication is to
make lock acquisition and release an externalization event
(similar to a system call) that is handled by the RomainMT
master. For this purpose we modified our L4 system’s thread
library so that all relevant lock functions issue a debug
breakpoint instruction (INT3 on x86) upon function entry.
Thereby, any call to one of these functions will raise a debug
exception that is reflected to the master.

The debug exception blocks the faulting thread and the
master’s exception handler waits until all threads of this

0 20 40 60 80 100

Single

DMR

TMR

121x

197x

309x

Seconds

Figure 3: Worst-Case Microbenchmark: Enforced
determinism overhead for single-replica, double-
modular (DMR) and triple-modular (TMR) execu-
tion. Native execution time: 0.286 seconds.

group have reached their next event. If the threads executed
deterministically and did not encounter a hardware fault,
their states will match at this point. The master validates
this. Upon success we know that all threads of this group
are ready to acquire (or release) the same lock.

The master then determines the lock that is to be accessed
by inspecting the parameters on the replica’s stack. The
lock ID is mapped to a master-internal lock and the master
acquires this lock before resuming replica execution. The
last step ensures that concurrent accesses to the same lock
by different thread groups are correctly serialized inside the
master. As this approach enforces determinism through
an exception handler in the RomainMT master, we call it
enforced determinism.

Our L4 system uses µClibc2 as its standard C library.
We analyzed its pthread library and found that we have to
instrument four functions to achieve determinism at the level
of pthread mutexes: __pthread_lock, __pthread_unlock,
mutex_lock, and mutex_unlock. These four functions suffice
to run the test cases and benchmarks used in this paper. This
includes support for pthread condition variables as they are
implemented using lower-level mutex operations. We do not
yet support timed versions of synchronization operations
(e.g., mutex_timedlock).

We performed an initial microbenchmark to evaluate run-
time overhead. Two threads increment a global counter
variable 5 million times each. For each increment, a lock
is acquired and released. The critical section is very short
and the microbenchmark therefore allows us to estimate the
worst-case overhead for instrumenting lock operations.

We executed the benchmark on a system equipped with
12 physical Intel Xeon X5650 CPU cores (on two sockets)
running at 2.67 GHz. We pinned each thread to a dedi-
cated physical CPU. No further applications were running
on the system during our benchmarks. When executing the
benchmark natively (without RomainMT), it completed in
0.286 seconds. We then ran the benchmark with a single
replica in RomainMT . While this does not add fault toler-
ance, it allows us to determine the baseline overhead that
is introduced by intercepting lock accesses. Thereafter, we
measured the runtime overhead for double-modular (DMR)
and triple-modular (TMR) execution.

Figure 3 shows the runtimes for this microbenchmark and
compares them to native execution. We see that intercepting
the 20,000,000 lock and unlock operations in our benchmark
has a drastic impact on replication overhead. We investigated
the origins of this overhead. First of all, our mechanism
transforms 20 million lock function calls into CPU traps. The
cost of delivering such an event to the master and returning
to the replica amounts to about 2,200 CPU cycles per event.
Throughout a benchmark run this cost sums up to about

2http://uclibc.org

8 seconds and remains constant regardless of the number of
replicas we are running.

The second source of overhead we are seeing is the handling
of lock events in the master process. Event handling consists
of three phases: first, we wait for all replicas to reach their
externalization event. Second, we validate replica states and
handle the event. Third, the replicas are woken up again.
We measured the time spent in these three phases for every
benchmark run.

The single-replica case does not require synchronization
between the replicas and spends 90% of its master execution
time within the lock implementation, acquiring or waiting for
a lock. In contrast, DMR execution spends 74% of its time in
the replica synchronization phases. For TMR synchronization
contributes to 83% of the total overhead.

Optimizing Replica Synchronization We investigated the
high cost of replica synchronization and were able to attribute
it to two factors: CPU placement and use of message-based
synchronization primitives.

CPU Placement Our test machine’s twelve CPU cores
are organized in two sockets with six cores each. Replica
synchronization requires messages to be sent between repli-
cas. These inter-processor interrupts (IPIs) are an order of
magnitude faster if sent within a single socket.

As explained before, RomainMT distributes replica threads
across physical CPU cores. In the benchmark we sequentially
assigned these threads to cores starting at CPU 0. Running
two application threads in triple-modular redundancy there-
fore means we are using 6 CPUs for those threads, which
should fit into one of the sockets. However, µClibc’s pthread
library runs an additional thread per application, which is
used for management purposes.

Therefore, we are in fact running three replicas of three
threads and use 9 cores. Due to our CPU assignment, the
replicas of the manager and first worker thread run on the
six cores on socket 0, whereas the three replicas of the second
worker thread run on socket 1. The manager thread performs
no real work, but spends nearly 100% of its time waiting for
messages from the worker threads. We manually optimized
CPU placement to put the manager thread group on core 0
and distribute the replicas for the two worker threads across
cores 0 to 5 respectively. Thereby all replicas run on a single
socket in TMR mode.

Blocking synchronization RomainMT uses L4’s mes-
saging primitives to block replicas as long as the master is
processing their events and to wake them up once this is
done. These messages require additional IPIs to be sent
between replicas. We modified synchronization so that the
replicas send a trap event to the master and then poll a
globally shared variable to wait until the master finished
event processing and updated the replicas’ states. Using this
Fast Synchronization approach we avoid sending additional
IPIs and messages.

However, the replicas now busily wait for the master in-
stead of sleeping. This will increase their energy consumption
and may render this optimization useless for battery-driven
mobile devices. Hardware can aid with this problem by pro-
viding a possibility to block a CPU waiting for an event,
such as Intel’s monitor/mwait [8] and ARM’s wfe/sev [2]
instructions do.

Performance impact We evaluated optimized CPU place-
ment and fast synchronization by repeating the previous
benchmark and show the results in Figure 4. Single-replica
execution is unaffected by our optimizations. DMR execution

0 20 40 60 80 100

Single

DMR

TMR

121x

138x

192x

121x

195x

212x

121x

197x

309x

Seconds

Unoptimized

Opt. CPU Placement

Placement+Fast Sync

Figure 4: Effect of optimizations on the worst-
case microbenchmark using single-replica, double-
modular (DMR) and triple-modular (TMR) execu-
tion. Native execution time: 0.286 seconds.

Replica

libpt
rep

LIP

Replica

libpt
rep

LIP

Replica

libpt
rep

LIP

Lock Info
Page

RepMT Master

CPU 0 CPU 1 CPU 2

Figure 5: Making applications replication-aware: a
lock info page is shared among all replicas

is not affected by optimizing CPU placement, because all
replicas already run on a single socket. Fast synchroniza-
tion decreases DMR overhead by 30%. Optimizing CPU
placement reduces TMR overhead by 38%.

Despite these optimizations, our results indicate that every
lock operation with enforced determinism will cost about
200 times the original overhead in TMR mode. This makes
enforced determinism prohibitively expensive especially for
applications that have high lock frequencies and short critical
sections, such as our microbenchmark.

3.3 Cooperative determinism
The remaining runtime overhead for enforced determinism
is mainly due to handling lock operations within the Ro-
mainMT master. We implemented an alternative that avoids
the debug trap and expensive lock handling overhead by mak-
ing applications replication-aware as depicted in Figure 5.
We extended our customized pthread library to integrate
more tightly with RomainMT . During application startup,
the master process maps a shared lock info page (LIP) into
all replica address spaces. Instead of turning lock operations
into traps, the replication-aware library uses this LIP to
ensure that the replicas agree on the ordering of lock acqui-
sitions and releases at runtime. As determinism is achieved
by cooperation among the replicas, we call this approach
cooperative determinism.

Implementing a Replication-Aware Thread Library Our
replication-aware thread library, called pthread_rep, replaces
µClibc’s mutex_lock() and mutex_unlock() functions. The
pthread_rep library makes two assumptions: first, all threads

struct LIP {
unsigned int num_replicas;
struct {

unsigned int spinlock;
Address owner;
unsigned int acq_count;
unsigned int epoch;

} locks[MAX_LOCKS];
};

Listing 2: Lock Info Page
struct LIP *lip; // global LIP address

int
pthread_mutex_lock(pthread_mutex_t *mtx)
{

self()->epoch += 1;

while (1) {
spin_lock(lip , mtx);

i f (lip[mtx].owner == lock_free) {
/* Lock is free */
lip[mtx].owner = self ();
lip[mtx].epoch = self()->epoch;
lip[mtx]. acq_count = lip ->num_replicas;
spin_unlock(lip , mtx);
break;

}
else i f (lip[mtx].owner == self ()) {

/* Lock owned by my thread group? */
i f (lip[mtx].epoch == self()->epoch) {

spin_unlock(lip , mtx);
break;

} else {
spin_unlock(lip , mtx);
cpu_yield ();
continue;

}
}
else {

/* owned by someone else */
spin_unlock(lip , mtx);
cpu_yield ();
continue;

}
}
return 0;

}

Listing 3: Replication-aware lock acquisition

of a thread group have the same pthread ID, and second,
identical locks in different replicas have identical lock IDs.
µClibc’s pthread implementation uses the memory addresses
of thread and lock objects as their IDs. As the RomainMT
master ensures an identical memory layout for all replicas,
these two assumptions hold.

The LIP contains information about the number of replicas
and a shared data structure for managing locks. We show this
data structure in Listing 2. For each lock, we store a spinlock
that protects access to the respective lock information across
replicas. The owner field stores the thread that currently
possesses the lock, acq_count counts the number of replicas
that are in possession of the lock. The epoch counter serves
as a logical progress indicator for threads and is incremented
whenever a thread calls a lock/unlock function. Our current
implementation limits the LIP’s size to support 2,048 locks.
This suffices for the benchmarks used in this paper and can
be increased or decreased as needed.

Listings 3 and 4 show the code for acquiring and releasing
a lock. We use ConcurrencyKit’s spinlock3 to synchronize
access to the LIP between replica threads. If the mutex’

3http://concurrencykit.org/

int
pthread_mutex_unlock(pthread_mutex_t *mtx)
{

spin_lock(lip , mtx);

lip[mtx]->acq_count -= 1;
/* Last one turns off the lights. */
i f (lip[mtx]->acq_count == 0) {

lip[mtx].owner = lock_free;
}

spin_unlock(lip , mtx);
}

Listing 4: Replication-aware lock release

entry in the LIP indicates that it is unowned, we store the
current thread’s pthread ID in the owner field along with
the thread’s epoch and the global number of replicas. If the
owner field indicates the lock is already acquired, we check
if it is owned by the current thread group. In this case, any
other thread of the thread group may simply continue as the
lock has already been acquired. If we find that the lock is
owned by a different thread group (in case of a contended
lock), we yield the CPU and retry acquisition later.

A special case arises if the lock is owned by the current
thread group, but the current thread’s epoch counter is larger
than the stored one. This happens if the current thread
already released the lock and is now trying to re-acquire it.
This case is handled as if the lock was owned by a different
thread group in order to prevent one thread from overtaking
its other replicas.

Our current implementation makes pthread mutexes use
busy waiting whereas usual pthread implementations only
spin for some time and then block until they are woken up by
the next release operation. The cpu_yield function shown
in the listings can be modified to not yield the CPU, but
block by raising an externalization event. This event will
then be handled by the RomainMT master. This solution
restores the original wait behavior provided by the pthread
library. In the benchmarks we conducted for this paper, the
native pthread functions rarely went to sleep because locks
were either lowly contended or critical sections were short
enough for the lock to only spin.

Externalization Events and the LIP When accessing the
LIP, the replication-aware lock functions read and modify
shared data instead of private copies in the local replica. At
this point the replica’s register states may deviate, because
shared data is read during the lock acquisition phase. This is
a problem if the thread group raises an externalization event
(e.g., a page fault) while executing this code. In such case the
RomainMT master will deem this deviation a hardware fault.
We circumvent this problem by pinning the LIP and the
thread library’s code into each address space during startup.
Thereby, lock code will never raise a page fault.

We had to deal with another issue that was caused by
compilers’ calling conventions. 32-bit x86 considers registers
EAX, ECX, and EDX caller-saved, which means that a
function can overwrite their content at will. If these registers
are not used by the caller, GCC omits code to save/restore
their contents as a performance optimization. In the case
of replication this leads to situations where these unused
registers are used inside the lock functions to store volatile
LIP data. Execution then returns to the caller with differing
register content. If the caller does not restore the original
register content and does not use the registers until the
thread group raises its next valid event (e.g., a system call),

0 2 4 6 8 10 12 14 16 18 20

Single

DMR

TMR

2.1x

13.4x

30.3x

2.1x

13.5x

31.1x

2.1x

11.7x

67.8x

Seconds

Unoptimized

Opt. CPU Placement

Placement+Fast Sync

Figure 6: Cooperative Determinism overhead for
single-replica, double-modular (DMR), and triple-
modular (TMR) execution. Native execution time:
0.286 seconds.

the master will detect differing CPU states even though
no hardware fault happened. We avoid this problem by
manually setting the caller-saved registers to constant 0
before returning from the replica-aware lock and unlock
functions (not shown in Listings 3 and 4).

To estimate how cooperative determinism performs in
comparison to our enforced determinism implementation,
we repeated the microbenchmark described in Section 3.2
and show the results in Figure 6. Again, we show results
for unoptimized replica placement and the two performance
optimizations discussed in the previous section. Our results
show that cooperative determinism significantly reduces repli-
cation overhead. Using our optimizations, a lock operation
in TMR mode will still be 30 times slower than native, but
this is 6 times faster than the best result we were able to
achieve using enforced determinism.

3.4 Fault Recovery
When an erroneous replica is detected during fault handling,
RomainMT initiates a recovery routine. For DMR execution,
this terminates the application and relies on an external
recovery mechanism, such as restarting or rolling back to a
previous checkpoint. If three or more replicas are present,
RomainMT performs forward recovery using majority voting.

First, all thread groups are halted to prevent correct thread
groups from obtaining wrong data. Then, the erroneous
replica is identified by comparing this thread group’s thread
states as in original Romain. We can only compare the
erroneous thread group here, because all other thread groups
were stopped at arbitrary points within their execution and
are likely to differ at this point. This is no problem if we can
assume a single-fault model. In this case we already found
the erroneous replica and while other threads in the defective
replica may suffer from errors as well, these errors will be
corrected by majority voting.

After identifying the mismatching replica, RomainMT
selects a correct replica for recovery. All thread states of the
erroneous replica are set to the state of the corresponding
correct thread in their thread group. All memory regions of
the erroneous replica are replaced with data from the correct
replica. At this point the error is corrected and execution
resumes.

The recovery implementation above succeeds if the replica
deviation was caused by a transient hardware error, because
this error is now overwritten. If the underlying hardware
suffers from a permanent error, this error will lead to another
deviation in the near future. To handle permanent errors,

RomainMT would need to collect statistics about where
an error occurred in order to determine that one replica
is raising errors originating from the same resource over
and over. Based on these statistics we could then migrate
the affected replica threads to another CPU. We did not
implement such a mechanism yet.

4 Evaluation
To evaluate RomainMT ’s impact on real-life applications, we
evaluate the replication-induced overheads for the Modified
SPLASH2 [44] benchmark suite4 in Sections 4.1 and 4.2.
These benchmarks were also used by Kendo’s authors [33].
As before, all tests were carried out on a machine with 12
physical Xeon X5650 CPU cores on two sockets, running
at 2.67 GHz. Hyperthreading, frequency scaling, and Tur-
boBoost were turned off for our experiments. The software
stack consists of an unmodified L4 kernel, the required user
space components, and our implementation of RomainMT .

Previous research found that some of the the SPLASH2
benchmarks contain data races [31] and thereby violate our
assumption about race-freedom. We analyzed these races
using Valgrind’s ThreadSanitizer race detector [39] and re-
moved those races that prevented deterministic execution.5

To facilitate reproduction of our results, we make our patches
available to the community at http://tudos.org/~doebel/
emsoft14.

4.1 Memory Replication Overhead
In our previous work [12] we identified memory manage-
ment as a main contributor to replication overhead, because
running multiple replicas requires memory regions to be
replicated leading to allocation and copying overhead. The
SPLASH2 benchmarks consist of an initialization phase (al-
locating and initializing potentially large chunks of memory)
and a compute phase. While only the latter phase is relevant
to evaluate the overhead caused by our locking modifica-
tions, we saw large replication overheads for the initialization
phases and attributed them to memory management.

As an example, Figure 7 shows the overhead for running
the FMM benchmark from the SPLASH2 suite in single,
double and triple modular redundancy using cooperative
determinism. We see that the compute phase overhead
is only 2% for TMR execution, whereas the total runtime
overhead for TMR is 107%!

We investigated this issue and found that RomainMT
manages memory by mapping a 4 KiB page to each replica
upon a page fault. The SPLASH2 benchmarks use hundreds
of megabytes of memory (330 MiB in the FMM example),
which means that even a single replica will raise several
thousand page faults, which need to be handled by the
master. The resulting overhead is amplified for DMR and
TMR because in this case the master needs to create copies
of all memory regions during page fault handling.

We applied two modifications to improve memory man-
agement: first, we adapted the master process to allocate
memory in 4-MiB superpages wherever suitable. Second, we
allow the master’s page fault handling code to handle a page
fault by immediately mapping more than a single 4 KiB page
(up to one 4-MiB page). The resulting decrease in overhead
can be seen in the Total.opt line of Figure 7. We see that

4http://www.capsl.udel.edu/splash/
5We modified the Barnes, FMM, Ocean, and Radiosity bench-
marks.

0 2 4 6 8 10

Total.opt

Total
(Init +
Com-
pute)

Compute
Only

1.00x

1.00x

1.00x

1.00x

1.18x

1.01x

1.01x

1.65x

1.19x

1.02x

2.07x

1.36x

Seconds

Native Single

DMR TMR

Figure 7: Overhead for SPLASH2’s FMM bench-
mark running in RomainMT , split up for compute
phase overhead (Compute), full runtime overhead
(Total), and full run overhead after applying mem-
ory management optimizations (Total.opt).

the combined optimizations lead to a significant decrease in
memory-related replication overhead.

While it may appear insignificant to optimize initialization
overheads, we believe that this optimization addresses an
inherent replication problem. Any application that dynami-
cally acquires and releases memory (and hence raises many
page faults) will benefit from these improvements. In the
remainder of this paper we show results using the described
memory management, as well as the previously introduced
CPU assignment optimizations.

4.2 Application-Level Evaluation
Figures 8 and 9 show the normalized runtime overheads
for the SPLASH2 benchmarks using cooperative determin-
ism and running with two and four application threads,
respectively. As observed in Section 4.1, initialization times
and their replication-related memory overhead is significant.
Therefore, we show the initialization time overheads along
with the pure compute time overheads for those SPLASH2
benchmarks that measure both times separately.

For two application threads, TMR execution causes a geo-
metric mean overhead of 24%. When running four application
threads, TMR overhead increases to 65%. These overheads
are acceptable compared to alternatives such as executing
the application multiple times and comparing their outputs.
Replication provides the advantage of repairing errors at run-
time while multiple re-executions require instances to finish
before their results can be compared. Hence, replication
yields lower error detection latencies.

Replication overhead results from two sources: system calls
and synchronization. The Water and Ocean benchmarks
perform a significant number of system calls, which restricts
independent execution of replicas and hence explains their
overheads.

All other overheads are dominated by the programs’ lock
densities. Any lock operation requires synchronization among
otherwise concurrently executing replica threads. Hence, the
more lock operations an application performs, the more con-
strained it becomes in terms of parallelism. To demonstrate
this, we order the benchmarks by their lock density from
high (Radiosity, 6 million lock operations per second) to low
(Radix, 9 lock operations per second). We see that especially
with four application threads, those benchmarks with high
lock densities have higher overheads as well.

We conclude that replication becomes infeasible for ap-
plications with high lock density and large thread counts.

This is not a direct problem of replicated execution. Instead,
locking is known to be a scalability bottleneck [24]. This
effect is merely amplified by running multiple replica threads
in our experiments.

We also measured the overheads for enforced determinism,
but do not show them for space reasons. Enforced determin-
ism induces significantly higher runtime overheads (geom.
mean DMR: 92%, TMR: 113%) as we expected after our
initial microbenchmarks in Section 3.

In our design we sacrificed the requirement to produce the
same deterministic event order in every application run and
focused on ensuring determinism within a single replication
run. As a result, our overhead for single-replica execution is
close to zero as opposed to Kendo [33], but does not provide
completely deterministic thread scheduling in this case.

5 Limitations
RomainMT instruments pthread lock operations to achieve
deterministic multithreaded replication and assumes the repli-
cated application to be data-race free. This in turn poses
a limitation on our work, because it prevents RomainMT
from replicating applications that use ad-hoc synchronization
(spinlocks) or lock-free data structures [18]. This problem can
be solved by applying strongly deterministic multithreading
approaches, such as DThreads [27], but will lead to higher
resource consumption and runtime overheads as discussed
before.

In line with the previous work on Romain, the RomainMT
master and the underlying operating system kernel (the Reli-
able Computing Base) remain unprotected against hardware
errors. Our work does not address this issue. We believe
that fault-tolerant compiler techniques [36] or heterogeneous
hardware with differing resilience properties [10,25] may help
protecting the RCB.

The replication-aware pthread library described in Sec-
tion 3.3 allows for minimizing runtime overheads. However,
from a fault tolerance point of view it also adds a single point
of failure. The lock info page is mapped into all replicas and
can be overwritten due to a hardware fault before this fault
is detected. Such a fault will modify application behavior
and may result in undetected or unrecoverable application
errors. We believe that this can be mitigated by applying
compiler-level redundancy [36] to libpthread_rep, but the
resulting performance implications remain to be investigated.
For first ideas on this please see our estimation of the effects
of compiler-based RCB hardening [11].

6 Conclusion
In this paper we presented RomainMT , an operating system
service that allows transparent replication of multithreaded
binary-only applications in order to tolerate transient hard-
ware faults. While many existing SIFT methods only sup-
port single-threaded applications, RomainMT solves the
non-determinism problems that make multithreaded replica-
tion difficult by reusing ideas from the field of deterministic
multithreading.

We presented two mechanisms to achieve lock-based de-
terminism by instrumenting synchronization functions in
a pthread library: enforced determinism transforms these
operations into traps handled by the RomainMT master.
Trap-based determinism incurs a high runtime overhead. Co-
operative determinism avoids expensive trapping by sharing
a lock info page among all replicas. Replicas use the LIP to
agree on lock ordering.

Radio-
sity

Barnes FMM
Total

FMM
Com-
pute

Water Raytr.
Total

Raytr.
Com-
pute

Volrend Ocean
Total

Ocean
Com-
pute

FFT
Total

FFT
Com-
pute

LU Radix
Total

Radix
Com-
pute

1
1.2
1.4
1.6
1.8
2

N
or
m
a
li
ze
d
R
u
n
-

ti
m
e

Single DMR TMR

Figure 8: SPLASH2 replication overheads for cooperative determinism using two application threads. Bench-
marks ordered by decreasing lock density. Geometric Means: DMR = 13%, TMR = 24%. (Means computed
over full benchmark runtimes.)

Radio-
sity

Barnes FMM
Total

FMM
Com-
pute

Water Raytr.
Total

Raytr.
Com-
pute

Volrend Ocean
Total

Ocean
Com-
pute

FFT
Total

FFT
Com-
pute

LU Radix
Total

Radix
Com-
pute

1
1.2
1.4
1.6
1.8
2

2.2

N
or
m
a
li
ze
d
R
u
n
-

ti
m
e

Single DMR TMR

3.93 2.94

Figure 9: SPLASH2 replication overheads for cooperative determinism using four application threads. Bench-
marks ordered by decreasing lock density. Geometric Means: DMR = 22%, TMR = 65%. (Means computed
over full benchmark runtimes.

We evaluated RomainMT using the SPLASH2 suite of
benchmarks and showed that we achieve geometric mean
overheads 24% for TMR with two threads and 65% for TMR
with four threads. This overhead is lower than the over-
head for previous compiler-level methods that only protect
single-threaded execution [16]. Compared to Mushtaq’s mul-
tithreading work [30], RomainMT requires a slightly higher
overhead, but provides fault tolerance even in the presence
of memory faults.

Acknowledgment
We would like to thank the anonymous reviewers as well as
Thomas Knauth, Michael Roitzsch, Stephan Diestelhorst,
and Markus Partheymüller for their feedback that helped to
improve this paper.

This work was supported by the German Research Founda-
tion (DFG) as part of the priority program “Dependable Em-
bedded Systems” (SPP 1500 – http://spp1500.itec.kit.
edu) and by the European Social Fund and the Free State of
Saxony within the project Secure Remote Execution (SREX,
Nr. 100111037).

7 References

[1] Arlat, J., Fabre, J.-C., Society, I. C., Rodriguez,
M., and Salles, F. Dependability of COTS
microkernel-based systems. IEEE Transactions on
Computers 51 (2002), 138–163.

[2] ARM. ARM11 MPCore Processor Technical Reference
Manual. Technical Documentation at
http://infocenter.arm.com, 2008.

[3] Austin, T. DIVA: a reliable substrate for deep
submicron microarchitecture design. In Annual
International Symposium on Microarchitecture (1999),
pp. 196–207.

[4] Aviram, A., Weng, S.-C., Hu, S., and Ford, B.
Efficient system-enforced deterministic parallelism. In
Conference on Operating Systems Design and
Implementation (Berkeley, CA, USA, 2010), OSDI’10,
USENIX Association, pp. 1–16.

[5] Bergan, T., Hunt, N., Ceze, L., and Gribble,
S. D. Deterministic Process Groups in dOS. In
Conference on Operating Systems Design and
Implementation (Berkeley, CA, USA, 2010), OSDI’10,
USENIX Association, pp. 1–16.

[6] Bernick, D., Bruckert, B., Vigna, P., Garcia, D.,
Jardine, R., Klecka, J., and Smullen, J. Nonstop:
Advanced architecture. In International Conference on
Dependable Systems and Networks (june-1 july 2005),
pp. 12–21.

[7] Borkar, S. Designing reliable systems from unreliable
components: the challenges of transistor variability and
degradation. IEEE Micro 25, 6 (Nov.-Dec. 2005),
10–16.

[8] Corp., I. Intel64 and IA-32 Architectures Software
Developer’s Manual. Technical Documentation at
http://www.intel.com, 2013.

[9] Cui, H., Wu, J., Gallagher, J., Guo, H., and
Yang, J. Efficient deterministic multithreading
through schedule relaxation. In SOSP (2011),
T. Wobber and P. Druschel, Eds., ACM, pp. 337–351.

[10] Döbel, B., and Härtig, H. Who watches the
watchmen? – protecting operating system reliability
mechanisms. In International Workshop on Hot Topics
in System Dependability (HotDep) (2012).

[11] Döbel, B., and Härtig, H. Where have all the cycles
gone? – investigating runtime overheads of os-assisted
replication. In Workshop on Software-Based Methods
for Robust Embedded Systems (2013), SOBRES’13.

[12] Döbel, B., Härtig, H., and Engel, M. Operating
system support for redundant multithreading. In 12th
International Conference on Embedded Software
(EMSOFT) (2012).

[13] Elliott, J., Kharbas, K., Fiala, D., Mueller, F.,
Ferreira, K., and Engelmann, C. Combining
Partial Redundancy and Checkpointing for HPC. In
Conference on Distributed Computing Systems (Macau,
SAR, China, June 18-21, 2012), ICDCS ’12, IEEE,
pp. 615–626. Acceptance rate 13% (71/515).

[14] Ernst, D., Kim, N. S., Das, S., Pant, S., Rao, R.,
Pham, T., Ziesler, C., Blaauw, D., Austin, T.,
Flautner, K., and Mudge, T. Razor: a low-power

pipeline based on circuit-level timing speculation. In
Annual International Symposium on Microarchitecture
(dec. 2003), pp. 7–18.

[15] Esmaeilzadeh, H., Blem, E., St. Amant, R.,
Sankaralingam, K., and Burger, D. Dark Silicon
and the end of multicore scaling. In Proceedings of the
38th annual international symposium on Computer
architecture (New York, NY, USA, 2011), ISCA ’11,
ACM, pp. 365–376.

[16] Fetzer, C., Schiffel, U., and Süsskraut, M.
AN-encoding compiler: Building safety-critical systems
with commodity hardware. In International Conference
on Computer Safety, Reliability, and Security (Berlin,
Heidelberg, 2009), SAFECOMP ’09, Springer-Verlag,
pp. 283–296.

[17] Fiala, D., Mueller, F., Engelmann, C., Riesen,
R., Ferreira, K., and Brightwell, R. Detection
and correction of silent data corruption for large-scale
high-performance computing. In International
Conference on High Performance Computing,
Networking, Storage and Analysis (Los Alamitos, CA,
USA, 2012), SC ’12, IEEE Computer Society Press,
pp. 78:1–78:12.

[18] Herlihy, M. A methodology for implementing highly
concurrent data objects. ACM Trans. Program. Lang.
Syst. 15, 5 (Nov. 1993), 745–770.

[19] Hwang, A. A., Stefanovici, I. A., and Schroeder,
B. Cosmic rays don’t strike twice: understanding the
nature of dram errors and the implications for system
design. SIGARCH Comput. Archit. News 40, 1 (Mar.
2012), 111–122.

[20] IBM. z/OS – a smarter operating system for smarter
computing.
http://www-03.ibm.com/systems/z/os/zos/, 2011.

[21] Intel. Thread building blocks (TBB).
http://www.threadbuildingblocks.org, 2013.

[22] Kapitza, R., Schunter, M., Cachin, C., Stengel,
K., and Distler, T. Storyboard: optimistic
deterministic multithreading. In International
Conference on Hot Topics in System Dependability
(Berkeley, CA, USA, 2010), HotDep’10, USENIX
Association, pp. 1–8.

[23] Kaptritsos, M., Wang, Y., Quema, V., Clement,
A., Alvisi, L., and Dahlin, M. Eve: Execute-verify
replication for multi-core servers. In OSDI 2012 (Oct
2012).

[24] Kleen, A. Linux multi-core scalability. Tech. rep.,
2009.

[25] Leem, L., Cho, H., Bau, J., Jacobson, Q., and
Mitra, S. ERSA: Error Resilient System Architecture
for Probabilistic Applications. In Design, Automation
Test in Europe Conference Exhibition (DATE), 2010
(March 2010), pp. 1560–1565.

[26] Lewis, B., and Berg, D. J. Multithreaded
programming with Pthreads. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1998.

[27] Liu, T., Curtsinger, C., and Berger, E. D.
Dthreads: efficient deterministic multithreading. In
Symposium on Operating Systems Principles (New
York, NY, USA, 2011), SOSP ’11, ACM, pp. 327–336.

[28] Merrifield, T., and Eriksson, J. Conversion:
Multi-version concurrency control for main memory
segments. In Proc. of EuroSys 2013 (2013).

[29] Mukherjee, S. Architecture Design for Soft Errors.
Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2008.

[30] Mushtaq, H., Al-Ars, Z., and Bertels, K. Efficient
software based fault tolerance approach on multicore
platforms. In Proc. Design, Automation & Test in
Europe Conference (Grenoble, France, March 2013).

[31] Nistor, A., Marinov, D., and Torrellas, J.
Light64: lightweight hardware support for data race
detection during systematic testing of parallel programs.
In International Symposium on Microarchitecture (New
York, NY, USA, 2009), MICRO 42, ACM, pp. 541–552.

[32] Oh, N., Shirvani, P., and McCluskey, E.
Control-flow checking by software signatures. IEEE
Transactions on Reliability 51, 1 (mar 2002), 111–122.

[33] Olszewski, M., Ansel, J., and Amarasinghe, S.
Kendo: efficient deterministic multithreading in
software. SIGPLAN Not. 44 (Mar. 2009), 97–108.

[34] Pinheiro, E., Weber, W.-D., and Barroso, L. A.
Failure trends in a large disk drive population. In 5th
USENIX Conference on File and Storage Technologies
(FAST 2007) (2007), pp. 17–29.

[35] Reinhardt, S. K., and Mukherjee, S. S. Transient
fault detection via simultaneous multithreading.
SIGARCH Comput. Archit. News 28 (May 2000),
25–36.

[36] Reis, G. A., Chang, J., Vachharajani, N.,
Rangan, R., and August, D. I. SWIFT: Software
implemented fault tolerance. In International
Symposium on Code Generation and Optimization
(2005), IEEE Computer Society, pp. 243–254.

[37] Saggese, G. P., Wang, N. J., Kalbarczyk, Z. T.,
Patel, S. J., and Iyer, R. K. An experimental study
of soft errors in microprocessors. IEEE Micro 25
(November 2005), 30–39.

[38] Schroder, D. K. Negative bias temperature
instability: What do we understand? Microelectronics
Reliability 47, 6 (2007), 841–852.

[39] Serebryany, K., and Iskhodzhanov, T.
Threadsanitizer: data race detection in practice. In
Workshop on Binary Instrumentation and Applications
(New York, NY, USA, 2009), WBIA ’09, ACM,
pp. 62–71.

[40] Shye, A., Moseley, T., Reddi, V. J., Blomstedt,
J., and Connors, D. A. Using process-level
redundancy to exploit multiple cores for transient fault
tolerance. In International Conference on Dependable
Systems and Networks (Washington, DC, USA, 2007),
DSN ’07, IEEE Computer Society, pp. 297–306.

[41] Taber, A., and Normand, E. Single event upset in
avionics. IEEE Transactions on Nuclear Science 40, 2
(apr 1993), 120–126.

[42] Wang, C., Kim, H.-s., Wu, Y., and Ying, V.
Compiler-managed software-based redundant
multi-threading for transient fault detection. In
International Symposium on Code Generation and
Optimization (Washington, DC, USA, 2007), CGO ’07,
IEEE Computer Society, pp. 244–258.

[43] Wang, N., Fertig, M., and Patel, S. Y-branches:
when you come to a fork in the road, take it. In
International Conference on Parallel Architectures and
Compilation Techniques (sept.-1 oct. 2003), pp. 56–66.

[44] Woo, S. C., Ohara, M., Torrie, E., Singh, J. P.,
and Gupta, A. The SPLASH-2 programs:
characterization and methodological considerations. In
International Symposium on Computer Architecture
(New York, NY, USA, 1995), ISCA ’95, ACM,
pp. 24–36.

[45] Yoshida, J. Toyota Case: The Single Bit Flip That
Killed. http:
//www.eetimes.com/document.asp?doc_id=1319903,
Oct. 2013.

[46] Zhang, Y., Lee, J. W., Johnson, N. P., and
August, D. I. Daft: decoupled acyclic fault tolerance.
In International Conference on Parallel Architectures
and Compilation Techniques (New York, NY, USA,
2010), PACT ’10, ACM, pp. 87–98.

