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Abstract

The recent availability of modern big. LITTLE ARM
chips featuring heterogeneous processor cores has en-
abled a practical investigation of the heterogeneous chip
concept and its implications for performance and energy.
The ODROID XU+E platform produced by Hardkernel
integrates hardware power monitors for the individual
chip clusters, GPU and Memory. In this paper we in-
vestigate the detailed energy characteristics of the hard-
ware components and applications to highlight the plat-
form’s potential for energy-aware resource management
of the platform. We measure network, storage and CPU
energy consumption as well as parallel application per-
formance. We find that the platform offers interesting
sweet-spots for fine tuning of resource scheduling, but
also poses new challenges, for example for quantifying
the cost of switching between clusters.

1 Introduction

The ODROID XU platform is available sice 4/2013. It
is one of the first developer boards to feature the Sam-
sung Exynos5 Octa 5410 and is an open architecture
for developers to explore the capabilities of the ARM
big.LITTLE platform. The board itself features many
connectivity options as well as different storage inter-
faces and can run on Linux and Android. While previous
work [8, 5] has looked at the potential of big.LITTLE
architectures there exists, to the best of our knowledge,
no work characterizing a complete, commercially avail-
able platform. Especially in the face of current work on
Energy/Utility aware scheduling [7] trade-offs, as pre-
sented by these novel platforms, play an important role
in modeling and scheduling future, highly adaptive het-
erogeneous systems. This becomes more important as
heterogeneity and specialization will increase in the fu-
ture due to an increasing amount of dark silicon in mod-
ern process nodes [4] and the resulting increase in in spe-

cialized components. To provide a sound basis for future
energy related research of heterogeneous architectures
we perform a detailed analysis of the energy behavior
of this platform’s software and hardware. We character-
ize the different components in terms of Energy/Utility —
the trade-off between a resource’s provided performance
and its energy consumption.

After describing our hardware and measurement setup
in Section 2 we analyze the network, storage, applica-
tions and switching energy characteristics in Sections 3-6
before we conclude our work, outline future research and
the possibilities of the platform in the larger framework
of Energy/Utility in Section 7.

2 Hardware Platform and Measurement
Setup

The ODROID XU', produced by Hardkernel® uses a
Samsung Exynos5 Octa 5410 processor which consists
of two clusters of 4 CPU cores each. The big cluster
uses Cortex™-A15 cores while the LITTLE cluster uses
Cortex™-A7 cores. All cores have 32kB of data cache
and an equally sized instruction cache. The Al5 clus-
ter also has 2 MB of ECC protected L2 cache. The A7
cluster features 512 kB of unprotected L2 cache. The big
cores run in a frequency range of 800 MHz to 1600 MHz,
the LITTLE cores run between 500 MHz and 1200 MHz.
Due to problems in the design of the cache coherent in-
terconnect of the Exynos 5410 the platform does not fea-
ture cache coherency between the clusters [1]. Because
of this big.LITTLE is implemented using a technique
called cluster switching where only either the big or the
LITTLE cores can be active at the same time.

The board features 2 GB LPDDR3 memory on pack-
age. For storage an on-board microSD slot connected via
SD3.0 and an eMMC 4.5 connector for the processors
eMMC controller are provided. Our 16 GB eMMC mod-
ule contained the operating system and was also used to
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Figure 1: Power for sending over Ethernet (top) and WLAN
(bottom)

host the benchmarks evaluated in this paper. The mi-
croSD card was only used as target medium for storage
benchmarks. The Ethernet chip that is on-board is con-
nected via an USB 2.0 HSIC interface.

The platform contains four INA2313 current sensors.
They can measure the power consumption of the big and
LITTLE cluster, the GPU and the memory individually.
We further used an external ODROID Smart Power sup-
ply that can provide readings of the externally supplied
power to a measurement computer.

Benchmarks were performed using our dedicated
ODROIDReader’ tool. This tool repeatedly executes
benchmarks using different environments (such as fre-
quencies, big/LITTLE configurations etc.) while measur-
ing all available metrics that are directly related to en-
ergy such as voltages of the different regulators, CPU
frequency, temperatures of the cores, power, current and
voltage values supplied by the power monitors, fan speed
of the CPU fan, as well as the power, energy and cur-
rent values of the external power supply. All values
were sampled at frequency of at least 1 Hz. Some that
showed fast changes in energy usage, such as the switch-
ing benchmarks, were sampled at 5 Hz.

3 Network Stack

Our first target for evaluation was the network stack,
as we wanted to evaluate the applicability of our pre-
vious energy management approach of energy-efficient
network bonding [6] for the platform. The 100 Mbit/s
Ethernet chip used was the on-board LAN9730* while
the Wireless LAN was an ODROID WiFi Module 3 de-
signed for the board which supports IEEE 802.11b/g/n
networks and uses a Realtek RTL8188CUS-GR chip.
We measured the energy consumption at different
bandwidths using benchcat® as a benchmarking tool. The
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Figure 2: Energy and Latency (box plot) implications of mes-
sage interval over WLAN

wireless was only tested in g mode because an n-router
was not available at the time of the benchmark. The
board was positioned 0.1 m from the access point. The
numbers for both network devices can be seen in Fig-
ure 1, broken down into the different consumers. The fre-
quency and cluster selection were set to ondemand. The
board’s static energy consumption of about 1.8 W is not
included in the graphs. The energy consumption for high
bandwidth Ethernet transfers is mostly driven by costs in
the network stack. This also leads to the activation of the
big cores at high bandwidths. For the wireless network
energy is mostly driven by the consumption of energy in
the hardware. Due to the low achieved bandwidths the
network stack is no energy driver in this scenario.

The WLAN also had an interesting tail power effect,
not found to that degree in the Ethernet (probably due
to less sophisticated power management). A similar ef-
fect has been described by Pathak et al. [10]. We investi-
gated the influence of the interval of sending data on the
power consumption. For this we sent ping messages with
1KB/s of data in intervals of 0.25, 0.5, 0.75, 1, 2 and 4
seconds, with individual payload sizes chosen such that
the desired data rate was matched. We repeated the ex-
periment 10 times for each interval, each measurement
ran one minute. The distribution of the energy measure-
ments of the 10 runs as well as the observed latencies of
all 600 samples can be seen in Figure 2.

While the latency increases with increasing send inter-
vals due to the hardware entering deeper power-saving
states the energy consumption is lowest at 1 to 2 second
intervals. At shorter intervals more energy is spent be-
cause the wireless cannot sleep, at longer intervals the
increased package size increases the required send en-
ergy. When positioning the router farther away from the
ODROID the power consumption increased by 60 mW
for 2.5 m and by 180 mW for 5 m of distance.



4 Storage

We evaluated the performance of the different storage op-
tions using a 4 GB Class-10 microSD card and a 16 GB
eMMC 4.5 module in their respective slots. While we al-
ready suspected the energy consumption of the microSD
card to be worse than that of the eMMC storage we
wanted to quantify how much of a difference the used
storage medium makes. For this we used the DBENCH®
benchmark that plays back a trace of disk I/O operations
in its local operation mode without network involvement.
The benchmark was set to replay the client.txt network
profile exactly once.
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Figure 3: Energy overhead of SD card over eMMC, DBENCH.
Dotted denotes the big, solid the LITTLE core

Figure 3 shows that the overhead of using the microSD
card over the eMMC was astonishingly high, both in
terms of energy as well as time, with the benchmark run-
ning about nine times as long on microSD as on eMMC
and requiring more than ten times the amount of energy
in the worst cases. Energy overhead is for dynamic en-
ergy. While the runtime did not vary with increasing fre-
quency for the SD card (a nearly constant 2160 seconds)
because I/O was the bottleneck it did change from 256 s
to 192's for the eMMC card with increasing frequency.
This can also be seen in Figure 3 as an increase in time
overhead.

The energy overhead was reduced when running at
higher frequencies, because the fast eMMC caused the
file system stack to make use of the faster frequencies
and not be hampered by I/O latency. While this caused
a reduction in runtime for the eMMC case it also causes
an increase of energy usage (Compare Figure 4). The
SD card does not benefit from faster frequencies but, at
the same time, also keeps the power consumption of the
processor low.

The system’s power draw (incl. static power) ranged
between 2.1 W and 3.89 W on eMMC and 2.1 W - 2.8 W
when on microSD. This aspect is interesting if you want
to schedule your resources under the consideration of
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Figure 4: Energy cost versus runtime of DBENCH on eMMC 4.5

peak current draw to increase effective battery capacity
as mandated by Peukert’s Law [9] and investigated by
Aksanli [2].

The total energy cost and runtime of DBENCH on
eMMC is illustrated in Figure 4. Squares denote run-
ning on the LITTLE core, circles denote running on the
big core. The graph shows that there is no time benefit to
running on big when considering frequencies both cores
can provide. The runtime does not differ between the
clusters for equal frequency while the energy consump-
tion increases significantly for the big cluster.

S5 Applications

To evaluate the difference between executing applica-
tions on each of the clusters we used the NAS Parallel
Benchmarks (NPB) [3] which we compiled for Android
with OpenMP support. We ran individual benchmarks at
the different frequencies of the cores, always using all 4
available cores.

Figure 5 shows the results broken down into the
components that we were able to isolate.The individual
groups are the benchmarks at different sizes. The sizes
were chosen sucht that the average runtime of the bench-
mark was close to 10 minutes, with the minimum runtime
at least one minute. This was required because we had
to run each of the 11 benchmarks at all 16 available fre-
quencies. We also waited for a minute to between bench-
marks to let the CPU cool down again and to allow the
fan to stop spinning. Each benchmark was repeated 4
times to isolate outliers. The usual standard deviation of
the energy values between the runs was below 1 % of the
measured value, with the maximum standard deviation
at2.1, 3.9, 4.8, 4.1 and 3.8 % of the measured values for
A7, A15, Memory, GPU and external power respectively.

To keep the figure readable we chose to omit one
benchmark (CG.B) which we ran but which would not
contribute any new information to the figure. We also
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Figure 5: NPB at frequencies (left to right) 0.5, 0.7, 0.9, 1.1 & 1.2GHz on LITTLE and 0.8, 1, 1.2, 1.4 & 1.6 GHz on the big

cluster.

show only a representative subset of the frequencies due
to space constraints. The complete measurement data,
including the raw data and the program to interprete it
are available on our GitHub’.

As can be seen there are different sweet spot frequen-
cies (and sweet-spot clusters) for the individual bench-
marks. For example SP.A seems to benefit significantly
from the out of order pipeline or the larger cache of
the big core, while UA.A performs significantly better
from an energy standpoint on the LITTLE core (unless
it is run at the lowest frequency). The UA benchmark
is mainly memory bound with irregular, continuously
changing memory access patterns which cannot benefit
significantly from the larger cache of the big cores due
to this access pattern. SP, in contrast is a pentadiagonal
PDE solver that is quite memory heavy and can bene-
fit from the larger cache and the out-of-order pipeline to
limit stalls.

All this is only valid when taking the static energy
consumption into account. As soon as the system has to
be powered anyways it is almost always cheaper energy-
wise to use the LITTLE cluster, as the reduction in power
draw outweighs the increase in execution time compared
to the big cluster.

Figure 6 illustrates the runtime of the benchmarks at
all measured frequencies. We again chose only represen-
tative benchmarks to keep the figure legible, but the data
for all benchmarks is available on our site. Dotted lines
indicate running at the big cluster while solid lines indi-
cate the LITTLE cluster. Again the difference between
SP.A, which benefits tremendously from running at the
big cluster is visible, compared to UA.A whose runtime
benefits only in a minor fashion from running on the big
cluster. In combination with Figure 5 this gives the com-
plete picture, where we can trade faster execution against
higher energy consumption for benchmarks that cannot
significantly benefit from the features of the out-of order
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Figure 6: Runtime of NPB, solid lines denote LITTLE core,
dashed lines denote big core

core.

The embarrassingly parallel (EP.A) benchmark, which
has no dependencies between the threads and just com-
putes random variates with compute load distributed
evenly across the cores, is also interesting. It can be seen
that this benchmark benefits very little from the architec-
ture of the big core and thus gets only a marginal speedup
when running on the A15 cluster at the same frequency
as on the A7 cluster.

6 Effects of cluster switching

We also investigated the cost of migrating programs be-
tween the clusters. To achieve this we used two bench-
marks from the NPB suite, one with high memory power
draw (SP.A), one with very low memory power draw
(DC.B). We executed the benchmark at 500 MHz on the



Type | L:b | E[J] E'[J]) | ts] Esy [7]
M 1:0 | 1122.15(5.21) | 207.42 | 502.6 -
M 0:1 | 875.848 (1.81) | 701.31 | 95.9 -
P I:1 | 91531 (-) 622.17 | 161.07 || -
M 1:1 | 930.822 (3.54) | 636.53 | 161.7 0.096
M 4:4 | 935.633(2.83) | 632.85 | 166.4 0.123
P 1:3 | 890.58 (-) 671.77 | 120.22 || -
M 1:3 | 887.63 (2.76) 670.61 | 119.24 || ?
P 3:1 | 965.51 (-) 521.51 | 243.95 || -
M 3:1 | 994.926 (3.03) | 542.49 | 248.6 0.237

Table 1: Switching cost for SP.A (memory heavy)

Type | Lib | E (] E[D [ ths] ][ Ew D]
M 1:0 | 536.99 (2.62) | 19.93 284.1 -
M 0:1 | 309.82(3.64) | 175.29 | 749 -
P 1:1 357.21 () 141.46 | 118.54 -
M 1:1 | 344.49 (2.24) | 131.04 | 1173 ?
M 4:4 | 358.86(2.63) | 140.82 | 119.8 0.28
P 1:3 | 328.17 () 161.1 91.8 -
M 1:3 | 326.2(2.54) 159.34 | 91.7 ?
P 3:1 | 410.14 (-) 105.68 | 167.28 -
M 3:1 | 404.19 (2.27) | 102 166.0 ?

Table 2: Switching cost for DC.B (light on memory)

LITTLE cluster and at 1.6 GHz on the big cluster using
4 threads. We then performed the same benchmark and
switched between the two frequencies in various inter-
vals. We expected the runtime and the energy consump-
tion of the switching execution to be the combination
of the values for the individual executions distrbuted ac-
cording to core ratio plus any overhead. The determina-
tion of this overhead was the original reason of the ex-
periment. The results for running the benchmarks can be
seen in Table 1 and Table 2.

The first columns indicate whether the values are mea-
sured (M) or predicted (P). Then follows the ratio be-
tween the cores. 1:1 indicates switching between the
clusters every second, 1:3 means having the LITTLE
cluster enabled for one second and then the big cluster
for 3 seconds. LITTLE means running at 500 MHz on the
A7 and big means running at 1.6 GHz on the A15 clus-
ter. Predicted values assume that the energy consumption
and runtime are the combination of the individual clus-
ter values (row one and two) weighted according to core
ratio.

The expected execution time is calculated according
to the formula:

_ Hitrle Thig
Tlittle Thig+Tbig Hittle

where r, denotes the ratio of core x as presented in the
table, . is the execution time on core x and c is the num-
ber of switching cycles. One switching cycle contains the

time on both cores and the switch between them. Energy
consumptions were calculated accordingly.

The E’ column is only the dynamic energy consump-
tion for the benchmark while E includes static energy.
The numbers in the Ej,, column indicate the overhead
of switching (predicted E - measured E divided by the
number of switches) or a ? if it was negative due to mis-
prediction.

As can be seen from the numbers switching clusters
is more costly in terms of energy when looking at work-
loads with heavy memory usage. For light memory usage
the presumed cost is way below the standard deviation
and thus negligible. The predictions of the energy con-
sumption and timing behavior using expected core ratios
are reliable enough though we expect stronger mispre-
dictions if applications with strong phasing behavior are
used.

7 Conclusion and Future Work

In this paper we evaluated a heterogeneous architecture
based on ARM big. LITTLE. We looked at the trade-offs
for network, storage and applications and found that we
can trade energy against latency and (on wireless) band-
width, peak power against I/O speed and energy against
execution time respectively. Especially the latter presents
many trade-offs because there is no universal "best core’
or ’best frequency’. Some applications will perform best
on the smallest frequency of the LITTLE core others will
do so at the largest frequency. The same goes for the big
core. Also the trade-offs and the gains to be found when
executing on the big cluster vary heavily dependent on
the application. Some may gain nothing at all (except
more energy consumption) while others improve vastly.
Also predicting the overhead of migrating between the
clusters is non-trivial when it comes to time and, again,
depends on the application characteristics when it comes
to (dynamic) energy consumption.

These trade-offs present a challenge for future,
energy-aware systems which we plan to address with our
Energy/Utility [7] concept. We will implement this con-
cept on the platform presented in the paper and show
the benefit of a holistic, generic resource management
framework that can cope with such highly heterogeneous
platforms as presented here. We will also extend our
work to the more recent Exynos5 Octa 5422 which en-
ables the operation of both clusters in parallel.
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Thttp://odroid.com/dokuwiki/doku.php?id=en:odroid-xu

Zhttp://hardkernel.com
3http://www.ti.com/product/ina231
4www.microchip.com/LAN9730
Shttps://github.com/TUD-OS/benchcat
Shttps://dbench.samba.org/
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