Improving System Security
Through TCB Reduction

Bernhard Kauer

March 31, 2015

Dissertation
vorgelegt an der
Technischen Universitdt Dresden
Fakultat Informatik
zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

Erstgutachter Prof. Dr. rer. nat. Hermann Hartig
Technische Universitdt Dresden

Zweitgutachter Prof. Dr. Paulo Esteves Verissimo
University of Luxembourg

Verteidigung 15.12.2014

Abstract

The OS (operating system) is the primary target of todays attacks. A single exploitable
defect can be sufficient to break the security of the system and give fully control over
all the software on the machine. Because current operating systems are too large to be
defect free, the best approach to improve the system security is to reduce their code to
more manageable levels. This work shows how the security-critical part of the OS, the so
called TCB (Trusted Computing Base), can be reduced from millions to less than hundred
thousand lines of code to achieve these security goals.

Shrinking the software stack by more than an order of magnitude is an open challenge
since no single technique can currently achieve this. We therefore followed a holistic
approach and improved the design as well as implementation of several system layers
starting with a new OS called NOVA. NOVA provides a small TCB for both newly written
applications but also for legacy code running inside virtual machines. Virtualization is
thereby the key technique to ensure that compatibility requirements will not increase the
minimal TCB of our system.

The main contribution of this work is to show how the virtual machine monitor for
NOVA was implemented with significantly less lines of code without affecting the per-
formance of its guest OS. To reduce the overall TCB of our system, other parts had to
be improved as well. Additional contributions are the simplification of the OS debugging
interface, the reduction of the boot stack and a new programming language called Bl
that can be more easily compiled.

Acknowledgements

First, I would like to thank my supervisor Hermann Hértig for his support as well as the
freedom in choosing my research directions. Thanks are also due to the members of the
OS group for uncountable discussions during my time at TU Dresden. I am particular
indebted to Udo Steinberg, which I had the pleasure to share a room with. His NOVA
Hypervisor proved to be an excellent base for my virtualization research. I am also grateful
to Alexander Bottcher and Julian Stecklina for extending the software I have developed.

During my thesis I had the privilege to get to know industrial and academic research
in the US and Portugal. Thanks to Marcus Peinado and Sebastian Schoenberg for the
summers at Microsoft and Intel as well as to Paulo Verissimo and the navigators for the
rewarding time and excellent coffee in Lisbon.

I am grateful to all who have read and commented on drafts of this thesis. Monika
Scholz, Anne Kauer, and Norman Feske deserve particular thanks for spending hours of
their live to improve what I had written. The errors still remaining in this work are mine
alone.

Finally, I want to thank my family for always believing in me and supporting this
endeavor for so a long time. Without Anne and my parents I would not have made it.

Thank you all!

Contents

List of Figures

1 Introduction

1.1
1.2

1.3

Motivation
Approach e
1.2.1 Minimizing the OS Lo oo
1.2.2 Ensuring Compatibility
1.2.3 Additional Layers.
Contributions

2 A Smaller Virtualization Stack

2.1

2.2

2.3

24

2.5

Background and Related Work 0L
2.1.1 A short History of Virtualization
2.1.2 Virtualization Today
2.1.3 Securing the Virtualization Layer
2.1.4 Advanced Use Cases for Virtualization
Design L
2.2.1 NOVA Architecture
2.2.2 The NOVA Microhypervisor
2.2.3 NUL: The NOVA User-Level Environment
2.2.4 Vancouver: A Small VMM for NOVA
Device Models L
2.3.1 Approaches to Reduce the TCB
2.3.2 Reusing an Existing VMMo oL
2.3.3 Implementation Lo
2.3.4 Implementation Details
2.3.5 Evaluation: Code Size and Density
2.3.6 Future Worko
Instruction Emulator Lo oo
2.4.1 Background Lo
2.4.2 First Generation: Hand-written Tables
2.4.3 Automating the Knowledge Extraction
2.4.4 Current Generation: Reuse the Assembler
2.4.5 Summary and Future Work o000
Virtual BIOS e
2.5.1 Design oL
2.5.2 Implementation Lo
2.5.3 Enabling Emulators 0.

CONTENTS

254 Summary e 71

2.6 Performance Evaluation 0., 71
2.6.1 Setting up the Benchmark 72
2.6.2 Results 74
2.6.3 Measurement Error. o oo 78
2.6.4 Detailing the Overhead 80
2.6.5 Performance Outlook 84

2.7 Conclusions e 85
2.7.1 Size Outlook 86

3 TCB-aware Debugging 87
3.1 Requirements 87
3.1.1 Virtual Machines and Emulators 87
3.1.2 On-target versus Remote Debugger 88
3.1.3 Tracing and Interactive Debugging 89
3.1.4 Special Requirements for NOVA 90

3.2 The Vertical Debugger VDB oL 90
3.2.1 Reusing GDB? 90
3.22 Design 91
3.2.3 Implementation Lo 93

3.3 Debugging without a Target Driver 95
3.3.1 Choosing the Hardware 96
3.3.2 Remote Access Without Runtime Code on the Target 97
3.3.3 Survivinga Bus-Reset 0. 98
3.3.4 Implementation L 100
3.3.5 Firewire Performance, 100
3.3.6 Related and Future Work 103

3.4 Minimizing the Debug Stub L oo 103
3.4.1 Design of a Halt and Resume Stub 104
3.4.2 Debugging a NOVA system 106

3.5 SUMIMATY . . . o o e e e 108
4 Simplifying the Compiler 109
4.1 Designo 109
4.1.1 The Syntax e 110
4.1.2 Variables and Constants, 111
4.1.3 Operators, Functions and Control Structures 113
4.1.4 Discussiono e 115

4.2 Tmplementation 117
4.2.1 Implementation Language 117
4.22 Let PythonParse. oo 118
4.2.3 Compiling to an Intermediate Representation 119
4.2.4 Optimizing the Compiler OQutput 119
4.2.5 Generating Machine Code 120
4.2.6 Linking the Binary 121
4.2.7 Implementing the Standard Library 121
4.2.8 Summary oo e 122

4.3 Evaluation. e 123
4.3.1 The Influence of the Optimizer 123
4.3.2 Exception Handling 125

CONTENTS

4.3.3 System Calls: dd 127
4.3.4 Simple Calculation: we oL 127
4.3.5 Complex Calculation: gunzip 130
4.3.6 Number Crunching: shaisum 131
4.3.7 Summary e 133
4.4 Conclusions and Future Work 133
Shrinking the Boot Stack 135
5.1 Background: Booting an OSona PC. 135
5.1.1 The Firmware 136
5.1.2 The Bootloader 136
5.1.3 The OS e 137
5.2 The Bootloader 137
5.2.1 Features Lo 138
5.2.2 Design 138
5.2.3 Implementation Lo oL 140
5.2.4 Evaluation 145
5.2.5 Summary e 146
5.3 Trusted Computing 147
53.1 Secure Boot 147
5.3.2 Trusted Computing with a Static Root of Trust for Measurement . 148
5.3.3 Trusted Computing with a Dynamic RTM 149
5.3.4 Security Challenges 150
5.3.5 SUmMmMAaryo e e 152
5.4 ATARE: Parsing ACPI Tables with Regular Expressions 152
5.4.1 Backgroundo 153
5.4.2 Pattern Matching on AML 154
5.4.3 The Search Algorithm, 156
5.4.4 Evaluation 156
5.4.5 Summary L. e e 159
5.5 Conclusions L 159
Conclusions 161
6.1 Techniques e 162
6.2 Lessons Learned o 162
6.3 Future Research Directions 164
TCB of Current Systems 165
A.1 Estimating Lines of Code from the Binary 165
A2 Virtualizationo o 167
A2.1 Hypervisor e 167
A22 VMM 167
A3 Support OS 169
A31 Evolutionofan OS, 169
A.3.2 Minimal Linux 170
A.3.3 Linux Distribution, 170
A34 Windows 171
A4 Boot and Toolchain 172
A41 PCFirmware i ittt e e e 172
A.4.2 Bootloader 172

CONTENTS

A4.3 Debugger 173

Ad44 Compiler 174

A5 Summary e 175
B Glossary 177
C Bibliography 183

10

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23
2.24
2.25

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3

The NOVA Architecture 29
Session-Less Multi-Server Protocol 34
Session-Based Multi-Server Protocol 35
Component Interaction L oo 40
Defects in Virtualization Software. 45
Size Comparison of Device Models 55
VMM Code Density 55
Layout of x86 Instructions 57
First Generation Instruction Emulator 58
Instruction Encoding Table Excerpt 59
Converting the Pseudocode L. 61
Extracting the Encoding from the Assembler 62
Current Generation Instruction Decoding 63
Current Generation Instruction Execution 64
BIOS Request Handling 68
Emulating a BIOS Request 71
Linux Kernel Compilation Results 75
Runtime vs. Median 78
Jitter and Accuracy as Standard Deviation 79
Samples of Jitter and Accuracy 79
Virtualization Events 80
IRQ Virtualization Overhead 81
Virtualized Disk Performance 82
Overhead Breakdown 83
NOVA System Size e 85
The Vertical Debugging Architecture 92
A ptrace(2) Binding in Python 94
Symbolic Expression Evaluation. 95
Self-modifying DMA 99
Firewire S400 Throughput 101
Firewire S400 Average Burst Latency 102
Debug Stub to Halt and Resume a CPU 105
Three Debug Plugins o 107
Size of a GCC Toolchain 110
Bl Type Codes e 111
Structures in B1 112

LIST OF FIGURES

4.4 Memcpy Implementation Lo 114
4.5 Functionsin B1 114
4.6 Data Flow through the B1 Toolchain 117
4.7 Size of the B1 Toolchain 117
4.8 Intermediate Representation L oL 119
4.9 Compiler Transformation Rule 119
4.10 Example £ib() 123
4.11 Performance fib() 124
4.12 Exception Benchmark 0L 125
4.13 Exception Overhead 126
4.14 Throughput of dd Lo 128
4.15 Dataset forweo 128
4.16 Throughput of we 129
4.17 Dataset for gunzip 130
4.18 Throughput of gunzip L oL 130
4.19 SHA-1 Performance 132
5.1 Six Bootlets for the Dual-Boot Scenario 140
5.2 Extensible Bl Assembler L 141
5.3 Bootlet Configuration Language. 144
5.4 Filesystem Reader Size 144
5.5 Bootlet Sizes 146
5.6 ACPI Implementation Sizes 153
5.7 A _PRT Methodo 155
5.8 Regular Expressions for AML 155
5.9 Prototype Test Inputo o 156
5.10 Implementing the Regular Expressions 157
5.11 Classifying the Collection 158
5.12 Unbiased Results 158
6.1 Achieved TCB Reduction 161
A.1 Compressed Binaries vs SLOC, 166
A2 Hypervisor Size 168
A3 VMM Size o e e e e 168
A.4 Evolution of the Linux Kernel Size 169
A.5 Size of Linux Configurations 170
A.6 Size of Basic Debian Installation 171
A7 Windows Size 172
A8 BIOS Size o 172
A.9 Bootloader Size 173
A.10 Debugger Sizeo 174
A.11 C Compiler Size 174
A.12 Size of a GCC Toolchain 175
A13O0verall TCB Size o o 175

12

Chapter 1

Introduction

The plague of software explosion is not a "law of nature."
It is avoidable, and it is the software engineer’s task to
curtail it.

N. Wirth in A Plea for Lean Software [Wir95|

1.1 Motivation

Security-sensitive data is more and more entrusted to world-wide accessible computers,
may they be personally owned or reside inside the so called cloud. This includes financial
and even medical records, but also private messages and pictures that are better kept
secure. However, current systems are plagued by malware, which aims to break the
confidentiality (identity theft), availability (denial of service), and integrity (ransom-ware)
of the data.

The OS (operating system) of these machines is thereby the primary target because
successfully exploiting one defect in it gives an attacker full control over the platform.
Given the hundreds of vulnerabilities found every year in operating systems, there are
always defects to exploit [AADT09]. For example during the year 2013,

e Debian warned of 771 vulnerabilities affecting 154 packages [DSA],
e Microsoft published 334 vulnerabilities in 106 security bulletins [MSB], and

e the Common Vulnerabilities and Exposures (CVE) list got 170 new entries for the
Linux kernel [CVE].

Thus, “we have a long way to go in making existing OS kernels secure” [CMW™T11]. Tt is
the aim of this work to contribute towards a secure operating system.

Current systems are too large to be bug free. Debian Wheezy, for instance, is built
from 419 MSLOC! [Bro12|. A small subset of this codebase is usually sufficient for a
certain scenario. For example, using Debian in a cloud-computing setting requires only
14.5 MSLOC (§A). This can further be reduced to 1.2 MSLOC by removing unnecessary
features and choosing smaller programs whenever possible. However, when assuming
“good quality software” with “1 defect per every 1,000 lines of code” [Cov14]|, even this
smaller number translates to more than a thousand defects. Moreover, the steady code

IMillion Source Lines of Code. See Appendix A or the Glossary (§B) for a detailed description.

13

CHAPTER 1. INTRODUCTION

inflation, which can be observed on nearly all layers of the software stack?, will lead to
additional defects in the code.

We deduce that the best approach towards a secure operating system is to reduce
its size to more manageable levels. Shrinking the OS has several positive effects on the
security:

e It reduces the number of exploitable defects and the attack surface of the system.

e Minimizing the “self-inflicted complexity” [Wir95] improves the system security be-
cause “security’s worst enemy is complexity” [FS03]. In fact, smaller and therefore
less complex systems have a lower defect rate. For example, [Cov14| reports that
codebases below 100 KSLOC are only half as defective as those above 500 KSLOC.

e Advanced testing methods such as formal verification [KEH'09, Ler09, LS09| or
automatic bug finding [CDE10, ZC10, BUZC11] do not scale to the million lines of
code of current systems yet. By reducing the size of the OS, these methods can be
applied to further minimize the defect rate.

As we like to strengthen the security of the OS, the parts of the system, which cannot
influence the availability, confidentiality, and integrity of private data, do not need to
be considered. Instead, an OS reduction can focus on the security relevant part of the
system, commonly called the TCB (Trusted Computing Base)®. The aim of this work
is therefore to improve the OS security by significantly reducing its TCB, ideally below
100 KSLOC.

1.2 Approach

Shrinking the software stack by more than an order of magnitude is a veritable challenge,
as no single technique is known that could perform this reduction [Bro87]. Disaggregating
an existing system does not reduce it far enough [MMHO08, CNZ*11]. Instead, one has to
consider the whole system. Even a rather innocent requirement, for instance retrieving an
interrupt number from an ACPI table, may need already half of the 100 KSLOC (§5.4).
However, advancing the design and implementation of each system layer is only feasible
if we build a new system from ground up, an approach we share, for instance, with the
Oberon and STEPS projects [Wir95, AFK™11].

1.2.1 Minimizing the OS

Minimizing the OS kernel and its services is a well-studied area. We can therefore rely
on a large foundation of previous work on this layer of the system.

Most importantly are microkernel-based systems that “minimize the functionality that
is provided by the kernel” [EH13| and thereby reduce the amount of code running in the
highest-privilege CPU mode.

Nevertheless, just moving OS functionality like the filesystem or the network stack
to the user level is not sufficient if the code keeps full control over the platform. One
also needs to decompose this user-level environment into smaller deprivileged services
[GIJPT00] to get a minimal application-specific TCB. Additionally, one has to ensure that

2A basic Debian installation, for instance, grows around 10% every year. The Linux kernel increases
even faster (§A4.3.3).

3In contrast to the classical definition of the Orange Book [Dep85], I deliberately ignore the hardware
here because hardware security is beyond the scope of this work.

14

1.2. APPROACH

the services have only a small impact on the TCB of the applications that are dependent
on them?.

User-level device drivers improve the OS security as well [LCFD'05]. Running device
drivers in dedicated address spaces increases the robustness of the system as potentially
faulty code is isolated and can be easily restarted [THBO06]. More importantly, it ensures
that the driver code will not be part of the TCB of any unrelated application. This holds
especially true if DMA (direct memory access) and IRQ (interrupt request) attacks from
a malicious device driver can be mitigated with an IOMMU (I/O Memory Management
Unit) [BYMXT06].

1.2.2 Ensuring Compatibility

Unfortunately, traditional microkernel-based systems are hindered by compatibility is-
sues. Porting legacy applications, services, and device drivers to a new OS interface is a
tremendous task that may require 90-95% of the OS development effort [Pik00]. Moreover,
the functionality needed by the legacy interfaces of applications [BAPSR96, HHL*97] and
device drivers [FBBT97, Fri06] will increase the TCB for both ported and newly written
software.

The broad success of hypervisors has shown that compatibility can be elegantly en-
sured through virtualization: “By virtualizing a commodity OS over a lowlevel kernel,
we gain support for legacy applications and devices we don’t want to write drivers for”
[REHOT7|. Virtualizing a hardware platform like a x86 PC once is much simpler than
implementing all the interfaces existing software might need. This holds especially true
since CPUs natively support VMs (virtual machines).

Furthermore, virtualization can be employed to counteract the code explosion at the
operating system level: Deprecated OS interfaces can be removed without breaking com-
patibility, if previous versions of the very same OS can run concurrently on a single
machine.

However, contemporary systems with virtualization support typically rely on a large
hypervisor, a complex VMM (virtual machine monitor), and a single VM for device
drivers, which leads to millions of lines of code in their TCB (§4.2). Or in other words, “a
VMM that does not inflate the system’s minimal TCB with a large emulation framework
has not been demonstrated yet” [HHF05].

Our new OS should bridge the gap between microkernel-based systems and hypervisors
to get the benefits from both worlds. It should provide a small TCB for both unmodi-
fied guest operating systems running inside virtual machines as well as applications not
depending on virtualization at all.

1.2.3 Additional Layers

Just minimizing the kernel, user-level environment, and VMM is not sufficient to reduce
the TCB by more than an order of magnitude. One has to consider other system layers
as well:

Debugger Operating systems usually include sophisticated debugging capabilities to
ease the investigation of unexpected system behavior, caused by configuration errors,
hardware and software failures, or even remote attacks. However, a feature-rich
debugging infrastructure can easily double the size of a small OS (§4.4.3). To get

4Reducing the size of the application or the OS services, as done for instance in [SPHH06, SKB107,
CGL*08, Fes09, Weild], is outside the scope of this work.

15

CHAPTER 1. INTRODUCTION

to a usable system, we need to resolve the conflict between rich debugging features
and a small TCB.

Compiler Operating systems are typically written in high-level languages like C or C++.
A toolchain including compiler and assembler has to translate this source code
into machine code the CPU is able to execute. Because a subverted compiler can
easily omit any security check in the OS [Tho84], this toolchain is security-critical
and therefore part of the TCB. Unfortunately, a widely used C compiler like GCC
consists of millions of lines of code (§A4.4.4). To reach a TCB below 100 KSLOC, we
have to drastically reduce the size of the tools that translate source code to machine
code.

Boot Stack Booting adds the firmware and the bootloader to the TCB because they
have full control over the platform and can manipulate the OS easily. Current
boot stacks additionally increase the size of the OS by providing complex interfaces
like ACPI (Advanced Configuration and Power Interface) (§A4.4.2). To run our OS
without loosing any previously gained TCB advantage, we have to limit the TCB
impact of the boot stack.

In summary, we aim for a new OS that offers a significantly smaller TCB for both newly
written and legacy applications. We try to improve the architecture, design, and imple-
mentation of the operating system at several layers. Additionally, we will minimize the
TCB impact of debugging, compiling, and booting such a small system.

1.3 Contributions

Most of the contribution to this work were achieved within the scope of the NOVA project.
With NOVA, a joint work with Udo Steinberg, we demonstrate that an operating system
can offer a small TCB for both virtual machines and applications [SK10a]. While Udo
Steinberg designed and implemented the NOVA microhypervisor [Stell, Stel5]|, I devel-
oped the VMM and a user-level environment for NOVA to run multiple virtual machines
in parallel.

The main contribution of this work is to show how the VMM for NOVA was made
significantly smaller than comparable implementations without affecting the performance
of its guests (§2). The most important techniques to achieve this are:

e A software component design of the VMM and the user-level environment enabling
an application-specific TCB,

e Moving functionality out of the device models,
e Generating code for the instruction emulator, and
e Virtualizing the BIOS inside the VMM instead of running it in the virtual machine.

These improvements have led to a virtualization stack more than an order of magnitude
smaller than state-of-the-art implementations. However, to reduce the overall TCB below
100 KSLOC, other parts of the system had to be improved as well. Additional contribu-
tions of this work are the simplification of the debugger, compiler, and boot stack:

Debugger I show in Chapter 3 that the tension between rich debugging features and
a small TCB can be solved by removing most of the debug interfaces from the

16

1.3. CONTRIBUTIONS

operating system. Only memory access and some form of signaling is needed to
efficiently debug any physical and virtual machine. Furthermore, I show in this
chapter that no runtime code will be necessary if the debugging interface is provided
through Firewire.

Compiler I argue in Chapter 4 that both the semantics of the programming language
as well as the implementation have to be improved to achieve a smaller compiler.
I therefore designed a new programming language called B1, which is simpler than
C but still powerful enough for systems development. By reusing the syntax of
Python for B1 and also implementing a corresponding toolchain in this high-level
language, the TCB impact of compiling B1 programs is at least four times smaller
than compiling C code.

Boot Stack I investigate in Chapter 5 how the TCB impact of the x86 boot stack can be
minimized. I show that a decomposed design and several implementation improve-
ments can decrease the size of the bootloader by more than an order of magnitude.
I also analyze whether trusted computing techniques will lead to a smaller and more
secure boot stack. Finally, I show that replacing the ACPI interpreter with a simple
heuristic can reduce the TCB impact by more than two orders of magnitude.

Incoperating all these improvements into a single unified system is left as future work.
Instead, the various techniques presented in this thesis should help to build smaller and
more secure operating systems in the future.

The structure of this work can be summarized as follows. Each topic, namely virtual-
izing, debugging, compiling, and booting the system, is handled in a dedicated chapter,
which are called A Smaller Virtualization Stack (§2), TCB-aware Debugging (§3), Simpli-
fying the Compiler (§4), and Shrinking the Boot Stack (§5). These chapters are followed
by the conclusions (§6). Finally, there are three appendices. The first appendix shows
how the TCB of existing software was measured (§4). The later ones are Glossary (§B)
and Bibliography (§C).

17

Chapter 2

A Smaller Virtualization Stack

Keeping a virtual machine monitor (VMM), or hypervi-
sor, small is difficult.

P. Karger and D. Safford in [KS08]

Virtualization of the hardware platform is a widely used technique that saves resources
in cloud data centers by consolidating multiple servers onto a single physical machine
[Vog08]. Furthermore, virtualization is employed as a second layer of defense in intrusion
detection, Byzantine Fault Tolerance, and malware analysis systems [GR03, DPSP'11,
JWX07]. Virtualization improves the security of operating systems, device drivers, and
applications [SLQP07, SET*09, CGL108].

Adding virtualization to a host OS (operating system) can also reduce the TCB
(Trusted Computing Base) in two ways:

1. By running legacy applications together with their original OS inside a VM (virtual
machine), the host OS does not need to provide legacy interfaces anymore. For
instance implementing a POSIX compatibility layer or porting existing libraries to
the host OS becomes unnecessary.

2. By running different versions of an OS concurrently on a single machine, deprecated
OS features can be removed much earlier than today without loosing backward com-
patibility. This can counteract the size inflation observable on many contemporary
operating systems.

“However, using virtualization is not without risk”, as we argued in [SK10a| because any
defect in the virtualization layer jeopardizes the security of all applications on top of it.
Unfortunately, the security of virtualization software has not kept up with its enormous
success. Current implementations are considered “bloat” that “comes with its own security
problems” [REHO07]. Virtualization stacks are indeed huge today. Faithfully virtualizing
the x86 architecture seems to require more than one million lines of code as shown in
Appendix A. Furthermore, the defect rate per code line is likely higher in virtualization
software than in any major OS, due to the shorter development time. Consequently, a
large number of defects in virtualization stacks can be observed [Orm07], which have
already led to escapes from the virtual machine environment [Woj08, Kor09].

With NOVA, we tackle the root of these flaws, namely the huge size of existing im-
plementations. We improve the security of the overall system by minimizing the TCB
of virtual machines and applications not using VMs at all. By starting from scratch,
we were able to redesign the architecture as well as improve the implementation of the

19

CHAPTER 2. A SMALLER VIRTUALIZATION STACK

virtualization software stack on the x86 platform. This has reduced the TCB of a virtual
machine by more than an order of magnitude compared to existing implementations.

NOVA is joint work with Udo Steinberg who designed and implemented the hypervisor
[Stel5, Stell]. In this chapter, I describe my part of the work on NOVA, namely the
development of a new VMM (virtual machine monitor) called Vancouver. Vancouver aims
to be significantly smaller than existing VMMs while achieving performance on par with
commercial implementations. I also shortly introduce the NOVA user-level environment
(NUL) that multiplexes the platform resources between multiple Vancouver instances.

In the next section, I describe the necessary background and related work. The NOVA
architecture, the design of the VMM and of NUL is discussed in Section 2.2. This is
followed by three sections detailing the improvements in the device model (§2.3), the
instruction emulator (§2.4), and the virtual BIOS (§2.5). In Section 2.6, I evaluate the
performance of VMs on NOVA. I conclude the chapter with Section 2.7.

2.1 Background and Related Work

In a virtualized system, a hypervisor multiplexes a single host machine so that multiple
operating systems and their applications will run concurrently on it. The hypervisor is
thereby the highest privileged software in the system. It protects the operating systems
from each other and ensures that a single OS cannot fully take control over the physical
machine.

A virtualized OS runs in an execution environment called a VM (virtual machine)
that is similar but not necessarily the same as the physical machine. This environment
is provided by a VMM (virtual machine monitor) and consists of memory, one or more
virtual CPUs, and all the peripheral devices that an OS expects on a platform. Exam-
ples for these are timer, PCI (Peripheral Component Interconnect) bus, disk, and NIC
(network interface controller).

It is important to know that hypervisor and VMM are often implemented as a single
entity. Consequently, many authors use both terms synonymously. However, I explicitly
distinguish them throughout this work as they are separate programs in NOVA.

In the next section, I detail the history of virtualization (§2.1.1) and describe current
implementations (§2.1.2). This is followed by a summary of related work to secure the
virtualization layer (§2.1.3) and advanced use cases for virtualization (§2.1.4).

2.1.1 A short History of Virtualization
The Roots: Emulation

Virtualization has its roots in machine emulation. A machine emulator is a program that
reproduces the behavior of a guest machine on top of a host machine as closely as possible.
This allows to run applications and operating systems written for one machine architecture
on another. Usually, one emulates an older machine on top of a newer one to execute
legacy code [Law96, Bel05]. The opposite is also possible where a yet-to-be-built machine
is emulated to estimate its performance or to port software to it [CCD*10, AMDO09].
Whereas emulation is a powerful technique, it is often quite slow because all CPU
instructions need to be interpreted or translated from the guest to the host instruction set
(binary translation). Virtualization can simplify this task by assuming that the guest and
host machine share the CPU architecture. Thus, the guest CPU need not to be emulated
anymore. The hypervisor can simply timeshare the physical CPU between guest and host
programs. Most of the guest instructions can thereby execute natively (direct ezecution).

20

2.1. BACKGROUND AND RELATED WORK

However, not all resources can be shared this easily. Especially hardware devices such as
the platform timers have still to be emulated by the VMM.

Starting on the Mainframe

The initial virtual-machine research was done for the IBM 360 mainframe [Gol74]. Run-
ning only a single OS on these machines was considered to be too expensive. Thus, virtual
machines were invented in the mid '60s to run more than one operating-system kernel
at the same time. Previously developing, testing, and debugging of a new OS release
required reboots to switch between older and newer versions. With virtualization two or
more operating systems could be run concurrently on a single machine.

The foundations of virtualization, as we know it today, were laid by the end of the
"70s:

e Virtual machines were used to debug new operating systems, test network software,
and develop multi-processor applications [GG74, Gol74].

e Device drivers were adopted to the hypervisor to reduce the I/O virtualization
overhead (paravirtualization) [Gol74].

e The hardware virtualizer design minimized the size and overhead of a VMM by im-
plementing most traps in hardware. It already supported recursive virtual machines
[Gol73, KVBL11].

e IBM improved the performance of virtual machines by handling time-critical virtu-
alization events in hard- and firmware (VM-assist) [Mac79].

e Nested paging and IOMMU (I/O Memory Management Unit) functionality could
be implemented in hardware [Gol74].

The 80s

After this promising start, virtualization got out of focus of the research community for
nearly two decades. The new personal computers (PCs) with their single user and limited
computing power would not benefit much from virtualization. The PC was cheap enough
to buy a second machine if required. As a result, computer architectures such as VAX
and x86 were not designed with virtualization in mind [BDR97, RI00]. Consequently,
they would not satisfy the virtualization requirements described by Popek and Goldberg
[PG74]. Running virtual machines is not possible on these CPUs without changing their
architecture or without falling back to emulation techniques.

An exception to the missing virtualization research during the 80s are the UCLA and
VAX security kernels [Wal75, KZBT91|. Both extended existing CPU architectures with
virtualization support to strictly separate multiple operating systems so that different
levels of confidential information could be handled securely within a single system.

Paravirtualization

Another line of virtualization research started at the end of the 80s with the microkernel
movement. In these systems, only a small microkernel like MACH [ABB*86] runs in
the most privileged processor mode, instead of the large and monolithic UNIX kernel.
The remaining OS functionality such as filesystem or network stack is provided by user-
level servers. Unfortunately, the first MACH implementations were much slower than the

21

CHAPTER 2. A SMALLER VIRTUALIZATION STACK

monolithic architectures they aimed to replace. Liedtke could show later with L4 that a
careful design can make microkernel-based systems nearly as fast as monolithic operating
systems [Lie95].

Running legacy applications and having enough device drivers is a major problem of all
microkernel-based systems. One approach to solve this issue is to reimplement the legacy
interfaces. The SawMill project showed that the POSIX interface can be implemented
within multiple servers [GJPT00]. However, starting from scratch turned out to be too
laborious. Better approaches to reuse legacy code had to be found instead.

In many cases a Unix kernel such as Linux or FreeBSD was ported to run as application
on the microkernel. Privileged kernel instructions usually faulted and could therefore be
emulated from the outside. The small set of sensitive instructions that would not fault on
non-virtualizable architectures like x86 had to be replaced in the source code or on the as-
sembler level. Denali later coined the term paravirtualization for this approach [WSGO02].
Many projects reused Linux together with its device drivers in this way. Examples are
MkLinux, L4Linux, User-Mode Linux, and Xen [BdPSR96, HHL 97, Dik01, BDF103].

Paravirtualizing a system requires a certain manual effort because the guest OS and
sometimes even its libraries have to be explicitly ported to a new architecture. While
some steps can be automated [LUCT05|, the sources or at least special annotations to
the binaries have to be available. This effectively limits this approach to open-source
operating systems.

Even if recent hardware extensions have diminished the need for paravirtualization on
x86 CPUs, the technique survives on non-virtualizable architectures. Moreover it is still
used to improve the performance of virtual I/O by letting guest drivers directly talk to
the VMM [Rus08].

The Revival

The revival of virtualization as an active research area dates back to the Disco project
[BDRI7]. At the end of the ’90s server and workstation operating systems did not scale
well to upcoming multi-processor machines. Instead of undertaking the elaborate task
of fixing all scalability bottlenecks found in a general-purpose OS, Stanford researchers
around Rosenblum searched for a more elegant way to solve this problem. They came
up with the idea of running multiple OS instances on a single machine. Whereas each
instance would use only a single processor, the physical resources of the machine could still
be fully utilized if multiple VMs were executed in parallel. In this way, they reinvented
virtual machines on modern platforms.

Disco relied on paravirtualization to run multiple operating systems on the non-
virtualizable MIPS architecture. Unfortunately, this technique significantly limits the
number of virtualizable guest operating systems. VMware, a company co-founded by
Rosenblum in 1998 to commercialize virtualization, chose binary translation to overcome
the non-virtualizable nature of the x86 processors [AGSS10]. This technique allows to run
closed-source operating systems in virtual machines by replacing the sensitive instructions
found in their binaries with faulting ones. Such a binary translator is a complex piece of
software [Bel05] because it not only needs to understand all x86 instructions and to hide
itself from the guest, it also needs to do this as fast as possible.

VMware proved soon that virtualization can be commercially successful if it is used
to consolidate multiple physical servers on a single machine (server consolidation). This
unexpected result boosted academic and commercial efforts. Virtualization became a hot
research topic again.

22

2.1. BACKGROUND AND RELATED WORK

Hardware Support for Virtualization

The significant overhead of the first x86 virtualization products [AA06] could only be
reduced by changing the CPU architecture. In 2005 Intel and AMD announced two
different processor extensions, called VT-x and AMD-V respectively [UNRT05, SVMO05].
Both added a new processor mode (root and guest mode) and introduced a couple of
new instructions to configure and start virtual machines. Some processor resources such
as the interrupt state are completely multiplexed in hardware whereas other resources
like pagetables, MSRs (Model-Specific Registers), or cpuid leafs, have to be virtualized
in software. To ease this task, accessing sensitive resources will interrupt the virtual
machine and trap to the hypervisor (VM exit). The hypervisor may then emulate, in
cooperation with the VMM, the side effects expected from the guest before resuming the
virtual machine.

The virtualization extensions reduced the complexity of virtualization software dra-
matically. Techniques like binary translation were not required anymore because operat-
ing systems will run directly inside hardware supported VMs. Furthermore, the overhead
of virtualization could be significantly reduced by implementing common virtualization
tasks in hardware (hardware-assisted virtualization). Especially the support for nested
paging [BSSMO8], introduced in 2007, gives virtual machines near native performance, as
I will show in Section 2.6.

2.1.2 Virtualization Today

While the previous subsection gave a short overview on the history of virtualization, I will
now describe current virtualization projects related to our work. I focus on open source
and research projects because many details of commercial products are undisclosed and
therefore unavailable for evaluation.

x86 Emulators

Even though x86 emulators are usually slower than hardware-assisted virtualization, they
are still widely used due to several reasons. First, they are more portable. An emulator
written in plain C is likely to run on any platform, for which a C compiler exists. Second,
emulators can support multiple guest architectures. Finally, developers like to reuse the
device models and instruction emulation code in their virtualization stacks.

The grandfather of x86 system emulators is considered to be Bochs [Law96]. The
development started in 1994 as a commercial product to emulate i386-based machines.
Bochs was bought by Mandrake and made open-source software in 2000. It is still under
active development today and supports many x86 CPUs between the i386 up to the latest
64-bit CPUs including many CPU extensions such as SSE4 (Streaming SIMD Extensions)
and VT-x. Bochs is written in C++ in a verbose coding style. For instance, its device
models implement the same functionality with nearly twice the lines of code as Qemu’s
(§2.3.5). Bochs’ instruction emulation is complete and can be considered nearly bug free
[MPRBO09]. The BIOS (Basic Input/Output System) of Bochs and its VGA Option ROM
are still used in many other virtualization projects.

In 2000, Bellard started to build a new system emulator called Qemu [Bel05], probably
due to Bochs low performance at that time. Qemu is based on a fast, but still portable,
binary translator. Consequently, it supports many guest and host architectures besides
x86. Examples are ARM, ALPHA and even s390. Since Qemu is written in C and
not C++, Bellard had to write its own device models. Even if they are not directly

23

CHAPTER 2. A SMALLER VIRTUALIZATION STACK

derived from Bochs, both share common bugs'. Qemu’s device models are reused by
many virtualization projects such as Xen, KVM, and VirtualBox. Today, Qemu is actively
developed by a large open-source community.

There are many commercial emulators available. Most notably are Simics [MCET02],
which supports a wide range of CPU architectures, as well as AMD’s SimNow emulator
[AMDO09] that was used to port software to the AMD64 architecture before real CPUs
were available.

Moreover, there are cycle-accurate emulators such as PTLsim [You07], which can
model a CPU on a more detailed level by also emulating cache behavior and bus messages.
Cycle accuracy can be useful to prototype and evaluate new CPU features [CCD™10].
Unfortunately, such emulators tend to be orders of magnitude slower than the physical
CPU they emulate.

Finally, projects such as Pin [LCM ™ 05] or Valgrind [NS07] rely on a binary translator
for instruction-level instrumentation. These systems cannot be used as stand-alone x86
system emulators because they lack the necessary virtual devices to run an unmodified
operating system.

Commercial Virtualization Stacks

Many commercial products provide virtual machines on the x86 architecture. They usu-
ally have a larger feature set than the open-source implementations. Most notably, they
come with many redundant device models and include a complex software stack for man-
aging and even migrating virtual machines in the data center [CFH'05]. However, com-
mercial vendors seem to prefer performance and manageability over TCB size and security.

In the following, I will shortly describe those virtualization stacks we were able to
evaluate for performance and size as described in Section 2.6 and Appendix A. Whereas
many more commercial virtualization environments exist, for instance from Parallels,
WindRiver, GreenHills, Trango, or VirtualLogic, we could neither obtain source code
nor binaries for either of them. Furthermore, the lack of research papers detailing these
projects makes it impossible to compare NOVA to them.

VMware was the first to successfully commercialize virtual machines on the x86
platform. VMware uses two different architectures for their virtualization products:
First, there are the original hosted VMMs that run on another OS such as Windows
or Linux [SVLO01]|. They rely on binary translation to run on x86 CPUs without hardware
extensions. Nowadays they can also benefit from hardware support for virtualization
[AGSS10|. Second, there are the stand-alone hypervisors from the ESX server product
line [Wal02, ESXb]. ESX has a similar architecture as NOVA with a dedicated hypervisor
and one VMM instance per VM. However, the little information available indicates that
the device drivers are part of the monolithic hypervisor. Furthermore, the ESX hypervi-
sor seems to offer a POSIX-like interface to its applications, which is much larger than
NOVA’s small microkernel interface.

Xen started as a research project at the University of Cambridge, UK. It was com-
mercialized via XenSource in 2004. Originally Xen aimed at a hundred paravirtualized
Linux VMs on a hypervisor [BDF103] to better utilize the available hardware resources.
Support for hardware-assisted virtualization was added as soon as the x86 virtualization
extensions became available. The first version of Xen took its device drivers from Linux
and linked them directly to the hypervisor. A different architecture was introduced with
Xen 2.0: the first virtual machine, called domain zero (dom0), provides drivers for the

IExample: Both set the interrupt-pending flag in the RTC (real-time clock) model only if interrupts
are unmasked.

24

2.1. BACKGROUND AND RELATED WORK

rest of the system [FHNT04]. Furthermore, dom0 hosts the management services and
the Qemu instances that act as VMMSs for the faithfully virtualized domains. While this
architectural change solved the problem of the limited driver support, it also increased
the TCB of a VM by the size of the operating system in dom0.

The KVM [KKL"07] development was started in 2006 by Qumranet to add virtu-
alization support to the Linux kernel. KVM is not a stand-alone hypervisor, but an
extension to the Linux kernel. Thus it can rely on Linux for booting, device drivers, and
resource management, which makes it significantly smaller than Xen. KVM uses Qemu as
its user-level VMM for device and CPU emulation. In contrast to NOVA, KVM emulates
a second set of interrupt controller and platform timer inside the hypervisor. Even though
this reduces the virtualization overhead, it also increases KVMs code size.

VirtualBox [Wat08] is a hosted virtualization environment for many operating sys-
tems such as Windows, Linux, MacOS, and even Solaris. Initially released in 2007 by
Innotek, it is now maintained by Oracle. VirtualBox runs on CPUs with and even without
hardware-assisted virtualization. In the latter case ring-compression techniques [KZB191]
are leveraged. This makes VirtualBox quite similar to early VMware workstation prod-
ucts, except that most parts of it are open source. Many device models of VirtualBox are
derived from Qemu. An additional software layer makes these models rather heavyweight,
but unifies device management and adds new features such as SATA and debugging sup-
port.

Microsoft entered the virtualization market by acquiring Virtual PC and Virtual
Server from Connectix in 2003. These two products were hosted VMMSs running on
Windows as well as MacOS and quite similar to early VMware products. Virtual PC
seems to still be the base for the so called Windows XP mode, which allows to run legacy
applications on Windows 7. In 2008, Microsoft released Hyper-V [LS09], a stand-alone
hypervisor for the server market. It requires 64-bit Intel or AMD CPUs with virtualization
extensions. Hyper-V shares its architecture with Xen. It also has a privileged virtual
machine, called the parent partition. Guests run in their own child partition. However,
the OS inside the parent partition is not a paravirtualized Linux as in Xen anymore, but
instead a Windows Server 2008. The VMM of Hyper-V resides inside the parent partition
and emulates all device models with the exception of the Local APIC (Local Advanced
Programmable Interrupt Controller), which is already implemented in the hypervisor for
performance reasons. This is similar to KVM, which has interrupt and timer models
inside the kernel. The hypervisor interface is much wider than in NOVA [Mic12|. Besides
communication and resource management tasks, it also provides wirtualization assists
that allow a paravirtualized or enlightened VM to call the hypervisor to execute batched
virtualization events instead of trapping multiple times.

Virtualization on Microkernels

Various people have leveraged hardware-assisted virtualization on existing microkernel-
based systems.

Biemueller [Bie06] studied how the L4-API can be extended to support faithful
virtualization. He modified the L4/Pistachio kernel to run virtual machines on Intel VT-x
CPUs. His code seems to never have left the prototype state, even though the architecture
is similar to NOVA. Furthermore, the evaluation section of the thesis is still unpublished,
which excludes any performance comparison.

Schild et al. [PSLW09] ported KVM to the L4 /Fiasco microkernel. Most of the KVM
code could run unmodified inside the L4Linux [HHL 97| kernel, whereas Qemu provided
the VMM functionality. In contrast to NOVA, the KVM /L4 project did not try to mini-

25

CHAPTER 2. A SMALLER VIRTUALIZATION STACK

mize the virtualization layer itself. Instead it aimed for a minimal impact of virtualization
to other applications both for security and maintenance reasons.

With Karma, Liebergeld et al. [LPL10] aimed at a minimal VMM. By relying on
hardware support for CPU as well as memory virtualization and omitting legacy devices
as well as CPU mode support, neither device nor instruction emulation is necessary in
their VMM anymore. Instead, the guest solely relies on paravirtualized I/O. Whereas
this approach reduced the VMM to approximately 4 KSLOC, unmodified guest operating
systems are not supported anymore. Operating systems need to be explicitly ported to
the Karma environment.

Sandrini implemented a virtualization library for the Barrelfish OS called VMKkit
[San09]. It supports a minimal set of device models to run virtual machines on AMD
processors with nested paging. Similar to NOVA the virtualization functionality is split
between a kernel part and a user-level monitor. Unfortunately, the user-level monitor has
direct access to the security-critical virtual machine control block (VMCB). It is therefore
part of the TCB of all other components in the system.

Other Open-Source Virtualization Stacks

There are other open-source virtualization stacks not aiming at a microkernel-based sys-
tem.

FAUMachine [SPS09] uses virtual machines for fault injection scenarios. While the
CPU virtualization is provided by Qemu and KVM, it comes with its own set of device
models. This includes modems and serial terminals seldom found in other virtualization
software. Device emulation is done at a finer-grained level than required in a general
purpose VMM. One can for instance remove a single RAM module during run time. This
leads to a larger codebase, but it also means many parts of the device emulation tend to
be incomplete.

Palacios is an open-source virtualization library developed in the V3VEE project
[LPH'10]. It is released under BSD license and comes with its own device models. Even
though it supports more virtual devices than Vancouver, their implementation is often
incomplete. The virtual i8259 PIC (Programmable Interrupt Controller) for instance
neither supports special fully-nested mode nor rotating priorities. Similarly the 18254
PIT (programmable interval timer) supports only five out of six timer modes.

2.1.3 Securing the Virtualization Layer

Many projects tried to strengthen the security of the virtualization layer. Most of them
targeted existing implementations like Xen [MMHO08, CNZT11] or KVM [WWGJ12,
WWJ13] whereas others propose to protect the hypervisor [WJ10, WSG10, ANWT10]
or aim to remove it from the TCB of a VM [SKLR11|. In the following, I detail these
approaches and compare them to NOVA.

Decomposing Xen’s Domain Zero

The security of the virtualization stack is especially important on a Xen-like architecture
where a full-fledged OS is used in domain zero (dom0) to manage and support the virtual
machines. Two projects have aimed to reduce the TCB of Xen.

In 2008, Murray et al. [MMHOS8] introduced another privileged domain, called the
domain builder (domB), to create new domains instead of performing this operation from
dom0. Full memory access privileges can then be removed from domO user space, which

26

2.1. BACKGROUND AND RELATED WORK

significantly shrinks the TCB. Interestingly, they borrow techniques from microkernel-
based systems such as an IPC (Inter-Process Communication) abstraction, the use of an
IDL (Interface Description Language) compiler to automatically generate IPC stub code
[Aigll], and the forwarding of system calls to untrusted code [WHOS].

However, in our opinion, this pioneering work missed a couple of opportunities. Fore-
most, the dom0 kernel is still part of the TCB because IOMMUSs were not (widely)
available in 2008, so that device drivers may compromise the whole system via DMA
(direct memory access). Second, they did not aim for the minimal functionality in domB,
but they argued instead that disaggregating Xen at a higher level makes it simpler and
therefore more secure. Furthermore, they reused a surprisingly large MiniOS as base
for their domain builder. Consequently, domB consists of nearly 10 KSLOC. This is as
much code as the complete hypervisor in NOVA. Finally, hardware-assisted domains may
not work anymore because the Qemu processes can no longer emulate DMA-able devices
when memory access from dom0 user space is forbidden.

In 2011 Colp et al. [CNZ*11] continued this line of research with Xoar, a modified
version of Xen. They partitioned the management and device-driver functionality found
in the monolithic dom0 into nine different service VMs. A small TCB is achieved by giving
these VMSs only the privileges absolutely necessary for their operation. Furthermore the
service VMs live only as long as they are needed. This reduces the surface an attack
can target. The initial boot code, for instance, is removed from the system before any
client VM is started. Finally, service VMs are rolled back to the initial state after each
request, which should improve the security as well. Nevertheless, driver VMs are only
restarted after several seconds due to performance reasons. This leaves a large window of
opportunity for any automated attack.

Even though both projects share our goal of a smaller TCB for a virtual machine, they
started from existing implementations. Consequently they were not able to reduce the
TCB as far as we did because a large amount of legacy code had to be kept in the system.
Especially the Xen hypervisor and the Qemu VMM make the TCB of a decomposed Xen
VM more than an order of magnitude larger than in NOVA.

Improving KVM

Improving the security of a KVM-based system was the focus of the following two research
projects.

HyperLock [WWGJ12] moved the KVM code into an address space distinct from
the Linux kernel. The code still runs with full privileges, due to performance reasons.
Additional protection is ensured by recompiling and verifying the KVM binary. Thus
vmread and vmwrite instructions can be executed directly but Linux kernel data struc-
tures cannot be touched anymore.

DeHYPE [WWJ13]| continues this work by moving the KVM code out of the kernel.
The result is similar to KVM /L4 [PSLW09], except that the KVM code had to be explicitly
ported to user level. Only 2.3 KSLOC remain inside the kernel to execute privileged
instructions on behalf of KVM. Caching guest state limits the performance impact of this
design.

Both projects do not significantly reduce the TCB of the overall system because the
large Linux kernel remains. However, they limit the impact of bugs in the KVM codebase.
Both add a certain overhead to each guest-to-host transition without having the fine
grained transfer of VM state as in NOVA.

27

CHAPTER 2. A SMALLER VIRTUALIZATION STACK

Removing the Hypervisor

NoHype [SKLR11] shows that a large hypervisor can be removed from the virtualization
stack if the hardware is leveraged to partition a multi-core CPU. The hypervisor just boots
the virtual machine and shuts it down if a virtualization event occurs. It does not need to
virtualize any device nor provide any runtime service. Consequently, there is no support
for memory overcommitment or for fine-grained scheduling of virtual machines in the
NoHype system.

While this restriction might be acceptable in a cloud-computing setting where one OS
runs on a set of dedicated CPUs for a long time, it severely limits the server-consolidation
scenario. Furthermore, the hypervisor code is minimized by not handling any virtualiza-
tion exit. However, at the same time, generality is lost. Legacy operating systems will not
run on a NoHype system anymore. Instead, any OS kernel and application might need
changes to not execute certain instructions like cpuid. Finally, the system seems to be
vulnerable to denial-of-service attacks. A malicious VM may send any type of interrupt
to other unrelated virtual machines and a malicious application can kill the VM without
OS kernel involvement.

Protecting the Hypervisor

Several projects do not reduce the TCB but instead aim to protect existing hypervisors.

HyperSafe [WJ10] ensures control-flow integrity in the hypervisor by making code
as well as pagetables read only and making jumps only through the edges of the control
flow graph. However, the simplicity of their approach makes it easy to skip important
security checks by returning to the second invocation of the very same function.

HyperCheck [WSG10] and HyperSentry [ANW*10| periodically measure the in-
tegrity of the hypervisor from SMM (System Management Mode). Thus they can only
provide coarse grained protection against known classes of attacks.

Hypervisor protection can be applied to our system as well. Nevertheless the security
benefits the small NOVA hypervisor gains might be less than the complexity it adds to
the overall system.

2.1.4 Advanced Use Cases for Virtualization

Many papers describe advanced use cases for virtualization. Virtual machines are used to
migrate operating systems from one physical host to another [CFHT05], for time-travel
debugging [KDCO05|, intrusion detection [DKC*02|, and to improve software rejuvenation
[SAT09]. Most of this research has relied on an existing virtualization layer and can also
be applied to our work.

Different projects try to harden the operating system inside a virtual machine or
protect an application from a compromised OS kernel. For example, SecVisor [SLQP07]
intercepts all kernel entry and exit paths at the hypervisor level to ensure that only
kernel code runs in kernel mode. BitVisor [SETT09] on the other hand intercepts drivers
accessing devices to ensure that DMA requests do not overwrite security-critical memory.
This is similar to Mehnert’s PhD thesis [Meh05], except that they also intercept the data
path to add transparent encryption.

Overshadow “offers a last lines of defense for application data” [CGLT08|, by giving
an untrusted OS only encrypted access to it. The OS can still perform its resource man-
agement task but can neither modify nor leak application secrets. CloudVisor [ZCCZ11]

28

2.2. DESIGN

Applications

m VM Virtual
Machines
(o))

User-Level

@ Driver Environment

J6=

(Microhypervisor) Kernel

Figure 2.1: The NOVA architecture reduces the TCB of applications and VMs by splitting
the virtualization layer into microhypervisor, user-level environment, and one VMM per virtual
machine.

protects a guest operating system in the same way by adding another hypervisor under-
neath an untrusted virtualization stack with the help of nested virtualization [BYDD10].
TrustVisor [MQL™ 10| uses a hypervisor to shield security relevant parts of legacy
applications from the untrusted operating system. To achieve protection across system
reboots, Trusted Computing techniques are employed.
Even though all these approaches are orthogonal to our work, most of them would
benefit from the small and general-purpose virtualization layer NOVA provides.

2.2 Design

With NOVA, we aim to minimize the TCB impact of the x86 virtualization stack for both
unmodified guest operating systems running in virtual machines and applications that do
not depend on virtualization at all. We redesigned the architecture as well as the different
software layers from ground up to achieve this goal.

In this section, I give an overview of the NOVA architecture (§2.2.1), briefly describe
the hypervisor interface (§2.2.2) and the user-level environment (§2.2.3). At the end, I
discuss the design of the Vancouver VMM (§2.2.4).

2.2.1 NOVA Architecture

The NOVA OS Virtualization Architecture [SK10a], as depicted in Figure 2.1, is based
on a small kernel called the microhypervisor. The microhypervisor, in the following
just called hypervisor, is the only part of the system, which is executed in the highest
privileged CPU mode?. The user-level environment runs above the hypervisor. It consists
of the initial program called the root partition manager that bootstraps the system.
Additionally it provides services like a GUI, a network stack, or a file system, and the
necessary device drivers for graphics, disk controller, and other hardware. This software
layer provides OS functionality to native applications (APP) and to multiple VMMs,
one for each virtual machine.

2This ignores system-management mode and CPU microcode, which are typically not under the control
of the OS developer.

29

CHAPTER 2. A SMALLER VIRTUALIZATION STACK

The NOVA architecture bridges the gap between microkernel-based systems and hy-
pervisors [HWFT05, HUL06]. It inherits the small kernel and the implementation of OS
functionality as well as user-level device drivers from microkernel-based systems [EH13].
It shares the support for running unmodified operating systems inside virtual machines
with hypervisor-based systems [Gol73|. Finally, NOVA borrows many features from ex-
isting systems such as capabilities, portals, the use of IOMMUs, and the decomposition
of the OS into smaller services [SSF99, GSBT99, LUSG04, GJPT00].

The hypervisor relies on hardware support for virtualization as provided by Intel VT
[UNR105] or AMD-V [SVMO05] to run unmodified legacy operating systems in VMX non-
root mode or in SVM guest mode respectively. The virtual machine monitor completes
the platform virtualization by emulating devices and CPU features not virtualized in
hardware yet.

Splitting the virtualization layer into hypervisor and VMM has several advantages:

1. It minimizes the TCB impact of virtualization. Native applications not depending
on virtualization do not have the VMMSs in their TCB.

2. It removes a potentially vulnerable VMM from the TCB of unrelated virtual ma-
chines.

3. It allows to tailor the VMM to a specific guest OS. If a VMM feature is not needed,
it can be easily removed from the TCB.

4. Tt improves performance and simplifies the implementation, as the VMM needs to
interact with a single guest only.

Virtualization support in NOVA is orthogonal to other hypervisor concepts. Any appli-
cation can run a virtual machine and each VM could drive physical devices. Additionally,
a VMM may offer operating system services. Legacy OS code can thus easily moved into
a virtual machine while keeping its external interfaces.

2.2.2 The NOVA Microhypervisor

The NOVA microhypervisor was designed and implemented by Udo Steinberg in paral-
lel to my work on the user-level environment and the Vancouver VMM. The hypervisor
consists of approximately 10 KSLOC, which is significantly smaller than other implemen-
tations. This reduction in size is achieved by adopting a design principle of L4 [Lie95]
and including only those features inside the hypervisor that could not be securely and
efficiently implemented in user mode3.

In the following, I briefly describe how the hypervisor supports native applications, OS
services, user-level device drivers, and virtual machines. More details on the hypervisor
design and implementation will be available in Udo Steinberg’s PhD thesis [Stel5| and
the NOVA Hypervisor Interface Specification [Stell].

Native Applications

The hypervisor executes native applications inside PDs (protection domains). A PD is
a resource container similar to a process in Unix. It is composed of three spaces: the
virtual memory address space backed by physical memory or MMIO (Memory Mapped

3With NOVA we do not aim at the minimal kernel size. Instead the hypervisor includes several
performance optimizations such as providing both IPC and shared memory for communication or having
an in-kernel virtual TLB (Translation Lookaside Buffer).

30

2.2. DESIGN

1/0) regions, the I/O space holding the rights to PIO (Port I/0) regions and the object
space consisting of capabilities to kernel objects. Capabilities are PD-local names to global
kernel objects, similar to file descriptors in Unix. They are protected by the hypervisor
and provide a unified way to manage access rights. If a PD possesses a capability, it can
use the corresponding kernel object?.

Multiple threads called execution contexts (EC) are scheduled by the hypervisor ac-
cording to their scheduling context (SC). The SC defines the priority and time-slice length
for a single EC on a particular CPU. All ECs within a PD run in the same address space.
Concurrent access to shared variables can be synchronized with counting semaphores
[Dij68].

OS Services

OS services are supported in NOVA through IPC, worker threads, and portals.

An application requests OS services, like a file or disk operation, via synchronous IPC.
An IPC call transfers parameters between two ECs and maps access rights to hypervi-
sor-managed resources like physical memory and kernel objects. Mappings are used to
establish shared memory between PDs and to distribute capabilities in the system. The
rights can be revoked at any time via recursive unmap [Lie95].

Worker threads in a service wait for incoming requests. They do not need an SC of
their own because calling clients donate their CPU time. ECs with a higher priority help
a worker to finish the current request. This limits the time a high-priority EC waits on a
lower priority one (priority inversion) [SBK10].

An IPC message does not directly target a service EC. Instead a portal is used as
a layer of indirection to hide the internal thread structure of a service. Clients can be
identified through the portal they have used or by translating a client capability into the
object space of the server.

If an EC causes a page fault or another CPU exception, the hypervisor forces it into
an IPC through an exception portal. The exception handler can define, which part of
the EC state will be transferred during such a call. This feature limits the overhead of
frequent exceptions and user-level paging.

Device Drivers

The hypervisor manages all CPUs including their MMU (Memory Management Unit) and
FPU (Floating Point Unit). Furthermore, it controls the IOMMUs (I/O Memory Man-
agement Units) of the platform if present. Finally, it drives the interrupt controller and
at least one timer for preemptive multitasking. All other devices have to be programmed
in user mode.

The hypervisor includes several features to support user-level device drivers similar to
L4 [EH13]. First, it manages MMIO and PIO regions in the very same way as physical
memory. Any PD can get direct access to device registers. This enables device program-
ming through otherwise unprivileged code.

Second, the hypervisor converts taken interrupts into a semaphore wakeup. Any EC,
which has access to such a semaphore, can block on it until the corresponding device
triggers the interrupt. This lightweight mechanism is not only fast but also secure. As
the hypervisor controls the interrupt path, it can prevent event storms by masking all
interrupts nobody waits on at the interrupt controller or the IOMMUs.

4Several right bits allow fine-grained access control over the operations allowed with the object.

31

CHAPTER 2. A SMALLER VIRTUALIZATION STACK

Third, the hypervisor ensures through the IOMMU that each driver can perform
device DMA (direct memory access) only into its own protection domain. This protects
the hypervisor and other PDs from malicious DMA. Furthermore it enables DMA transfers
to user-level memory without requiring an additional memory copy operation.

Finally, the device driver features of the hypervisor are orthogonal to the virtualization
support. Physical devices may be driven from a VMM or can even directly attached to
the virtual machine.

Virtual Machines

The hypervisor multiplexes CPU support for virtual machines between multiple unprivi-
leged VMMs. Each PD can act as virtual machine monitor and create one or more virtual
CPUs (VCPU). VCPUs are special ECs that are not executed in an address space like
threads. Instead they run in a VM environment provided by Intel VT-x or AMD-V.

If a VCPU accesses a virtual I/O device or uses a CPU feature not yet virtualized
by the hardware, the CPU exits virtual-machine mode. The hypervisor either handles
this condition on its own® or it suspends the VCPU and sends an IPC with the current
register state to the VMM. The VMM emulates the necessary side effect of the faulting
operation and resumes the VCPU by sending the updated registers back. A VMM may
also recall a currently running VCPU to deliver interrupts timely.

The hypervisor allows the VMM to choose what part of the VCPU state is transferred
for a particular exit reason. This feature can significantly reduce the serialization costs of
VM exits [SK10a]. A cpuid exit for instance requires only five general purpose registers,
whereas exits handled by the instruction emulator need the whole VCPU state.

The hypervisor hides many differences between Intel VT-x and AMD-V from the
VMM. For instance, the VCPU state is unified, whereas the exit reasons are still vendor
specific. Furthermore, the hypervisor already implements a virtual TLB to improve the
performance on older CPUs that do not implement nested paging in hardware [BSSMO08].

Virtualization is orthogonal to other hypervisor features. The VMM can use OS ser-
vices as backends for its device models. A filesystem, for instance, can provide storage
for a virtualized hard disk. Additionally a VMM may offer services on its own. Finally,
applications may use virtualization to run existing library code within their original en-
vironment.

2.2.3 NUL: The NOVA User-Level Environment

In a NOVA system, multiple applications compete for the few physical devices of the
platform. Not every VMM can get exclusive access to the devices its virtual machine
requires, like a timer, a disk, or a network controller. Instead, the user-level environment
needs to drive the devices and time or space multiplex them between different clients.

Furthermore, the hypervisor implements only basic resource management. Initially, it
delegates all low-level resources like memory or CPU time to the root partition manager
and provides mechanisms to securely forward access to other domains. However, it does
not implement any particular policy to further distribute the resources in the system.
Instead, this functionality has to be provided by a user-level environment. If it is properly
implemented, one can run untrusted virtual machines and secure applications concurrently
on the same host.

Porting older user-level environments written for 1.4 to NOVAs capability interface
seemed to be too complicated. Moreover, their huge size would have significantly increased

5For instance virtual TLB related exits are handled directly in the hypervisor.

32

2.2. DESIGN

the TCB of nearly all applications. I therefore developed a new user-level environment
for NOVA.

The NOVA User-Level environment (NUL) is an experimental OS that allows to
run virtual machines and applications on the NOVA hypervisor. NUL is similar to
Bastei/Genode [FHO06] and L4.re [LW09]. The main difference is that it implements
just the necessary functionality to run multiple virtual machines with a user interface,
disc, and basic network access. Additional features like a file provider or the remote
management of PDs were later added by Alexander Bottcher and Julian Stecklina. The
source code of NUL can be found at [NUL].

NUL extends previous work on user-level environments in three areas:

1. Tt shares the component design with the VMM,
2. It uses a new communication protocol for a multi-server environment, and
3. It aims at scalability on multi-core platforms.

In the following, I explain these features in detail and mention areas for future work.

A User-Level Environment from Components

The Vancouver VMM is built from flexible software components, as described in Sec-
tion 2.2. There are several reasons to use the very same approach for NUL as well.

Foremost, it enables the flexible placement of the device drivers throughout the soft-
ware stack. Device-driver components may run in the root PD or in another stand-alone
PD. They may also be linked to a VMM or an application which has exclusive access to
a particular device.

Second, the component design allows to adapt the user level to the particular platform.
A driver not required on a certain hardware, or a service not needed for a usage scenario,
can easily be removed from the user-level environment and thus from the TCB.

Finally, it allows to share components between Vancouver and NUL. One example
is the PS/2 keyboard driver that is also used by the virtual BIOS (vbios) to retrieve
keystrokes from the emulated keyboard controller. Another example is the instruction
emulator and the 18254 PIT emulation that is reused by the vesa driver to execute BIOS
code to switch the graphics mode.

The Multi-Server Protocol

Initially, the services and device drivers were all running inside the root PD. However,
this monolithic approach did not scale well with the increasing complexity of a growing
implementation. Additionally, it conflicts with the goal of NOVA to build a system out
of unprivileged parts. Consequently, the user-level environment had to be separated into
dedicated PDs. To enable the evolution of NUL towards a multi-server environment, I
developed the following multi-server protocol for NOVA.

The protocol involves three subjects: the server offering a service, a client using it
and the parent connecting both parties.

Four different capabilities are used: i) The identity of the server and the identity of
the client at the parent. ii) A pseudonym that hides the clients identity. iii) The portal
where a server EC waits for client requests. iv) A session is later added to the protocol
to reduce the overhead by letting the server cache data between subsequent requests.

Finally, the following data structures are referenced: Services are called by name,
a null-terminated string without any defined semantics. A service can enforce a policy,

33

CHAPTER 2. A SMALLER VIRTUALIZATION STACK

Parent
| .
Server | Client
| : |
0. boot(id, , |
B (idacruer) | beot(idaind |
| 2. register(idserver, portal, name) I |
[« | 4. get pseudonym(idciient, name) |
| 3. reply() i [
| | 5. reply(pseudonym) |
: :< 6. get portal(pseudonym) :
: I 7. reply(portal) ,:
|
| | 8. call _server(pseudonym, args) |
[9. get policy(idserver, pseudonym) I [
I — Syt |
r e |
I 10. reply(policy) I I
L 1 o |
r T ~ 1

11. reply(return)

Figure 2.2: The session-less multi-server protocol in NUL.

which might be as simple as an uid for a UNIX-like filesystem, but can also be a complex
ACL (Access Control List) or a quota for a certain resource. The called service may
support any number of arguments, including an operation code to distinguish different
suboperations. It can return any value.

Session-less The session-less version of the protocol is depicted in Figure 2.2. The
parent is responsible for booting its subsystem. It thereby gives all of its children their
identity capability to distinguish requests coming from them (idserper and idejiens in the
figure). The parents in a NOVA system form a tree rooted in the initial PD. This leads to
a recursive OS structure similar to Fluke and Bastei/Genode [FHLT96, FH06|. Whereas
client and server do not need to trust each other beyond the service requirements, there
will be one common (grand-)parent they both have to trust for keeping them running and
for letting them communicate with each other.

The server creates worker ECs and portals, one for each CPU. It then registers the
service under a certain name by delegating the portal capabilities to the parent. The
parent can deny such requests, for instance if the name is already taken or if the policy
of the parent states that the child is not allowed to offer a service under this name. The
parent may also forward the request to the grandparent to make the service more widely
available to the system. It can either register the retrieved portals directly or can wrap
the service by using its own set of portals instead.

A client that likes to use a service needs to request a pseudonym for his identity from
the parent first. The pseudonym is an additional layer of indirection that allows the client
to use multiple server connections with different rights. For instance, a library might need
read-only access to a filesystem whereas the main application logic likes to have read-write
access to another part of it. The pseudonym also enables the consolidation of multiple
applications into a single PD. By splitting the right to communicate (the portal capability)
from the right to a server object (the pseudonym or session capability), the number of
capabilities in the server does not scale with the number of CPUs in the system anymore,
but just with the number of connections each client opens. With the pseudonym, the
client can request a portal from the parent and call the server through it. The server will

34

2.2. DESIGN

Figure 2.3: The session-based multi-server protocol in NUL from the client perspective.

use the client pseudonym to retrieve the policy from the parent it should enforce. It then
handles the client request accordingly and replies with the return values.

Session-based Providing the policy to the server gives the parent fine-grained control
over the client rights. Moreover, requesting the policy on every request makes changes
immediately visible®. Unfortunately, it doubles the number of IPC calls, which slows
down any server invocation. Adding sessions to the protocol will reduce this overhead
through caching.

The simplest way to implement sessions on NOVA is to map a capability from the
server directly to the client. This session capability can identify the client in further
calls and allows the server to retrieve cached data including a previously requested policy.
However, when implementing sessions this way, policy changes are not immediately visible
anymore. Note that the parent cannot force the client to request a policy change. Even
revoking the portals is not sufficient here because the two parties may have already
established shared memory for faster communication. Besides calling the server from the
parent can weaken the security as the parent not only depends on the policy enforcement
of the server, but also on the timely completion of any request to it.

A more powerful, but also more complex mechanism, has to be employed: Instead of
a direct mapping, the server will deposit the session capability at the parent under the
pseudonym of the client. The client can then fetch the capability from the parent. Because
the parent is involved in the capability distribution, it can revoke the session at any time.
The parent can change the policy of a single session, but also ban a misbehaving client
completely. Additionally, this mechanism does not only work for session capabilities, but
also for shared memory and semaphores. Finally, it can be used in the opposite direction,
when the client wants to give memory or other capabilities to the server.

Figure 2.3 shows how the session-based protocol is implemented by the client. For the
first call to the server, the following transitions are made: 1. The client calls the server.
2. This fails because no portal is available yet. 3. Requesting the portal fails as well

6The NOVA hypervisor does not abort existing calls if the access to the portal is removed. Thus a
policy change will be delayed until the currently running request is finished.

35

CHAPTER 2. A SMALLER VIRTUALIZATION STACK

because no pseudonym was requested yet. 4. With the pseudonym the client can retry
the call. 5. The call will fail again because no portal is mapped yet. 6. The portal is now
available and the call can be retried a third time. 7. This fails because no session was
opened yet. 8. The session capability needs to be fetched from the parent. 9. The client
will retry the call with the portal and the session capability mapped. 10. The fourth call
to the server succeeds.

In total, ten transitions are needed to securely establish a session between server and
client”. As long as the portal and the session capability remain available, further calls
to the server will immediately succeed. Thus, most server invocations will require only
a single IPC including one translation of the session capability, which can be efficiently
implemented as a single memory read.

Developing the parent protocol has led to the integration of the capability translation
mechanism in the NOVA hypervisor. The hypervisor interface is now powerful enough
for a multiserver environment where a hierarchy of parents starts services, which can be
accessed from untrusted clients running on different CPUs.

Comparing the parent protocol to the corresponding protocols in Genode and L4.re
[FHO06, LW09]| reveals three differences. First, the parent never trusts and therefore never
calls one of its children. This saves resources as a thread per client is unnecessary. Sec-
ond, the protocol fetches missing capabilities automatically. Thus policy changes become
visible immediately. Reconfiguring or restarting a service is also easily possible. Third,
the server and the client have little information about each other. The client neither
knows the thread structure in the server, nor can the server correlate the pseudonyms of
the same client.

Towards A Scalable User-Level Environment

The multi-server protocol defines the basic mechanism how a client can communicate with
a server. It does not specify how a service should be implemented, which is especially
difficult if the service has to run on multiple CPUs. In the following, I will briefly present
the ideas we proposed in [SK10b] that should lead to a user-level environment scalable to
many CPUs. They still have to be fully implemented in NUL.

The server should provide non-blocking operations, such that an application can sub-
mit multiple requests without having to wait on the hardware for completion. Addi-
tionally, the clients should provide the CPU time for all expensive operations. A secure
filesystem like VPFS [WHO0S]|, for instance, will spend most of its CPU cycles on data
encryption for write operations and decryption for read operations. Finally, the chosen
server interface should not depend on the number of workers, the synchronization method
employed or special hardware features.

A server invocation in [SK10b] consists of three phases: a synchronous request, an
asynchronous completion signal and a synchronous retrieval of the reply. Whereas com-
plex operations need all three phases, simpler ones may work with only a subset of them.
The server interface need to explicitly expose these phases, such that IPC can be used
for the synchronous parts.

Because a single threaded implementation can be a performance bottleneck, a service
should instantiate at least one worker EC on each CPU. A worker will be used by all
the client threads on the same CPU. Helping, as described in [SBK10], ensures that
a preempted scheduling context and an aborted request will not block a high-priority
requester longer than the WCET (worst-case execution time) of a single request. Relying

"The error transitions (el, e2, e3) may further lengthen this path. However they are taken only if the
parent revokes capabilities in between.

36

2.2. DESIGN

on helping reduces resources compared to a thread per client but leads to more jitter
in the execution time. Splitting the interface into simpler functions and instantiating
dedicated workers will improve both WCET and jitter.

Device drivers and asynchronous signaling requires IRQ threads to wait on semaphores
and forward completion events.

Threads on different CPUs can access shared resources. However, a general and fast
approach to thread synchronization does not exist. Recent research suggests that sim-
pler synchronization primitives tend to be faster [DGT13]. Nevertheless, synchronization
should be an implementation detail and not exposed at the interface level.

Current State and Future Work
NUL offers the following services to NOVA applications:

e It helps booting them through ELF (Executable and Linkable Format) decoding
and the support for multiboot modules including a command line.

e [t implements libc-like functionality like printf, malloc, and string functions.
e It manages the memory, PIO, MMIO, PCI config spaces, and interrupts.

e It provides network as well as disk access and allows applications to request a
notification at a certain point in time.

e [t forwards human input to applications and displays their textual as well as their
graphical output.

Additional functionality, like a file service and remote management of PDs, were later
implemented by Alexander Bottcher and Julian Stecklina.
NUL comes with the following device drivers®:

e PCI config space access (pcicfg, pcimcfg) and IRQ routing (acpi, atare),

e Timeouts via pit and hpet; wall-clock time via rtc,

Disk access through ide and ahci; in-memory disk via memdisk,

Simple network driver ne2k,
e Human input from PS/2 keyboard and mouse as well as from serial ports,
e Text output via the vga console and graphics through vesa mode switching.

My work on NUL has shown that the NOVA hypervisor interface is powerful enough to
implement a multi-server environment. However, three performance optimizations still
wait to be implemented. First, managing the UTCB (User Thread Control Block) as a
stack would avoid most callers the effort to save and restore its contents during nested
IPC calls. Second, if the hypervisor would export a CPU-local timer to user level, the
cross-CPU synchronization overhead in the timer service would be unnecessary. Finally,
the timer service could be completely removed if the hypervisor provided fine-grained
timeouts.

In the future, one should complete the transition to the multi-server design and en-
sure that the servers scale to many-core platforms. Furthermore, one could add new

8The filenames are denoted in teletype font without their host prefix.

37

CHAPTER 2. A SMALLER VIRTUALIZATION STACK

functionality. Foremost the simple FIFO approach to resource sharing does not fully de-
couple clients. A malicious client can significantly influence the throughput of other VMs.
Adopting time-multiplexing approaches as in [PKBT08] to all dynamic resources (disk,
network, graphics) could solve this issue.

Moreover, device drivers for USB (Universal Serial Bus) devices and for 3D graphic
acceleration would extend the usage scenarios of NUL. Adding power-management sup-
port would enable mobile platforms. NUL could be used for daily work with a persistent
filesystem, a TCP stack, and a shell. Porting development tools like compiler, editor, and
a version control system to it would lead to a self-hosting system.

2.2.4 Vancouver: A Small VMM for NOVA

The design of Vancouver was driven by the goal of a small TCB and the limited amount
of time, which favored any reduction of the development effort. In the following, I will
describe the goals of the VMM design and explain how I used software components to
achieve them. At the end of this subsection, I will compare this approach to related work.

Design Goals

Virtual machine monitors for the x86 platform are between 220 KSLOC and 2 MSLOC
large as shown in Section A.2.2. The main reason for this huge size can be attributed to
the support of multiple guest operating systems and different use cases at the very same
time. However, most of the features are not required simultaneously. Qemu for instance
comes with 24 NIC models even though a single model is sufficient to give a particular
guest network access”. Similarly VMMs support sound output even in cloud computing
environments where nobody could ever listen to it. The VMM should therefore be easily
specializable to the particular use case to reduce the TCB impact of unneeded features.

Removing features should not require any programming skills. A system administrator
or even an ordinary user should be able to configure the virtual machine accordingly.
Similarly, existing VMMs often only emulate a standard PC platform, which excludes
use cases beyond the original developers imagination, like using the VMM for chipset or
BIOS development. A flexible configuration mechanism supports such cases.

The VMM code needs to be reusable on other platforms, without inflating the TCB
through multiple layers of indirection.

The complexity of the x86 platform, together with the huge size of legacy operating
systems, makes debugging of a VMM a time-consuming task. The VMM should therefore
not be a monolithic implementation, but built from smaller parts that can be indepen-
dently tested for correctness.

In summary, a design for Vancouver should have the following properties: specializable
to the guest operating system, highly configurable, and build from reusable code blocks,
which can be validated independently.

Software Components

The VMM design is based on a small number of abstractions: component, message, bus,
and motherboard. In the following, I will explain them in detail.

Vancouver is built from independent software components. Most important are the
device models (§2.3), the instruction emulator (§2.4), and the virtual BIOS (§2.5). Even

9Multiple models of the same device class are seldom required at the same time. For instance, if a
scenario needs driver diversity to increase the reliability of the guest OS.

38

2.2. DESIGN

most of the platform-specific glue code holding all the components together is implemented
as component as well. The granularity of the components varies. A device model for
instance can resemble an entire chip on the mainboard or just one functional block of it.

Components do not depend on each other, which means they will not directly call other
components or modify their internal variables. Components can therefore be written
in different programming languages and multiple components of the same type can be
instantiated. Finally, components can run in their own address space to isolate untrusted
(third party) implementations!©.

Components interact by sending and receiving structured messages of various types.
These messages resemble the communication that happens between real hardware devices.
There is, for instance, a message type to signal interrupts and a message type that resem-
bles the communication of the PS/2 bus. Furthermore, there are messages for memory,
PIO, and PCI config space access. Finally, there are artificial message types not modeled
after real hardware. Examples are the messages for communicating with device backends
such as the timer, disk, and network drivers.

Messages do not directly target a destination component but they are broadcasted
over a virtual bus. Thus, multiple components can receive the same message. This
allows to easily snoop messages. It also ensures the correct semantics for many corner
cases in virtualization. One example are two devices configured with overlapping address
ranges.

The address decoding logic is not part of the bus itself. Instead it is implemented inside
each component. Any message will be delivered to all receivers on the bus. A receiver
decides internally how to handle a message. The selection of valid receivers is thereby
marginally slower compared to a tree-based lookup. However, local decisions simplify
the code, as there is no need to register and invalidate address ranges. Furthermore, the
number of components on a bus is typically small, which limits the performance impact
of a distributed implementation.

The C++ type system ensures that each bus supports only a single message type.
Thus interrupt messages cannot be sent over a memory bus. This reduces the number of
receivers on a bus and avoids type checks during runtime.

Components are created from the VMM command line where the user has fine-grained
control over their parameters'!. They add themself at creation time to one or more busses,
which implements late binding of independent components. Thus one does not need to
have a priori knowledge of other components in the system.

A virtual motherboard combines all known bus types into a single object. Multiple
motherboards can coexist in the system where each one acts as its own namespace. This
feature can be used to filter the messages going in and out an isolated component. The
virtual BIOS, for instance, uses a motherboard to encapsulate the keyboard driver from
the host in this way.

Example

Figure 2.4 shows how a keystroke from the console that was received by the VMM glue
code, is forwarded to the guest. i) The key is broadcasted over the keycode bus where
the keyboard model is listening. ii) The keyboard tells the PS/2 controller that its input
buffer is non-empty by sending a message over the ps2 bus. iii) The controller fetches the
keystroke and raises its interrupt line by sending a message to the irg bus. iv) The PIC
snoops this messages and notifies the vyCPU component that an interrupt is pending. v)

10Device models that support DMA need a virtual IOMMU for this purpose.
11 Aliases for the most common configurations exists.

39

CHAPTER 2. A SMALLER VIRTUALIZATION STACK

Input keycode bus
Event

Keyboard) Mouse

l ps2 bus

(PS/2)
P RTe Controller
L l irq bus

1/0 APIC (p1C)

cpu bus

port-io bus vCPU

Figure 2.4: Multiple components have to interact with each other to forward input events to the
VM. The PIC, for instance, listens on the irq and port-io busses and sends messages to the cpu
bus.

The virtual CPU is recalled and the corresponding interrupt vector is injected into the
guest. The interrupt handler calls the keyboard driver inside the guest. vi) The driver
then reads the keystroke from the PS/2 controller via PIO instructions. This leads to
VM exits that are converted by the VMM glue code to messages on the port-io bus. vii)
The guest acknowledges the interrupt at the virtual PIC by using PIO instructions again.

Discussion

The concept of using software components was proposed multiple times to cope with the
complexity of operating system construction [FBBt97, GSBT99, FSLM02, HF98]. To
our knowledge, Vancouver is the first componentized VMM.

Vancouver uses fine-grained components like Think or MMLite [FSLMO02, HF98], in-
stead of following the more coarse grained approaches taken by the OSKit and Pebble
[FBBT97, GSBT99|.

Furthermore, components do not export a function pointer based interface as in COM
[COM95], but instead receive broadcast messages as in the Information Bus Architecture
[OPSS93]. This message-based approach makes Vancouver also similar to event- and
flow-based programming paradigms [Fai06, Mor10].

Finally, the design is related to multi-server environments |GJPT00, FH06] where
clients use IPC to call servers to obtain a certain service because both rely on message
based communication to interact with each other. Vancouver therefore inherits many of
the properties of a multi-server design such as:

Flexibility The flexibility to easily specialize the VMM to the guest OS has the most
impact on the VMM size. The disk models, for example, can be easily removed if
no storage emulation is required.

Additionally, one can create multiple instances of the same component. This allows

40

2.2. DESIGN

to add another network card or interrupt controller to a virtual machine without
changing the source code.

Easier Development Splitting the codebase into many small components allows par-
allel development. Furthermore, as device models are basically stand-alone state
machines with all external interaction exposed through the busses, they can be
validated independently from each other.

Communication Overhead Communicating with messages is certainly slower than
normal function calls in a program because arguments have to be marshalled at
the sender and extracted at the receiver. Furthermore, the compiler cannot inline
the called code. However, this overhead is much smaller than the cost of IPC in a
multi-server environment.

Portability The messages provide a layer of indirection and enforce clear interfaces.
This can be used to increase the portability of the code by splitting generic and
OS-specific code into two components. The device models for instance can be in-
dependent from the underlying platform, if all backend accesses are forwarded via
messages to OS-specific glue code.

The achieved portability eased porting Vancouver from F2'2 to the NOVA hypervisor.
Currently, Vancouver and its forks run on NUL, Genode, NRE, and Linux in 32-bit as
well as 64-bit configurations.

Structure

In this section, I presented the NOVA architecture and described the hypervisor interface.
I introduced the user-level environment and discussed the design of the Vancouver VMM.

In the following three sections, I will focus on the VMM implementation. I start with
the device models (§2.3), which are responsible for the majority of the VMM code base.
This is followed by the single largest component the instruction emulator (§2.4). Finally, I
describe how Vancouver provides BIOS functionality to its guest operating system (§2.5).

12F2 is an experimental microkernel that I have built for the AMD64 platform to extend the kernel-
memory management research from my Master’s thesis [Kau05|.

41

CHAPTER 2. A SMALLER VIRTUALIZATION STACK

2.3 Device Models

A device model emulates the behavior of a physical device in software to provide the
illusion to the guest OS of running on real hardware. A model does not need to emulate
the device in its entirety. Instead, it is sufficient to mimic the externally visible interface
that is used by the device drivers. Similarly, it is not required to emulate the very same
timing behavior of physical devices because depending on the exact timing is typically
considered a driver bug'3.

In this section, I describe the device models of Vancouver. First, I explore different
implementation approaches that may lead to smaller device models (§2.3.1). Second, I
show that the standard technique of wrapping existing code is not a viable solution for
Vancouver (§2.3.2). Third, I describe the implementation in general (§2.3.3) and with
more detail (§2.3.4). Finally, I evaluate the code size of the device models (§2.3.5) and
propose future work (§2.3.6).

2.3.1 Approaches to Reduce the TCB

In this subsection, I evaluate three approaches to device-model implementation that
promise a smaller codebase: containerizing existing implementations, synthesizing the
device models, and using paravirtualized interfaces.

Containerizing Untrusted Device Models

To reduce the TCB, one may take NOVAs fine-grained decomposition of the virtualization
stack a step further and put untrusted device models into their own address space. One
would use a virtual IOMMU to restrict DMA operations into guest memory. Finally, one
would limit the interactions with the core of the VMM such as the number of interrupt
injections or the number of backend requests. Together, these changes would ensure that
a buggy model cannot fully take over the whole VMM and thereby remove the model
from the TCB.

While this idea seems promising at the first glance, it has a couple of drawbacks.
Foremost, it requires additional code to reuse and containerize existing device models.
This code will come with its own defects. Moreover, the strict isolation between device
models is only fruitful if the guest OS utilizes a virtual IOMMU. An attacker could
otherwise easily circumvent the isolation through a DMA attack against guest memory.
Furthermore, the guest OS needs to protect its device drivers as well for instance by
using user-level device drivers. However, mandating an IOMMU and user-level device
drivers reduces the number of operating systems that will benefit from the smaller TCB
drastically. Most operating systems will suffer from the additional complexity. Finally,
a further decomposition of the virtualization stack would increase the overhead as more
context switches are required to handle a single event. This will be significant on devices
with a high interrupt rate such as a 10 Gbit NIC or a high-end SSD (Solid State Disk).

In summary, containerizing untrusted device models reduces the TCB only for limited
number of guests operating systems whereas adding non-negligible overhead to all of them.

13The ne driver in Linux cannot handle completion interrupts directly after the instruction that issued
a request. The IDE driver of Windows XP has a similar bug.

42

2.3. DEVICE MODELS

Source-Code Synthesis

Another idea to reduce the TCB of the device models, would be to employ a code synthesis
approach similar how Termite does it for device drivers [RCKT09]. Such a synthesis would
be based on a formal device specification that can be more abstract than the corresponding
low-level source code. It would therefore be smaller and easier to verify for correctness.

However, such an endeavor is limited by the unavailability of device specifications.
Vendors, which are in the ideal position to release them, are hindered by the additional
costs and liability issues. Most importantly, a complete device description makes it easy
for a competitor to clone the device while having less costs for device verification and
device-driver development.

Reverse engineering the device behavior from the driver as suggested by RevNIC
[CC10] is possible as well. This task is more complicated for device models as one needs
to analyze a large number of device drivers to cover all operating modes a chip provides.

Finally, the tools required to analyze and to generate the source code of the devices
have to be counted to the TCB as well. They will have a significant TCB impact because
they are not used very often. This is a minor issue on device-driver synthesis where
hundreds of them exist in each device class whereas a VMM only needs a few device
models per class.

In summary, synthesizing device models seems to be impractical.

Paravirtualizing the Guest

Instead of modeling existing legacy devices, one may also invent new interfaces [Dik01,
Ste02, LPL10]. Following this paravirtualization approach has several advantages:

e It reduces the VMM size, as only one device model per device class needs to be
provided. A single NIC model for instance is sufficient for all operating systems.

e A paravirtualized device is not bound to any legacy interface. One can easily design
a simpler interface that minimizes the TCB because both sides, namely the device
model in the VMM and the device driver in the guest OS, are under control of the
developer.

e A better interface will reduce the overhead of device emulation.

Using paravirtualization has also disadvantages. Most importantly, one looses the ability
to run unmodified operating systems. Instead, one needs to develop and inject a set of
paravirtualized device drivers. This excludes closed-source operating systems that do not
come with a driver development kit. It also results in a significantly larger implementation
effort, which now has to scale with the number of supported operating systems instead of
the smaller number of required device models.

Due to these reasons, I excluded the paravirtualization approach as well.

2.3.2 Reusing an Existing VMM

In the previous subsection, I explored three approaches for smaller device models. Whereas
none of them was entirely satisfactory, I will now focus on reusing existing code to reduce
the development effort but still gain a small TCB.

Many projects implemented their own hypervisor, but very few have built a VMM as
well [Law96, Bel05, LPHT10, SPS09|, mainly due to the significant effort this requires.
Porting an existing codebase to another environment is an established technique to reduce

43

CHAPTER 2. A SMALLER VIRTUALIZATION STACK

the development effort compared to a reimplementation of the very same functionality.
Especially wrapping existing code on the source-code level, as done for instance by Flux
[FBB197] and DDE |Fri06], combines little effort with a certain forward compatibility.
Furthermore, reusing an existing codebase allows to benefit from the development and
bugfixes of a whole community. Consequently, several projects have derived their VMM
from Qemu [Bel05]: Xen [BDFT03| has forked it, VirtualBox [Wat08] wrapped the device
models, and KVM [KKL*07] seems to have overtaken the Qemu project.

Whether the device models from Qemu should be used in the VMM was controver-
sially discussed at the beginning of the NOVA project. In the following, I will describe
four reasons why wrapping an existing codebase will not lead to a small and secure im-
plementation.

1. Wrapping Adds Code Software wrapping is required to benefit from further
updates and bugfixes. However the wrapping layer adds new lines to the original code
and thereby increases the TCB.

To evaluate the impact of wrapping, I ported two network models, namely ne2k and
€1000, from Qemu to Vancouver. The models were originally 2400 SLOC (source lines
of code) large. The reused Qemu infrastructure accounted for 1150 SLOC and 250 new
lines of code had to be written for a wrapping layer. Altogether this was as much code
as the twenty device models Vancouver supported at that time. Furthermore, a reim-
plementation of the two models should require no more than 1000 SLOC. Even though
one saves approximately 750 SLOC through code reuse, the overall code size is increased
significantly. The very same effect can be observed on VirtualBox where wrapping the
device models from Qemu more than doubled their size.

2. Incompatible Goal Foreign code is seldom written with a small TCB in mind.
Instead, the code might be optimized for performance or written in a hurry to achieve a
short time-to-market. The developers might also aim for a minimal maintenance effort.
One example are Bochs device models that are written in a verbose coding style. Conse-
quently, they are twice as large as our own as shown in Section 2.3.5. Reusing such an
inflated codebase will not result in a small TCB.

3. Inheriting and Introducing Defects When reusing legacy components one in-
herits all the defects in the code. Furthermore, by wrapping legacy code with another
software layer new lines are added that may itself contain bugs. Additionally, the com-
ponent may be used in a way it was never tested before. It is therefore likely that more
bugs emerge.

Defects in existing virtualization code are not an abstract problem. Figure 2.5 provides
an (incomplete) list of bugs that I found in open-source virtualization software while
implementing Vancouver. These defects were only detected after getting familiar with
the documentation and the experience of implementing similar code. Even if most of
these issues are not security critical, they can lead to subtle misbehavior of a guest that
is hard to diagnose and repair.

4. Limited Benefit of the Community Peter et al. [PSLW09] have argued that
reusing an existing codebase should be preferred over a new development because it
allows to benefit from the development of a whole community. To argue to the contrary
I describe three cases where the open-source virtualization community could not help:

44

2.3. DEVICE MODELS

Device Codebase Description

CPU kvm xen decode only 8 prefixes instead of 14

CPU gemu eventinj fails with #PF

CPU gemu invlpga does not generate a #GP on user access

CPU gemu ioio intercept fails on unaligned access

CPU gemu ioio intercept just checks single bit

CPU gemu rdpmc intercept missing

CPU gemu cpuid 0x8000000A unimplemented

CPU gemu SVM rdtsc intercept has wrong priority

CPU gemu LTR allows to load 0 selector

CPU gemu vmptrld does not generate a #GP

CPU gemu kvm more than 15 byte opcode length - no #GP

CPU xen locked operation in emulator

PIC bochs does not check for iolen

PIC gemu poll mode does not set the ISR

PIC gemu special mask mode missing

PIT gemu periodic modes starts with new counter immediately

PPI gemu xen dummy refresh clock instead of PIT C1 output

RTC all irq flags not set when irq disabled

RTC gemu 12hour format not in range 1..12

RTC gemu alarm test broken

RTC gemu bochs seconds bit7 not readonly

RTC gemu bochs regs visible during update-cycle

APIC all change of DCR causes CCR jumps

APIC gemu off-by-one when calculating periodic value

HPET gemu IRQs are re-enabled in legacy mode when reprogramming the PIT
HPET gemu does not support level triggered IRQs

KEYB bochs panic when OUTB and cmd-response needed and on resend
KEYB bochs panic when controller buffer overflows or written in the wrong order
KEYB gemu bochs immediately reset

KEYB gemu SCS1+SCS3 does not work

KEYB gemu output port IRQ1+IRQ12 are set both

KEYB gemu overflow could result in corrupted data

KEYB gemu read-mode response is put into aux buffer

KEYB gemu cmd response buffer missing

KEYB gemu does not indicate a scan-code buffer overflow

KEYB gemu keyboard buffer too large

MOUS gemu does not apply scaling

UART bochs iir id bits wrong

UART gemu does not implement irq disable on OUT2 and character loopback

Figure 2.5: Various defects were found in open-source virtualization software while implementing
Vancouver during 2008/09. Most of them are fixed now.

45

CHAPTER 2. A SMALLER VIRTUALIZATION STACK

e In mid 2009, I discovered an ancient bug in the RTC model of Qemu [Kau0Q9b]
while developing a driver for NOVA. The model does not set the update-in-progress
interrupt flag, which will livelock a guest operating system that depends on this
behavior. This defect can be tracked through all Qemu versions and up to the first
public release of its predecessor Bochs. This bug also existed in Xen, VirtualBox,
and Palacios. More than 10 years ago a developer had missed one sentence in the
manual. Afterwards, everybody had copied the wrong behavior and nobody has
made the effort to look into the documentation again. It took more than 2 years
to get this bug fixed in Qemu and another year for Xen. Even after more than 4
years this bug is still present in Bochs, VirtualBox, and Palacios. A bugfix for one
codebase can take years to spread to another.

e Xen, Qemu, and Palacios emulate the 18259 PIC each to a varying degree. Whereas
Xen correctly supports special-mask mode and special-fully nested mode, Qemu does
not implement the former, and Palacios does support neither of them. Because these
are all open-source projects nobody is systematically filling feature gaps. Every
new OS version might trigger defects or virtualization holes throughout the whole
codebase. However, debugging such issues, especially if they are timing or interrupt
related, is very hard. It may take days to find out why an interrupt is lost under
certain load conditions.

e If nobody takes the trouble to understand the low-level details anymore and every-
body just ports existing code to another environment, the numbers of experts and
with it the quality of a codebase decreases over time. In the end more bugs will be
introduced. This is especially visible in handling the plenty corner cases that rarely
trigger.

One example was a patch on the Qemu mailing list [Poe09]. For the maintainer
the explanation was sound, however the reporter had misunderstood the documen-
tation. If there are no experts that detect such things, new defects will be added
to the codebase. I therefore see a clear risk of reusing existing low-level code with-
out becoming an expert in the field, as this means to depend on the future of a
community one does not actively participate in.

In summary, solely depending on an open-source community is limited by long-standing
defects, incomplete features, and missing experts.

2.3.3 Implementation

In the previous two subsections, I showed that neither a different implementation approach
nor wrapping of existing code will lead to small and secure device models. Instead, I choose
to build the necessary device models from ground up. In this subsection, I describe general
implementation issues that affect all device models. In the following, I will focus more on
the specific details.

In the following, I show how the component design is applied to the device models.
I then discuss two features to significantly reduce the code size, namely externalizing
checkpointing and debugging functionality. I list the reasons for choosing device models
to implement and describe my approach to increase the overall code quality.

46

2.3. DEVICE MODELS

Implementing the Component Design

The design of Vancouver, as outlined in Section 2.2.4, provides the framework for the
implementation of the device models. However, it does not define on what granularity
the software components, the busses, and the messages are employed. I used the following
approach to implement the device models:

One Component per Instance One component is used for each device instance in the
virtual platform. The device-internal state is thereby kept in private class variables
and only modified through incoming messages. These messages originate in VMM
glue code to forward VM exits or backend completion events. Messages can also be
received from other device models.

Multiple instances Multiple instances of the same device are multiplexed through a
bus. This centralizes the multiplexing code and allows starting a VM with any
number of virtual device instances. It is, for instance, possible to have a VM with
multiple PCI host bridges or with three instead of the usual two i8259 PICs. The
actual configuration of the virtual platform is thereby specified at the (multiboot)
command line.

Backend Communication Communication with performance-critical backends such as
timer or disk are done asynchronously. Messages issued on a request bus include
a tag that identifies the response later received on a completion bus. This design
improves the virtualization performance by allowing multiple outstanding requests.
This parallelism can even reach the physical device if its interface and the driver
supports request queues like NCQ (Native Command Queuing).

Checkpointing

The ability to checkpoint a virtual machine is the base for several advanced techniques.
Most importantly, it allows the (live) migration of virtual machines between different
physical hosts for load balancing or software maintenance reasons [CFHT05, LSS04]|.
Furthermore, it can be used to improve the fault tolerance of a virtualized environment
[GJGT10].

The ability to checkpoint requires support code in the VMM to save and restore the
guest memory as well as the state of the virtual CPUs. Furthermore, the VMM needs to
preserve the state of the device models. Whereas the first is easily accomplished as the
guest state is directly visible to the VMM, the second point requires additional lines of
code.

Traditional implementations add save and restore functions to every device model.
Each member of a device model class'* that needs to be preserved, leads to one line
in both functions. Newer implementations, for example in Qemu, reduce this code by
defining the offsets as well as the types of the class members only once. Furthermore,
they heavily rely on macros to reduce the common code. However, the manual effort of
keeping the save/restore functions in sync with the definition of the class remains.

I therefore investigated how the maintenance effort for the checkpointing code and
with it the TCB of the VMM could be reduced. The basic problem in the traditional
approach is that the data layout of the device model is defined twice: when specifying the
object layout in a class statement and then again when adding checkpointing support.

14Whereas this subsection assumes a C+-+ implementation, the very same holds true for VMM imple-
mentations in other programming languages like C.

47

CHAPTER 2. A SMALLER VIRTUALIZATION STACK

If the data layout could be extracted from the first definition, one could automatically
generate a C++ function to save/restore the members.

I implement this functionality in small Python script by using GCC-XML, an extension
to GCC that outputs the C++ parse tree in XML format. Class members that should not
be saved had to be manually annotated in the class definition. To minimize the number
of changes to existing code I used the following default rule: integral types are saved
whereas pointers are not saved. This reduced the annotations to the cases where host
specific values such as file descriptors or time offsets had to be excluded. Additionally, the
script implements a simple, but powerful optimization. All members that are contiguous
in the object layout are saved with a single memcpy. Manually shuffling the class members
ensures that this optimization can be used in nearly all cases. Even though this approach
reduced the manual written checkpointing code to 150 lines of Python, it required special
compiler support and source code access. With the experience later made with VDB, as
described in Chapter 3, I would nowadays extract the object layout from the DWARF
debug information that are already produced by may compilers and present in debug
builds even of closed-source programs.

In discussions with Jacek Galowicz during his work to add live migration to Vancouver
[Gall3], we found a much simpler approach to VM checkpointing. If one treats the VMM
as an ordinary process, special code is only needed to reconnect the backend connections
and update the host specific state. This observation was also independently made by
[GSJC13]. Note that this process migration approach is less powerful than the previous
device migration approach as it excludes software updates of the virtualization layer and
limits migration to similar host platforms.

In summary, checkpointing is a device model feature than can be externally provided.
Device models do not need to have save/restore functionality. Instead a generic process-
checkpointing approach is sufficient for migrating virtual machines between similar hosts.
Finally, one can derive the checkpointing code from the debug information, if migration
between different software versions should be supported as well. FExternalizing check-
pointing code reduces the size of the device models.

Debugging

Defects in the VMM are much more likely than in hypervisor or even application code
due to the high complexity of badly documented hardware!®. Especially interrupts and
timing requirements make the device models more complex and thus error prone. How-
ever, each defect can crash or livelock a VM or, even worse, lead to silent data corruption.
Furthermore, a device model needs to implement many corner cases that are rarely exe-
cuted, but required for full device emulation'®. Defects in such code paths may be hidden
for a long time.

The guest can be faulty as well: It can make wrong assumptions on the functiona

and the timing behavior of the device'®.

117

15Publicly available hardware documentation usually aims at the driver/OS developer but seldom
includes all details a chip designer needs to rebuild the device.

16The RTC supports daylight saving mode that is only meaningful twice a year in the US. Similarly, a
ne2k NIC has to signal an error if the OS cannot get received packets fast enough. This seldom triggers
with fast CPUs but it happens in a VM that runs on an overloaded hypervisor.

Linux 2.6.24 crashes if the AHCI (Advanced Host Controller Interface) CAP register reports too
many enabled ports.

18The ne driver from Linux assumes that it can execute a couple of instructions before a request
completes. These assumption breaks in a VM and on physical hardware if an SMI (System Management
Interrupt) delays the driver until the interrupt fires.

48

2.3. DEVICE MODELS

As the publicly available documentation is often incomplete, a VMM developer is
forced to either guess or reverse engineer the behavior of the physical device. However,
the driver developer might have guessed differently or the OS just violates existing stan-
dards'®. Subtle differences between physical and virtualized hardware may break a virtual
machine.

However, a rich debugging infrastructure conflicts with a small TCB. I therefore used
the approach presented in Chapter 3 and employ VDB (Vertical DeBugging) to remotely
control the machine without increasing the VMM codebase. With VDB one gets full
access to the hypervisor, VMM, and guest memory. Furthermore, it allows to inspect the
state of all components even if the guest is running. Debug code in the device models is
therefore rarely needed, which reduces their size.

However, manual inspection is not sufficient to reveal the dynamic behavior of the
system. I therefore used a simple tracing approach based on printf() output to a
remotely readable tracebuffer to record the interactions between different VMM com-
ponents. Lightweight profiling counters, which measure event frequencies, complete the
debugging features available in Vancouver.

Selecting Device Models

The developer of a VMM faces the choice what device of each class to model. Whereas
Linux for instance supports hundreds of network cards, emulating just one of them is
sufficient to get network access from a VM. I used the following criterions to decide what
devices to model:

Mandatory Even though hundreds of different storage and network controllers exists,
there are a couple of devices that are mandatory to implement because nearly all x86
operating systems depend on them. Especially platform devices such as interrupt
controller or the real-time clock fall into this category.

Coverage Not all operating systems have drivers for all devices. Choosing a device that
is covered by many systems reduces the number of models in a particular device
class. It is therefore useful to implement standardized device interfaces like AHCI
that are supported by many vendors instead of implementing proprietary ones.

Documentation The value of good documentation of the device behavior and the pro-
grammers interface cannot be underestimated. Any missing information complicates
the implementation because one may need to reverse engineer device drivers, probe
the physical device, or at last resort correctly guess it. Devices with simple and
well-documented interfaces are therefore preferred over complex ones where little
information is available. However, this criterion needs to be balanced against the
performance impact of implementing a simpler interface.

Performance The virtualization overhead can be reduced by choosing a device model
that leads to less VM exits during device programming. For example, issuing a disk
request to an emulated IDE controller needs twelve PIO exits whereas the same on
a virtual AHCI controller requires only six MMIO exits.

Some devices need no exit at all by resorting to polling-based emulation where a
thread running on a second CPU periodically checks whether the guest has added

19Windows XP does not search the RSDP, which indirectly points to the ACPI tables, in the EBDA
(Extended BIOS Data Area) as mandated by the ACPI (Advanced Configuration and Power Interface)
specification.

49

CHAPTER 2. A SMALLER VIRTUALIZATION STACK

new entries to a request queue. This minimizes virtualization overhead while in-
creasing overall CPU utilization.

Similarly, emulating a device with interrupt coalescing support reduces the virtual-
ization overhead by accepting more latency. The €1000 driver in Linux, for instance,
accepts an additional receive delay of up to 50us by limiting the interrupt rate to
20,000 events per second.

If the device behavior is well documented, the actual implementation of the device model
becomes straight forward. One has to basically emulate the state machine of the physical
device.

Increasing the Code Quality

Finding defects in the VMM, while running a full-blown guest OS on it, is an elaborate
task. One not only has to debug VMM code, but also the (closed-source) OS. Furthermore,
one may not find race conditions or defects in one of the plenty corner cases using this
approach. It is therefore reasonable to avoid such defects in the first place. I tried to
increase the code quality as follows:

e [limited the complexity by finishing existing device models before implementing
new ones. By implementing them in one step, one can better acquire a deep un-
derstanding of the device behavior instead of paying the additional effort to refresh
and extend the knowledge every time a new feature has to be implemented.

e [ensured that a missing feature can be easily detected, by not letting the VMM
silently fail if it is triggered. Instead the VMM will panic or at least output a
warning.

e [classified the VMM code into three categories. Approximately one third of the code
was throughly reviewed. It should require only few updates for feature extensions
and hopefully no bugfixes. This code is called stable. Another third of the VMM
codebase has not received the same amount of review. It is in the testing state. The
remaining code is actively developed and too unstable for elaborate testing.

e I experimented with unit tests to verify that all state changes of a model are inline
with the documentation. The component design makes it easy to test a single or
even a group of device models in isolation.

I implemented table driven tests for the pit and the rtc model. Each test was
approximately twice as large as the device model itself. Writing one test took
approximately one day. It will likely be harder for newer and more complex devices.
Unit testing has increased the code quality significantly. Even after several years
the two device models were involved in only two defects. Both were found outside
of the tested core logic?°.

In the future one could use comparison based testing, as proposed in [MPRB09, MMP*12]
for instruction emulators, to compare the behavior of different device model implemen-
tations. Additionally, test cases generated through symbolic execution of different device
drivers could ensure OS compatibility with less effort compared to specifying the tests
manually.

20The RTC miscalculated the current time during reset. A negative timeout from the PIT was misin-
terpreted by the backend.

50

2.3. DEVICE MODELS

2.3.4 Implementation Details

In the following, I will briefly describe the different device models I have developed and
mention noteworthy implementation details.

Interrupt Virtualization

IRQs (interrupt requests) on the x86 platform can follow different paths until they reach
the CPU. The original IBM PC relied on a single 18259 PIC (Programmable Interrupt
Controller) to multiplex the interrupt pin of the CPU between eight devices [PIC88]. The
IBM PC-AT introduced a second cascaded PIC to support up to 15 interrupt sources. In
newer platforms I/O APICs (I/O Advanced Programmable Interrupt Controllers) [Int96]
are used, which typically come with 24 input pins each. I/O APICs send interrupts to the
Local APICs. A Local APIC is an interrupt controller in the CPU. It was added to the
platform to support multiple processors. MSIs (Message Signaled Interrupts), available
since the P4 and PCI v2.2, are replacing the interrupt pins on PCI devices with special
messages on the data bus. An MSI bypasses the traditional interrupt controllers and
directly targets one or more Local APICs.

Vancouver models all of this functionality as accurate as possible. This is especially
important because a lost interrupt can stop the whole guest OS. Vancouver supports
edge- and level-triggered as well as spurious and non-maskable interrupts. Edge-triggered
interrupts are just interrupt numbers sent as messages from a device model to the vir-
tual interrupt controller. Level-triggered mode allows to share an interrupt line between
multiple devices. Furthermore they are used by timer models to dynamically adapt their
frequency to the system load. A level-triggered interrupt message additionally requests a
callback from the IRQ (interrupt request) controller that is triggered by the guest when
it acknowledges the interrupt. This mechanism allows the device models to re-raise the
interrupt if the reason to do so still exists.

Interrupts usually originate in a backend completion message received by a device
model. This leads to a message from the device model through the interrupt controller
hierarchy. At the end, the virtual CPU gets recalled. This ensures that the virtual
CPU will fault to the VMM to inspect the vcpu?! interrupt state before it executes any
further guest instruction. If the interrupt state indicates a pending interrupt, a vector is
requested either from the lapic or from the pic8259. This request races with a failing
edge message and may therefore lead to a spurious interrupt. The interrupt handler in
the guest will later acknowledge the interrupt and allow it to happen again.

The pic8259 device model uses the PIC bus instead of a fixed master/slave design
commonly found in other implementations. It therefore supports up to 8 slaves connected
to the master PIC and additional PICs driven in poll mode. This resembles the original
hardware more accurately than other implementations and correctly virtualizes many
corner cases such as a misconfigured slave PIC.

The ioapic does not implement the original 3-wire APIC bus. Instead it models a P4-
like I/O APIC that sends messages to the lapic. Similarly the msi component translates
upstream memory accesses from device models to the MSI address range into messages
targeting the corresponding lapic.

The lapic model prioritizes the different incoming interrupts and forwards them to
the vepu model. Lowest-priority interrupts are delivered round robin due to performance
reasons, as otherwise the current priority of all CPUs need to be inspected. The lapic
model can also be accessed through the x2APIC interface but without supporting the

21Teletype font indicates the prefix of the file the device model is implemented in.

o1

CHAPTER 2. A SMALLER VIRTUALIZATION STACK

recently added TSC deadline timer, yet. Another implementation challenge was to make
the lapic model purely optional, if it is put into hardware disabled state. This feature
is seldom found in other implementations.

Timer Device Models

An x86 operating system can use different devices as time stamp and timer interrupt
source [VMw11]. First there are the i8254 PIT (programmable interval timer) and the
mcl146818 RTC (real-time clock) that date back to the IBM PC and the IBM PC-AT
respectively. Newer CPUs include the TSC (Time-Stamp Counter) and a timer inside
the Local APIC. ACPI compatible systems come with a fixed-frequency PM timer that
is used by newer OSes for timer calibration. Finally there is the HPET (High Precision
Event Timer) [HPEO4]. Vancouver emulates all of these devices, with the exception of
the HPET, which was not required by any tested guest yet?2.

The current value of a timer is calculated by shifting and scaling guest time, which
is itself derived from the host TSC. The timer state is changed only if a guest driver
accesses the timer or if a previously programmed timeout happens. This lazy update
mechanism improves upon other implementations, which commonly update for instance
the RTC memory twice every second, even if the guest never observes these changes.

Timer models in Vancouver request absolute timeouts at the backend for both periodic
and one-shot timer interrupts. Note that a guest OS may program a periodic timer with
a frequency higher than it can temporarily handle, for instance due to contention in the
host. The VMM needs to cope with this overload situation because requesting to much
timeouts at the backend may livelock the VMM without giving the guest a chance to
stop the resulting interrupt storm. Periodic timer interrupts are therefore modeled level
triggered. This means a timer model delays the programming of the next timeout until it
receives the message that a guest has handled and acknowledged the previous interrupt.
The model can skip full timer periods at this time and thereby scale down the timer
to a frequency the whole system can handle. The resulting jumps in guest time can be
eliminated with a sophisticated TSC virtualization strategy.

Human Input Devices

Human input to the guest OS is available through serial port and PS/2 emulation. Mod-
eling the PS/2 hardware was straight forward after the PS/2 hardware documentation
from IBM was discovered [IBM90)].

The seriall6550 model emulates all features of a National Semiconductor 16550
UART on the character level. This means the baud rate, as well as the number of stop
and parity bits, can be configured but they are ignored by the model. Characters are sent
and received independently of these settings. Consequently, the model does not exhibit
the same timing as real hardware. Bridges between keyboard and serial port exists, so
that a host keyboard can drive a serial port of a guest and vice versa.

The keyboardcontroller model implements a PS/2 compatible controller. It pro-
vides two ports on the PS/2 bus where keyboard and mouse models can listen. It is also
possible to plugin two keyboard models or use multiple PS/2 controllers in a system. The
model supports seldom used features such as password protection, platform reset and A20
masking. The only missing feature is the upstream propagation of the keyboard LEDs
state.

22Mac OS X seems to mandate an HPET.

92

2.3. DEVICE MODELS

The ps2keyboard receives make and break codes from the backend in scancode set #2.
The other scancode sets are translated from this format. The keyboard model is fully im-
plemented with the exception of typematic keys, which would need a timer to periodically
resend scancodes for longer pressed keys.

The ps2mouse supports packet merging, poll mode and coordinate scaling. It does
not support a scrolling wheel yet because the backend does not report the required z-
coordinate.

Graphics

The effort to virtualize graphics is reduced in Vancouver by relying on as much host
functionality as possible and preferring time multiplexing over full emulation.

The GUI supports all graphic modes available through the VESA BIOS of the host. It
also offers VGA text mode #3 including the hardware-accelerated cursor. Thus, a guest
can often write directly into a linear framebuffer without inducing a VM exit. Only rarely
used VGA modes like mode #13 need to be fully emulated by the VMM.

The guest framebuffer is periodically displayed by the GUI. Because frontend and
backend use the same video mode, the output does not need to be scaled or color con-
verted. A memcpy from the guest to the host framebuffer is sufficient. Mapping parts of
the host framebuffer directly to the guest is also feasible within this design, even though
it was not implemented yet.

The BIOS fonts and the mode information are taken from the host. Reusing host
functionality improves the performance and simplifies the code. However, it also limits
the migration of virtual machines to hosts with a similar graphic card [Gall3].

The vga model is still incomplete but already implements VGA text as well as VESA
graphic modes, most device registers and many VGA and VESA BIOS functions.

Storage

An IDE controller is supported by nearly all operating systems whereas the newer AHCI
controller with SATA disks promises better performance due to its DMA and NCQ fea-
tures. I therefore implemented both controllers. Emulating SCSI disks for performance
reasons as done in VMware and VirtualBox is not necessary anymore.

The IDE controller is quite simple as it supports only PIO operations. A correspond-
ing bus-master DMA engine was not implemented. If disk performance is crucial for a
scenario, the newer AHCI model should be used instead.

SATA support is more complicated. It is therefore separated into AHCI controller
and SATA disk emulation. The former is a PCI device that forwards requests taken from
an input queue to one of the 32 disks. The latter interprets the SATA commands that
are tunneled through AHCI and executes the DMA programs. The DMA descriptor can
often be translated directly to the backend format. However, large DMA programs have
to be split into multiple requests. Similarly, disk requests that are composed of many
small memory snippets may require double buffering.

Both device models support only hard disks. Implementing ATAPI (ATA Packet
Interface) commands for CD and DVD virtualization is left as future work.

Network

To enable basic networking between virtual machines I implemented a rt18029 model
within less than 300 SLOC. This PCI NIC is ne2k compatible and supported by most

93

CHAPTER 2. A SMALLER VIRTUALIZATION STACK

operating systems. Unfortunately, the PIO based interface can require hundreds of VM
exits to receive or send even a single packet. It is therefore one of the slowest device
models. Even achieving a throughput as low as 10 Mbit per second is challenging with
this interface.

Emulating a newer gigabit or even 10 Gbit NIC that supports DMA and IRQ coalescing
results in much better performance. Furthermore, modeling just one virtual function of
an SRIOV NIC such as the Intel 82567 is even simpler because this abstracts away all
link-level operations. However, the implementation of a faster network layer including
newer device models and a virtual network switch is beyond the scope of this thesis and
pursued by Julian Stecklina instead.

Legacy

An x86 platform comes with many legacy features that have to be emulated by a VMM.
The ability to externally mask the 20’th address line (A20) of the CPU is probably the
most widely known one. This feature was introduced with the PC-AT to be backward
compatible with the original IBM PC. Vancouver implements the keyboard, BIOS, and
fastgate method to toggle the A20 pin. However, the vepu model currently ignores the
A20 state for complexity reasons. Correctly supporting it would require a different address
space for I/O devices. Alternatively one could force a CPU with A20 masking enabled
into the instruction emulator.

Another less known legacy feature are bits 4 and 5 at system control port B (PIO
0x61). These bits are used by low-level software like the VESA BIOS or boot code to
wait for a small amount of wall-clock time (udelay) before programming timing sensitive
devices. Many VMM implementations incorrectly toggle these bits at each read or just
give them a certain frequency. However, the state of these bits is determined by the
output of the first 18254 PIT. Bit 4 reflects the output pin of the second timer, originally
used to refresh DRAM whereas bit 5 reflects the output pin of the third timer that drives
the PC speaker?3. Vancouver correctly virtualizes these pins and thereby allows a guest
to freely choose their frequency.

2.3.5 Evaluation: Code Size and Density

Aiming for less code and externalizing checkpointing as well as debugging functional-
ity should make Vancouver’s device model smaller. In this subsection, I will compare
selected device models with corresponding implementations in Qemu, Bochs, and Vir-
tualBox (VBox) to quantify this effect. I will also measure the code density to exclude
coding style effects.

For the size comparison I take only those device models into account that are present
in all implementations. Furthermore, to not overestimate the size reduction achieved, I've
chosen only those device models from Vancouver that implement equal or slightly more
functionality. Figure 2.6 shows the result of the comparison?*.

The device models of Qemu are on average 40% larger than our implementation. If
the models are well written such as in the PS/2 and the I/O APIC case the sizes are
nearly on par. If superfluous functionality is implemented such as programming a timer
to update the RTC memory twice a second, Qemu’s models can have up to 80% more lines
of code. Bochs device models are on average twice as large as our implementation. The
main reason is code duplication. The logic for the two PICs, for instance, is implemented

23Vancouver currently misses PC speaker output as no sound backend is available.
24The measurement was done on repository snapshots taken in November 2011.

54

2.3. DEVICE MODELS

Model Vancouver Additions Qemu x | Bochs x | VBox x
PIC 310 multiple instances 436 1.4 793 2.6 767 2.5
PIT 348 cycle accurate 428 1.2 948 2.7 892 2.6
RTC 303 polling mode 535 1.8 632 2.1 755 2.5
Local APIC 478 x2APIC 849 1.8 | 1085 2.3 | 1694 3.5
1/0 APIC 209 MSIs 206 1.0 307 1.7 | 491 2.3
PS/2 846 password support 921 1.1 1311 1.6 | 1390 1.6
Sum | 2494 3375 1.4 5076 2.0 | 5989 24

Figure 2.6: Size comparison in SLOC of selected device models in different VMM implementa-
tions. Only the models were chosen where Vancouver implements additional functionality.

Code Density in Bytes/SLOC of binary.gz

Vancouver | 9.84
Vancouver with | 5.08
generated code T
Qemu | 5.34
' 3 perf
Bochs iodev | 3.16 3 size
0 2 4 6 8 10

Figure 2.7: Code Density as Bytes per SLOC for gziped VMM binaries when the compiler
optimizes for performance (perf) or code size (size).

twice, even though they are the very same chips in hardware. Furthermore, Bochs follows
a verbose coding style. Bit fields for example are initialized one by one. Finally, Bochs
contains a lot of debug code to warn on exceptional OS behavior. VirtualBox wraps the
device models from Qemu and adapts them to its own interface. This approach increases
the code by an additional 50%-75% and leads to the largest device models. The number
of lines even doubles compared to Qemu, if debugging support is added, as in the Local
APIC case.

Writing code more densely by pressing more statements in a single line, is one approach
to reduce the number of SLOC in a program. The qualitative effect of such a programming
style is disputable. On the one hand writing an algorithm on a single page might more
clearly represent it, compared to spreading it over multiple pages. On the other hand
this can lead if taken to the extreme to incomprehensible source code. To exclude coding
style effects on the previous measurements, I additionally evaluated the code density by
employing the approach described in Section A.l to measure how much bytes a single
SLOC adds to a compressed VMM binary. Figure 2.7 shows the results.

This measurement reveals that the device models in Bochs are written more verbosely.
They need 50% more SLOC per gziped-byte than Qemu. Similarly, a Vancouver binary
seems to be nearly twice as dense as the Qemu binary. However, when taking the code
generated by scripts into account, this shrinks to barely 12% (5.98 vs. 5.34). Qemu is even
denser, if the compiler optimizes for size instead of performance. In this case Vancouver
needs 6% (4.6 vs. 4.87) more lines per byte than Qemu.

In summary, device models in Vancouver are on average 40% smaller than in Qemu
due to a careful implementation and due to the externalization of checkpointing as well

95

CHAPTER 2. A SMALLER VIRTUALIZATION STACK

as debugging code. Furthermore, the code density is approximately the same in both
projects. Bochs and VirtualBox on the other hand need more code to implement the
same functionality.

2.3.6 Future Work

Vancouver currently emulates more than twenty device models. This is enough to run
most x86 operating systems inside VMs on NOVA. Adding more device models would
support additional usage scenarios, for example:

Emulating an USB controller including pass-through support allows to access the
USB devices of the host.

Sound emulation enables concurrent media playback from different VMs?®.
Optical media support in the SATA emulation enables DVD and BD playback.
GUIs, demos, and games greatly benefit from 3D graphics virtualization.
Recursive virtualization and untrusted device models need an IOMMU.

The TSC deadline mode and a HPET model would reduce the timer overhead.
A TPM (Trusted Platform Module) model extends the trust chain into the VM.

Floppy, DMA controller, and parallel port emulation are needed for very old oper-
ating systems.

Various software stacks could be tested when implementing for instance WLAN|,
Bluetooth, Firewire, or Infiniband device models.

Furthermore one can improve existing code by:

Validating more device models and closing virtualization holes.
Adding power management including VCPU frequency scaling and hotplug support.

Increasing the scalability on many core platforms with a better synchronization
scheme [Par13].

Reducing network, disk, and graphic virtualization overhead and thereby show that
paravirtualization is unnecessary to achieve high performance.

Finally one should further research alternate approaches to device model creation like
reverse engineering of existing code or code synthesis from formal specifications.

25 Audio output from a single VM is already possible by directly assigning the sound card to it.

56

2.4. INSTRUCTION EMULATOR

L e e @ e @

Figure 2.8: Layout of x86 instructions in 32-bit compatibility mode.

2.4 Instruction Emulator

A x86 VMM needs an instruction emulator to handle MMIO instructions targeting virtual
devices. Moreover, the emulator is required to virtualize certain CPU transitions such
as a hardware-task switch. Finally, it is needed to execute 16-bit realmode programs on
most Intel processors.

Emulation of a x86 processor is a complex task, due to the huge number of instructions,
the variable-length instruction format and many processor modes. Consequently, the
instruction emulator ends up to be the largest and most complex component of the VMM.
I therefore spent a significant effort on reducing its size.

I start this section with the technical background of x86 instruction emulation. I
then introduce the first generation of the instruction emulator. Thereafter I detail two
experiments using the developer documentation directly. Furthermore, I describe the
current generation of the instruction emulator. I close the section with future work to
further improve instruction emulation in a x86 VMM.

2.4.1 Background

The instruction emulator inside a x86 VMM can be simpler than a stand-alone implemen-
tation because many guest instructions can be directly emulated by executing the very
same host instructions. Moreover, the emulator does not need to be very fast because
it is only invoked rarely. Implementing a JIT (just-in-time) compilation system is there-
fore unnecessary. The traditional three phase approach to instruction emulation, which
consists of instruction decoding, followed by execution, and a commit phase is sufficient.

Decoding x86 instructions is a laborious task due to the variable length instruction
format. A single instruction is composed of six different parts as shown in Figure 2.8 and
can be up to 15 bytes long?®. Only the opcode part is mandatory for all instructions.

Various extensions to the instruction-set architecture have added new encodings to
support additional instructions and to make more registers accessible. There are, for
instance, 1-byte REX prefixes to use 16 GPRs in 64-bit mode and two- as well as three-
byte VEX prefixes to implement the Advanced Vector Extension (AVX). Supporting these
new instruction formats further complicates the decoding process.

Simple instructions can be executed natively. Only the memory operands need to be
translated from the guest to the VMM address space. This requires a page-table walker to
understand the virtual memory layout of the guest. MMIO operands cannot be handled
this easily. Instead, they can be substituted with a pointer to a temporary store buffer.
This buffer is flushed to the corresponding device model register during the commit phase.

Several dozen lines of high-level code may be required to emulate the side effects in
complex cases such as exception delivery or hardware-task switching.

26Example: lock addl $0x1234567,%fs:0x789abcde (Yeax,%edx,4) in a 16-bit code-segment.

o7

CHAPTER 2. A SMALLER VIRTUALIZATION STACK

Decoding Table Execution Table Code Snippets
0x00: | MODRM, RMW, BYTE — | add_8bit
0x01: | MODRM, RMW | —— add_16bit
add_32bit

Oxfa: |CPLO, IGNORE_OS }\ 2dd_64bit
cli

addb %al, (%rcx)
ret
addw %ax, (Yircx)

ret

e

void cli(Cpu *c) {
c->flags &= ~0x200;
}

Figure 2.9: The first generation of the instruction emulator was based on a decoding and execu-
tion table as well as code snippets in assembly code and C++.

2.4.2 First Generation: Hand-written Tables

The first generation of the instruction emulator is based on two tables as shown in Fig-
ure 2.9. The handwritten decoding table holds the information for each byte in the
instruction stream. A compact representation is used to minimize the lines of code. Each
entry consists of a 32-bit value, which includes various flags to specify, for instance that
another byte has to be fetched or that the encoding is invalid in 64-bit mode. An entry
may contain an instruction number to lookup the function pointer in the execution table.

The execution table is combined by the preprocessor. It has one entry for any operand
size of all instructions. An entry either points to a small assembler snippet that emulates
simple arithmetic instructions such as add or it points to a function written in C++ to
handle more complex instructions.

The first generation of the instruction emulator consists of more than 150 assembler
snippets and around 100 helper functions. It emulates most arithmetic and operating
system instructions but does not support floating point or vector instructions.

Please note that the table-based approach is very similar to the KVM instruction
emulator introduced with Linux 2.6.37. However, the compact representation made it
several hundred lines smaller than KVM’s implementation. Nevertheless, the large num-
ber of table entries turned out to be hard to maintain in the long run. It was very easy
to introduce a bug that could be only found after a long debugging session.

In summary, the first generation of the instruction emulator proved that a compact
representation can significantly reduce the size of the instruction emulator. However, this
did not increase the maintainability of the code. Instead, it revealed that collecting the
instruction encodings manually does not scale to the enormous size of the x86 instruction
set.

2.4.3 Automating the Knowledge Extraction

The first generation of the instruction emulator heavily relied on manual work. To add
a new instruction to the decoding table, the developer would lookup the encoding in the
published manuals and change the corresponding decoding table entries. Similarly, to
emulate a new instruction, the developer would read the instruction documentation and
the corresponding pseudocode before programming the helper functions.

o8

2.4. INSTRUCTION EMULATOR

Name | Description Encoding

OR Logical Inclusive OR registerl to register2 0000 100w 11 reg reg

OR Logical Inclusive OR register2 to registerl 0000 101w 11 reg reg

OR Logical Inclusive OR memory to register 0000 101w mod reg r/m

OR Logical Inclusive OR register to memory 0000 100w mod reg r/m

OR Logical Inclusive OR immediate to register 1000 00sw 11 001 reg imm
OR Logical Inclusive OR immediate to AL, AX, or EAX | 0000 110w imm

OR Logical Inclusive OR immediate to memory 1000 00sw mod 001 r/m imm

Figure 2.10: Encodings for the OR instruction from [SDM13] Table B.13.

A better approach is needed to reduce this manual labor and thereby the number
of hand-written lines of code in the emulator. I therefore conducted two experiments
to research whether certain information can be extracted from the documentation. The
first experiment aimed at the generation of the decoding table. The second one tried to
generate code snippets by translating the pseudocode.

Generating the Decoding Table

Intel’s documentation for the x86 instruction set architecture [SDM13] includes a list
of instruction encodings in several tables in Volume 2 Appendix B. See Figure 2.10 for
an excerpt. The document is freely available in PDF format. It can be easily parsed
after being converted to text. It should therefore be possible to write a small script that
generates the decoding table from it.

The pdftotext tool from the poppler library can be used to convert the PDF file
to plain text. The output of this tool without any parameters mimics the original page
layout. Unfortunately this is hard to parse with a program because the tables do not
follow a fixed format: newlines inserted in the wrong column break the table structure.
Using pdftotext -bbox solves this issue by outputting not only the text from the PDF
file but also the bounding box of each word. A simple Python script can split the output
into pages, reconstructing the lines by grouping the words according to their y-coordinate
and concatenating long entries spanning multiple columns. Altogether 150 lines of Python
are enough to extract 3000 encodings for 900 instructions from the documentation.

However, it turned out that just knowing the encodings is not sufficient to reconstruct
the decoding table. The flags, indicating for example the size of the operands or whether
the instruction is valid in a certain processor mode, are required as well. Adding them
manually would lead to nearly the same effort as before and would not improve the
maintainability of the code. Additionally, a lot of syntax errors could be observed. This
file seems to be maintained by hand without any automatic validation of its content.
Fixing all of the errors turns out to be more costly than the time saved. In summary, the
instruction tables in the documentation are too informal to directly derive the decoding
table from them. Nevertheless, having a list of valid encodings is still useful for later
testing the instruction emulator.

Translating the Pseudocode

Intel’s [SDM13] and AMD’s [APM13]| documentation do not only describe the x86 instruc-
tion in plain English, they also come with pseudocode to further detail the semantics of
certain instructions. It should therefore be possible to get code snippets for a large
number of instructions with a small onetime effort by converting this pseudocode to C.
Because both vendors use a different syntax, I implemented two different tools: one that

99

CHAPTER 2. A SMALLER VIRTUALIZATION STACK

understands Intel’s documentation and the other one to parse AMD’s. See Figure 2.11
for example input and output of them.

The documentation from Intel contains twelve thousand lines of pseudocode for more
than 450 instructions. The documents are freely available in PDF format, which can be
easily parsed with a scripting language after a pdftotext conversion. In fact, by relying
on regular-expression based string replacement, around 100 lines of Python are enough to
extract the pseudocode from the text and convert it to C code?”. The approach works well
for simple instructions such as c1i or aad, even if the pseudocode is sometimes suboptimal
or in rare cases buggy. However, the tool fails in complex cases where not all information
is expressed in pseudocode but only available in English words?®, or completely missing?®.

The pseudocode in the AMD documentation consists of approximately 1000 lines and
covers 18 instructions. It can be parsed in the very same way as Intel’s documentation.
Fortunately it follows a more formal syntax. Thus only 60 lines of Python are needed
to translate the pseudocode to C. The extraction works well for simple instructions, but
the semantic gap in the complex cases is also present in AMD’s documentation. Certain
information is only available in English words®® or completely missing®!.

Summary

Albeit the syntax problems can be fixed with some effort, the missing semantic information
in the documentation makes any extraction method fruitless, except in the most simple
cases. Putting more knowledge into the pseudocode would require tremendous work,
which contrasts with the initial goal of reducing the developers effort. However, a complete
formal and most importantly verified description of the instruction set, ideally provided
by the manufacturer, would significantly improve the implementation of emulators, CPU
testing tools and machine code verifiers.

2.4.4 Current Generation: Reuse the Assembler

While searching for a new approach for the current generation of the instruction emulator,
I observed that the GNU binutils, which we use to assemble the NOVA binaries, already
contain the encoding of x86 instructions in the assembler and disassemblers. They know
the prefix bytes, after what opcodes a ModRM byte follows and what encodings include
an immediate. Furthermore, these tools are used by a huge number of developers. The
probability of defects is therefore much smaller compared to the hand-written decoding
table of the previous generation of the instruction emulator. If this knowledge can be
efficiently extracted, the encodings need not be specified manually anymore, which should
result in a smaller emulator.

Knowledge Extraction

To recover the x86 instruction encodings from the assembler, I relied on a brute-force
approach as depicted in Figure 2.12. Each combination of instruction name and operand
string is assembled. The resulting ELF file is disassembled to retrieve the instruction
bytes or a failure if an invalid combination was chosen. Finally, the opcode part of the

27The script could be simpler if many syntax errors would not complicate the extraction process. Intel’s
documentation seems not to be validated for syntactical correctness.

28popf: VIP is cleared, 1tr locked operation to set busy flag, pabsb repeat operation for the next bytes

29sti: IRQ shadow, wrmsr: cplO check, XCHG: #LOCK assertion

30pushf: pushed with RF cleared, int: IF cleared if interrupt gate

3lsti: IRQ shadow

60

2.4. INSTRUCTION EMULATOR

‘[ETINd V] W01y polieatod uorponIjsul 1as oY) I10j apod) (p)

£(0)do
asTe
{
CAIATTAA =| TF°
$(0)dd
(dIA™T49 B T¥9) IT
} (((g == (O1do) 38 (IAdF¥D B $I°) %% ((Id"0¥D B 0I2))) ||
((ANA™%YD ® $I°) BB ((WATOYD #® 0I2)))) FT oST®
$AITI4E =| T¥°
(Otdot => ()1dd) 3T

‘[eTINAS] oIy pelreauod morjoNIYSUT peR 1) 10] 9p0d) (q)

{
‘0 = HY
/% "ouowduw qFy ay3 4of foTo 07 225 S QUWL %/
£44%0 %% ((8WwT * Hydwea) + Tydwea) = Ty
‘HY = Hydweq
STy = Tydwes
} osTe {
foan
} (1°s9) It

‘suorjonsut o[durs 10J [[oM SYIoM 9poy)) 0} (MO[aq) uolpeIuaWNIOp (JNV Pue (9A0qe) [99U] WOIJ 9pod0pPNasd oY) SUlpIeAuo)) :11°g I3

‘[eTINd V] woyy uoronaysur 14 oY) I10J opodopnasd (2)

[(0) dD#]NOILdADXH
4814
{
T = AIA SHVTIIY
[(0) dD#] NOILdAOXA
(T = dIA°SHVTIIY) 4T

}
(((g = T1dD0) 3% (T = IAd $4D) %% (HAOW QILOALOYUd)) ||
((T = IWA"%Y¥D) %% (JAOW TYALYIA))) AISTH
T = AL SHVTAH
(1d0I => 1dD) 4I

‘[eTIN@S] oIy uoronIisul pee oY) 10] 9pooopnas (e)

‘14
‘0 -> HY
(x*oTUOWRUW (VY Y3} IOF HYQ O3 38S ST QUUT %)
‘HAd ANV ((Suwt * Hydwea) + Tydwea) -> Ty
‘gy -> Hydwesa
Iy -> Tydwes
q8Td
‘an#
NAHL
®pPOoW 3Tg-%9 AI

61

CHAPTER 2. A SMALLER VIRTUALIZATION STACK

Operand: 7%dl, (%ecx)
Size: 1
Flags: BYTE,MODRM

Name: or
Flags: RMW

or %dl, (Y%ecx)

(spl it argument s) 0x08

Encoding: 0x08
Name: or
Flags: RMW,BYTE , MODRM

Figure 2.12: The encoding of an instruction can be automatically extracted from the assembler
by trying to assemble and disassemble each combination of instruction name and operand.

instruction is isolated by stripping the number of bytes that are required to encode the
chosen operand. This leads to the instruction name and a set of flags for every encoding.
The flags indicate what parts of the instruction are present, where the operands can be
found, and how the instruction behaves.

Please note that this approach is quite similar to [HEBO1], where the authors used
the assembler to learn the encoding of an unknown instruction set. However, I put
more knowledge about the x86 instruction format in the extraction process, such that
the search space will be smaller compared to their solver-based approach. While they
directly analyzed the assembler output, I utilized the disassembler to split instructions.
Finally, to speedup the process they use instruction batching and an heuristic to detect
instruction boundaries. Instead, I cache intermediate results to achieve reasonable run
times during development.

My approach reduces the effort to extract the x86 instruction encodings from the
assembler by more than an order of magnitude to less than 200 SLOC of Python.

Code Generation

The script does not only extract the instruction decodings from the assembler. Another
220 SLOC of Python generate more than 8000 lines of C++ code for an instruction
decoder and hundredths of handler functions. This code can be directly compiled with
g++ and linked to the emulator.

Instruction decoding is not based on tables as in the previous version of the instruction
emulator. Instead the decoder uses nested switch statements as depicted in Figure 2.13.
This code is automatically generated from the Python script and invoked for every byte
of the instruction stream. It either returns an error or a pointer to an executor function.

62

2.4. INSTRUCTION EMULATOR

switch (opcode_mode) {

case 0x0:
{
switch (instruction_byte) {
case 0x0f:
opcode_mode = 0x1;
break;
case O0x8f:

get_modrm ();
switch (entry->datalentry->offset_opcode] & 0x38) {
case 0x00 & 0x38:
/* instruction ’pop’ [’8f’, ’00°] [’0P1°, ’MODRM’, ’GRP’] */
entry->flags = IC_MODRM;

if (entry->operand_size == 1)
entry->execute = exec_8f00_pop_1;
else
entry->execute = exec_8f00_pop_2;
break;

Figure 2.13: The current generation of the instruction emulator uses nested switch statements
for instruction decoding.

Furthermore, it forwards the flags such as MODRM or RMW to the caller, which are used
for operand fetching. The decoder supports 375 different encodings of 175 instructions,
which covers most of the integer and system instructions. However, it misses nearly all
floating point and vector instructions because they are rarely used in an operating system
kernel. Moreover, it does not detect the newest instruction formats such as AVX or the
TSX prefixes. Finally, it will not detect alternate encodings such as a multi-byte nop or
a 2-byte inc.

Whereas the generated code can be easier understood and debugged than the table-
based one, it is also significantly slower because it causes more cache pressure and branch
misses. Thus, the two implementation approaches for instruction decoding are instances
of the typical tradeoff between performance and maintainability an OS developer faces.

The script also derives executor functions from small code snippets added to the
instruction name list. These functions either emulate the side effects of the instruction
via inline assembly or they call other C++ functions to achieve the same goal. Figure 2.14
shows two examples. As one can see, there is one function per operand size. Templates
are used to avoid implementing helper functions twice. Furthermore, the eflags register,
containing the arithmetic flags of a x86 instruction, need not to be saved in the assembler
code. Instead, the caller has to make sure they are available, depending on the instruction
flags returned by the instruction decoder. Overall more than 550 executor functions for
32, 16, and 8-bit operands are generated by the script.

Corner Cases

There are many corner cases in an instruction emulator where it is hard to implement
the x86 semantics correctly. This is especially true when atomic operations are emulated.
Exemplary, I detail how I solved two of these cases in the following.

Access and Dirty Bit Updates The instruction emulator contains a page-table walker
that understands all x86 page-table formats. While filling the TLB, it also updates the

63

CHAPTER 2. A SMALLER VIRTUALIZATION STACK

void exec_07_pop__es_2(Emulator x*e) {

unsigned sel;

e->helper_POP<2>(&sel) || e->set_segment (&e->cpu->es, sel);
}

void exec_08_or_0() {
asm volatile("movb (%edx), %al; lock orb %al, (%ecx)");

}

Figure 2.14: The instruction emulator calls automatically generated executor functions to emu-
late the side-effects of each instruction.

access and dirty bits in the page-table entries according to the x86 semantics. Using
a plain or instruction to set these bits is dangerous because a second CPU might have
disabled this entry concurrently by setting the present bit to zero. In this case, all other
bits are reserved and must not be altered by the CPU or an emulator. If the emulator
violates this condition, it will corrupt guest memory. Ideally, one could evaluate the page-
table entry and write back the access as well as the dirty bits in one atomic operation.
Unfortunately, this is not feasible without a recent CPU extension such as AMD ASF or
Intel TSX [CCD*10, YHLR13|.

Instead, one has to make sure that other CPUs cannot modify the page tables. Any
ongoing DMA operation has to be stopped as well. Unmapping the page tables and
mapping it into a CPU-local scratch area solves this problem. However, for complexity
reasons | have not implemented this approach yet. Instead, I use the atomic instruction
lock cmpxchg to check whether the page-table entry changed before modifying it. If an
update failed, the operation is repeated by restarting the page-table walk. Please note
that this loop may be unbounded and could consequently livelock the VMM.

Locked Instructions Whereas memory read and writes are itself atomic on a x86
CPU, most read-modify-write instructions, for instance add or sub, are not. Instead,
they require a lock prefix to guarantee the atomicity of the memory updates. Locked
instructions are important to synchronize memory updates between multiple processors.

On older CPUs, the atomicity was guaranteed by locking the front-side bus, such that
no other CPU could change the memory while the instruction was executed. Nowadays
the atomic update is implemented on top of the cache-coherency protocol. The relevant
cache lines are pinned in the cache while the update is performed, thereby inhibiting any
other CPU from interfering. Unfortunately, there is no x86 instruction that would allow
an emulator to pin memory in the caches. Again AMD ASF and Intel TSX would help
here.

One solution to the problem would be to copy in the data, execute the operation on the
copy and then use an atomic cmpxchg to write back the results. If the cmpxchg instruction
fails because another CPU has changed the value in the meantime, one would retry
the whole instruction. Unfortunately, retrying this operation may lead to an unbound
execution time, similar to the aforementioned page-table update. Malicious code running
on one CPU can keep another CPU inside the VMM, which effectively livelocks the VM.

I have therefore chosen a more sophisticated solution. Because the VMM has mapped
all guest physical memory, it is possible to directly execute the very same locked instruc-
tion on physical memory. In this way the semantics of the instruction is kept and the
emulation time is bounded. Additionally, the VMM could map pages consecutively into
virtual memory, if the destination operand crosses page boundaries and the two pages

64

2.4. INSTRUCTION EMULATOR

are not already adjacent in guest physical memory. The mapping of pages is currently
unimplemented because additional code is required for a case that never triggers when
virtualizing all the major OSes. Instead, the implementation resorts to a non-atomic
update, which is similar to the behavior of KVM in this case.

2.4.5 Summary and Future Work

The instruction emulator is the single largest and most complex component in the VMM.
In this section, I explore several approaches to reduce its size. The first generation of
the instruction emulator introduced a compact representation. It still required too much
manual work. Better approaches had to be found.

Extracting the encodings and the pseudocode from the published documentation was
unsuccessful due to the surprising informal nature of these files.

The current generation of the instruction emulator uses a semi-automatic approach,
where the instruction encodings are automatically retrieved from the assembler. The
executor functions are still based on compact code snippets. The instruction emulator
remains the largest component of the VMM with more than 2000 lines of code. Adding
missing features such as 64-bit or floating-point support will further increase its size.
Nevertheless, by reusing a component already present in the TCB, the lines of code
and thereby the development effort could be significantly reduced compared to the first
generation. Please note that adding another dependency to a full-featured assembler is
contrary to the goal of Chapter 4, which aims for a simpler toolchain.

In the following, I describe two areas that should be tackled in the future. The first
suggest hardware improvements to speedup MMIO emulation. The second proposes a
new approach to instruction emulator generation by extracting enough information from
the physical CPU.

Hardware support to speedup MMIO emulation

On current hardware, any MMIO fault from a virtual machine has to go through the
instruction emulator because the VMM does not have all required information available
to directly perform the operation. This makes MMIO virtualization much slower than
PIO emulation (See Section 2.6.4). Additional hints from the CPU would allow to handle
the common MMIO instructions in a fast path.

The CPU could provide the instruction length, the source or destination register and
the operand size. This, together with the already available instruction pointer, fault
address, and error code would be enough to emulate all mov instructions, which are the
canonical way to access MMIO regions, for instance, in Linux.

A more general solution would be to make the instruction bytes available to the
VMM?32. This would not only remove the effort to fetch them again, but it would also
ensure that the reported fault address is valid as well. Thus, no page walk is necessary
anymore for all instructions with only a single memory operand not crossing a page
boundary. The CPU could also provide a second physical address to the VMM to support
instructions that read from one memory location and write to another. This includes
string movs and several stack operations.

Please note that these extensions would increase the speed of the common MMIO
cases. They do not allow to remove the page walker completely because the VMM has to
support special cases such as operands that cross page boundaries or page tables located
in emulated device memory.

32Please note that AMD provides exactly this information starting with their Bulldozer CPUs.

65

CHAPTER 2. A SMALLER VIRTUALIZATION STACK

Analyzing the CPU

The current generation of the instruction emulator has shown how the developer effort
can be reduced. However the employed approach did not fully remove the dependency to
the public documentation, but just outsourced its interpretation to the assembler writers.
Note that using a formal description of the x86 instruction set such as [Degl2] does not
solve this problem either because it is still derived from the informal documentation. The
knowledge extraction from the published manuals remains a laborious and error-prone
task.

To solve this problem, I propose to retrieve the required knowledge directly from the
physical CPU. This refines an idea from Emufuzzer [MPRBO09], which used the physical
CPU as an oracle to decide whether an instruction emulator behaved correctly or not.

In the following, I will shortly describe several tests based on exceptions generated
from a x86 CPU that reveal information required for instruction decoding and operand
fetching:

Instruction Length The length of an instruction can be determined as follows: One
places the first byte in the instruction stream just before a virtual memory hole. The
code is then executed in single-step mode. If this byte is part of a longer instruction,
an instruction-fetch pagefault will occur33. Any other exception means that a valid
one-byte instruction was found. The test can be repeated with more bytes from the
instruction stream to find larger instructions. This process is guaranteed to find an
instruction boundary because x86 instructions are limited to 15 bytes.

Legacy and REX Prefixes An instruction-fetch pagefault happens if legacy or REX
prefixes are repeated up to 14 times as redundant prefixes are ignored. Using the
maximum of 15 prefixes in a row leads to an undefined opcode exception. This
cannot be distinguished from any other unimplemented instruction.

Lock Prefix Whether an instruction supports a lock-prefix can be determined by exe-
cuting the instruction with it.

System vs. User Instructions only valid in kernel-mode will fault if executed from user-
level. Whether an instruction is invalid in a certain CPU mode such as 64-bit or
realmode can be detected in the very same way.

Disabled Instructions Many floating point and some other instructions can be dis-
abled via control or machine specific registers. Executing each instruction twice
and toggling the corresponding bit in-between allows to distinguish such cases.

Memory Operands Pagefaults show whether an instruction accesses memory. Varying
the GPRs and segment registers leads to the exact addressing mode. Executing the
instruction with an address size or segment prefix should also result in a different
behavior.

Operand Size Pointing the memory operand just before a hole in the virtual address
space will reveal the operand size.

Fortunately many guest instructions can be directly executed without actually knowing
their full semantics, as vx32 [FCO8| has shown. It is often sufficient to just rewrite the
memory operands. Direct execution is possible if the instruction does not harm the

33 Alternatively one may use hardware breakpoints to trap the instruction fetch.

66

2.5. VIRTUAL BIOS

integrity of the emulator by returning the control to it and not causing unknown side
effects. The few instructions that do not fall in this category such as iret or sysenter
need to be special cased. Please note that any newly added as well as any back-door
instruction will break this black-list approach.

In summary, this new implementation approach could lead to an emulator supporting
all x86 instructions with an effort independent of the increasing number of arithmetic,
floating point, and vector instructions. Only the general instruction format and the emu-
lation of system instructions requires the informal documentation. Finally this approach
enables the comparison of CPU behavior and the ability to adopt the emulator to the
features supported by the host CPU it runs on.

2.5 Virtual BIOS

The BIOS is the first software running at boot time. Its main task is to initialize the
platform and to start the bootloader. Moreover, it enumerates the system resources and
initializes in-memory data structures such as ACPI tables to communicate the platform
configuration to the OS. Finally, it includes device-driver functionality that allows to
write bootloaders and early operating system code in a hardware-independent way. The
BIOS drives for example keyboard and hard disk controllers. Option ROMs can be used
to extend the BIOS. The VGA and VESA BIOS are such extensions found on graphics
cards that add text as well as graphical output functions to the BIOS.

A VMM needs to provide BIOS functionality as well because bootloaders and oper-
ating systems that run inside the virtual machine will assume that a BIOS is readily
available. They will therefore call through the standard BIOS entry points and search for
BIOS data structures in memory.

BIOS functionality is typically implemented by injecting a BIOS binary into the virtual
machine. The VM then executes the BIOS code in the very same way as it would happen
on real hardware. Commercial vendors often licenced existing BIOS implementations
and adapted them to their virtual environment. VMware for instance uses a BIOS from
Phoenix and Virtual PC relies on an AMI BIOS. Open source projects opted for fresh
implementations based on the publicly available documentation. Examples are Bochs
BIOS and more recently SeaBIOS. However, injecting a traditional BIOS requires 25 to
300 thousand lines of code (§A.4.1). This is a significant increase of the TCB of any guest.

Injecting a BIOS not only adds to the TCB, it is also quite slow. The main reason is
that the BIOS relies on its own device drivers to talk to the virtualized hardware. A single
BIOS call, for example to read a block from disk, requires multiple traps to the VMM
because the driver has to program multiple virtualized hardware registers. Furthermore,
most BIOS code runs in the ancient 16-bit realmode. This processor mode cannot be
directly executed in hardware, but needs to be emulated on all, except the latest, Intel
CPUs. This further slows down injected BIOS code.

I therefore researched how BIOS functionality can be provided to a virtual machine
in a faster way while adding fewer lines of code to the TCB.

2.5.1 Design

In the following, I will discuss three design alternatives. First, one could still inject the
BIOS, but use a secure loader to remove it from the TCB. Second, one could paravirtualize
the drivers to accelerate the I/O routines. Finally, one could virtualize the BIOS in the
VMM. Figure 2.15 shows how a BIOS call will be handled in each of these cases.

67

CHAPTER 2. A SMALLER VIRTUALIZATION STACK

4 VM) (VM) (VM)

Boot Loader

Boot Loader

Boot Loader

int 0x13 int 0x13 int 0x13
BIOS BIOS
Disk Driver ParaVirt Driver k)
Register Trapping Instruction
Access Instruction Fetch
[Disk Model ParaVirt Support] Virtual BIOS]
VMM VMM VMM
[Disk Server J

Figure 2.15: Handling a disk request from a bootloader in a traditional BIOS (left), in a par-
avirtualized BIOS (middle), and in a virtual BIOS implemented in the VMM (right).

Relying on a Secure Loader

A secure loader such as OSLO [Kau07b] can be used in a virtual machine in the very
same way as on real hardware to remove the BIOS from the TCB (§5.3). However,
the standardized interfaces for secure loaders, namely Intel’s TXT (Trusted Execution
Technology) or AMD’s SVM (Secure Virtual Machine) require a TPM to store their
secrets. Whereas emulating this device in the VMM is possible, it would require nearly
20 KSLOC [SS08].

One option to reduce this size would be to let the VMM emulate only a subset of the
TPM functionality. Strictly required for a secure system are signed quotes of a single
PCR (Platform Configuration Register), sealed memory, and monotonic counters. Other
TPM functionality such as sophisticated key management, localities or multiple PCRs
can be provided by the Trusted Software Stack instead. However, relying on a stripped
down TPM requires software modifications inside each guest OS. Finally, it means that
the missing functionality is not omitted from the TCB, but just moved into the VM.

Thus, using a secure loader will not make the TCB much smaller than relying on an
injected BIOS in the first place. Moreover, it will not improve the performance of the
BIOS at all.

Paravirtualizing the BIOS Drivers

Changing drivers inside the virtual machine to use a direct communication channel to the
VMM, also known as paravirtualization, is an established technique to accelerate virtual
device I/O [Rus08].

A paravirtualized driver in the BIOS would not program multiple hardware registers
for a single request, but could rely on a special instruction®® to communicate the request

34The cpuid instruction is usually chosen for this purpose because the instructions reserved for this
task, namely vmcall and vmmcall, are not architectural defined but CPU vendor specific.

68

2.5. VIRTUAL BIOS

to the VMM. The VMM will then call the backend directly, without going through the
device model emulation.

This approach will be faster then using unmodified drivers because it minimizes the
number of VMM invocations. Furthermore, paravirtualization reduces the TCB by sim-
plifying the drivers. However, it still requires to emulate the code before and after the
trapping instruction on Intel CPUs.

Moving the BIOS into the VMM

Another approach would be to move the whole BIOS into the VMM. Instead of executing
the instructions of the BIOS one by one, the VMM can already emulate the whole BIOS
call on the first trap. Moreover, the VMM can already take control with the fetch of the
first BIOS instruction, if the BIOS code is never mapped to the virtual machine. When
handling this trap, the VMM can perform all the effects of the original BIOS call, for
instance changing registers, accessing guest memory, and modifying device state. The
virtual CPU can then directly return to the caller.

Executing the BIOS in the VMM is much faster than running a paravirtualized or
unmodified BIOS inside the virtual machine because only a single guest instruction has
to be emulated. Furthermore, not mapping the BIOS code makes sure that this approach
works transparently on AMD and Intel CPUs. Finally, the BIOS is much smaller inside
the VMM because it can directly access the device models as well as their backends and
does not require device drivers as before.

2.5.2 Implementation

Due to the advantages of the third approach, I have virtualized the BIOS inside the VMM.

The vbios model thereby acts as special executor for the BIOS area. It handles single-
stepping requests before the instruction emulator has a chance to do it. It checks that the
CPU is in the right processor mode and that it faulted on one of the BIOS entry points,
which are not mapped to the guest. If the checks are successful, the vbios model sends
a message to the artificial BIOS bus.

Using a dedicated bus for this purpose allows to split the otherwise monolithic BIOS
into multiple parts. Each part can be developed on its own. This also moves the BIOS
code nearer to the device models. The VGA BIOS, for instance, is implemented directly
in the VGA model where it can access the VGA registers without requiring a special
interface for this purpose. This further simplifies the implementation.

BIOS Data Structures

A BIOS does not only provide entry points that can be called by an OS, it also initial-
izes various data structures in memory. An example are ACPI tables that describe the
platform configuration, such that bootloaders and operating systems can be written in a
platform independent way.

A normal BIOS would execute code in the VM to enumerate the resources of the
platform and discover how many CPUs and what devices are present. This knowledge is
then used to fill the corresponding tables. Fortunately, a BIOS virtualized in the VMM
does not need to run code inside the virtual machine to get the same information. Instead,
all the required knowledge is already available in the VMM, even though it is distributed
among the device models. Only the specific model knows how it is configured.

69

CHAPTER 2. A SMALLER VIRTUALIZATION STACK

A straightforward implementation would collect this information and initialize the
data structures in a central place. I have chosen another approach and generate the
BIOS data structures in a distributed way. A read and write interface on named BIOS
tables allows the device models to initialize the parts of the data structures they know
of. This means the Local APICs can add itself to the APIC table and the VGA BIOS
can easily register bitmap fonts in the realmode IDT (Interrupt Descriptor Table). By
relying on a distributed implementation, the code and the interfaces to collect the plat-
form configuration can be omitted. This makes the Virtual BIOS smaller than previous
implementations.

2.5.3 Enabling Emulators

At a first glance, no BIOS code seems to be necessary in the VM in our design because the
virtual BIOS can act directly on the trap caused by the first instruction fetch. However,
this does not hold true anymore if the BIOS is emulated by the guest itself. If there is
no BIOS code inside the virtual machine, the emulator cannot fetch it from the BIOS
area. Even though the vbios observes corresponding memory reads, it cannot perform
the effects of the BIOS call because it neither has access to the registers nor to the memory
of the emulated machine. It just sees the CPU state of the emulator running inside the
VM. The real register values are often deeply embedded in the emulator and cannot be
easily accessed from the outside3®.

However, emulation is an established technique to run the BIOS outside its normal
realmode environment. Especially the VESA part is often emulated by operating systems
such as Linux, Fiasco, and even NOVA itself, to switch the screen resolution in a device
independent manner. It is therefore necessary that the BIOS of a virtual machine can be
emulated.

To make sure that an emulator can fetch valid instructions, I inject a very small BIOS
stub into the virtual machine. This stub translates the original BIOS call to a paravir-
tualized BIOS interface that is based on a MMIO region. Using MMIO for this purpose
makes sure that the emulator cannot substitute it with DRAM. The region therefore acts
as shared memory between emulator and virtual BIOS. No additional trapping instruc-
tions are needed because all accesses to the MMIO region already trap to the VMM. The
region can also be made private to the CPU, similar how any CPU sees its own Local
APIC on the same physical address range. Thus, BIOS emulation can run concurrently
on multiple CPUs.

Figure 2.16 shows the steps that are needed to emulate a single BIOS call. The BIOS
stub copies the registers and all the needed memory from the emulated environment to
the shared memory. It then traps to the VMM, which will perform all the effects on the
copied-in values. Afterwards the stub copies the values back. The stub does not know
what memory regions, besides the registers on the stack, are needed by the virtual BIOS
in the first place because this heavily depends on the input parameters. The copy loop
in the stub therefore traps to the VMM on every iteration, allowing the Virtual BIOS to
request more data to be copied into shared memory.

The stub can be very small because it is unaware of the specific BIOS call. Moreover,
the copy-in and copy-out parts differ only in the source and destination addresses. They
can therefore use the same code. In fact, 30 assembly instructions are enough for a size-
optimized BIOS stub. Additionally 60 lines of C+-+ code are required in the VMM to
implement the MMIO region and to support the stub. Thus, a virtualized BIOS can be

35Virtual machine introspection could provide this functionality in some but not all cases [GRO03].

70

2.6. PERFORMANCE EVALUATION

BIOS Stub VMM

1. push registers to stack
. copy stack to shared memory
3. trap to VMM > 4. try to handle the BIOS call
5. memory parameter missing
7. copy-in additional parameter < 6. request copy-in
. 3 _—
trap to VMM 9. handle the BIOS call

10. update shared memory
t<———————— 11. BIOS call completed

[\

o

12. copy-out to stack
13. pop registers from stack

Figure 2.16: Control flow between BIOS stub and VMM while handling an emulated BIOS call.

emulated within less than one hundred SLOC.

2.5.4 Summary

The BIOS inside a virtual machine is a significant part of the Trusted Computing Base of
a VM today. I did not follow the state-of-the art approach and injected a full BIOS into
the virtual machine. Instead, I have virtualized the BIOS inside the VMM where it can be
implemented more easily in a high-level language. The code inside the VMM is thereby
reduced to 30 assembly instructions, which are only needed if the guest emulates BIOS
instructions. The virtual BIOS has direct access to device models and their backends,
such that device drivers in the BIOS are rarely needed. This makes the implementation
not only smaller, but also faster.

The virtual BIOS implementation currently consists of less than 2 KSLOC. This num-
ber will probably increase in the future if missing features such as CD-ROM or floppy
support will be implemented. Nevertheless, the virtual BIOS should remain an order of
magnitude smaller than traditional BIOS implementations. In summary, the size and the
complexity of the BIOS for a virtual machine can be significantly reduced by moving it
into the VMM.

2.6 Performance Evaluation

Performance was an important but not the primary goal of the NOVA project. Never-
theless, a tiny but very slow system would be useless in practice. We therefore minimized
the TCB of the system while still keeping an eye on the performance impact of our design
decisions. In cases of conflict, we often preferred a smaller code base. For example, hav-
ing no device models inside the hypervisor leads to less code. However, this also results
in more overhead compared to KVM, which has timer and interrupt models inside the
kernel. Furthermore, not having any paravirtualized I/O interface means that the I1/0
performance of a virtual machine might suffer. In some rare cases, we explicitly accepted
additional lines of code to significantly reduce the virtualization overhead. Examples are
the implementation of the virtual TLB inside the hypervisor and the optimization of the
context-switch code between guest OS and VMM.

In this section, I present the performance of CPU as well as memory virtualization
in NOVA and the performance of the virtual I/O path. I will not show any guest OS
benchmarks such as lmbench or SPECint because their performance is largely indepen-
dent of the virtualization stack if nested paging is employed. Furthermore, I will not

71

CHAPTER 2. A SMALLER VIRTUALIZATION STACK

report any network performance numbers in this thesis because I have implemented only
a model for an ancient ne2k card to get basic network access for a large number of legacy
operating systems. However, the very simple interface of this card makes it several orders
of magnitude slower than any modern NIC model. Instead, a high-speed network path
will be implemented by Julian Stecklina.

This performance evaluation was performed in collaboration with Udo Steinberg. The
results were partially presented in [SK10a]. In the following, I will give a more detailed
analysis compared to the conference paper. Furthermore, I have reevaluated the raw
numbers and corrected errors that have crept into the previous version.

2.6.1 Setting up the Benchmark

Measuring the time how long it takes to compile a Linux kernel is an easy way to test
various parts of a system. This is also a popular macrobenchmark in the OS community
because all ingredients are available as free software. Unfortunately, the benchmark was
never formally defined and will therefore not produce an absolute number that can be
used to directly compare different systems. Instead, the results can only be used to make
relative comparisons between different software or hardware configurations.

In a nutshell, compilation is nothing more than number crunching within many pro-
cesses. If the setup is done right, the I/O performance of the system will have only a very
small impact. Instead, the results depend on the performance of system calls, process
creation, demand paging and TLB handling. To evaluate the overhead of virtualizing
CPU and TLB, we measured the time it takes to build a Linux kernel in 18 different
environments.

Minimizing the Uncertainty

We developed an experimental setup that made the Linux compilation benchmark easily
reproducible. It also ensured a minimal jitter of the results and a fair comparison of
different configurations. In the following, I will describe the setup in detail because I have
often observed that certain aspects of the benchmark setup were ignored, for instance in
[PSLW09, LPL10, WWGJ12, WWJ13], which typically leads to non-reproducible results.

Task We compile the default i386 configuration of Linux 2.6.3236. A single benchmark
run preprocesses, compiles, and links more than 1500 C files. It leads to a single
compressed kernel image of approximately 4 MB after creating and destroying more
than fifteen thousand Linux processes. Each benchmark run takes around 8 minutes.
This is short enough to be repeated hundreds of times and long enough so that
random events such as a spurious network packet or an additional rotation delay of
the disk, have no measurable impact on the overall result.

Time Measurement Wall-clock time was measured by reading the TSC, the most ac-
curate time source available on all machines. Because some virtualization layers are
known for large clock drifts, we verified the results by also checking the real-time
clock. Finally we asked an NTP (Network Time Protocol) server for a time stamp
if networking was available inside the VM.

Hardware Most benchmarks were run on a pair of identical workstations3”. Each was
equipped with a single Intel Core i7 CPU clocked at 2.67 GHz, 3 GB DDR3 DRAM,

36The latest version at the time these measurements were done.
37We used two machines to reduce the benchmark time by running two configurations in parallel.

72

2.6. PERFORMANCE EVALUATION

and a SATA hard disk from Hitachi (250 GB, 7200 RPM). Using the same machines
for measurements ensured that hardware differences have no influence.

For workloads that run only on AMD CPUs, another machine equipped with a
Phenom X3 8450 CPU clocked at 2.1 GHz, 4 GB DRAM, and a slightly slower
120 GB hard disk was used.

Single Core The Core i7 processor supports four cores with two hyperthreads each.
Running the benchmark on all of these eight logical cores leads to a large jitter in
the results. One reason might be the unpredictability of the mapping from Linux
processes to cores. Another reason might be that the hyperthreads compete for
shared resources. Disabling hyperthreading improved the situation significantly.
However, the most consistent results were achieved by disabling all but one core in
the BIOS.

With only a single physical core available to the host, it does not make much sense
to give more then one virtual CPU to the guest. The overhead of inter-processor
communication and memory synchronization would only negatively impact the mea-
sured performance. Finally, NOVA was not supporting VMs with more than one
CPU at that time. We therefore run the benchmark only in single core configura-
tions.

TurboBoost Disabling TurboBoost in the BIOS was necessary to get accurate and fair
results of the benchmark for the following reason. Running the benchmark on a
single, instead of two CPUs, reduced the number of CPU cycles by 10%. This high
gain was especially surprising as kernel compilation is a workload with very little
dependencies between two processes. Thus multi-processor scalability issues should
not have such a large impact. Furthermore, this gain was not observed in some
of the virtualized cases. It turned out that this reduction had to be attributed to
Intel’s TurboBoost technology, which allows one CPU to increase its core frequency
if other CPUs of the same core are idle. This can be done as long as the produced
heat fits into a processor specific thermal envelope. The Core i7 920 can increase its
frequency in this way up to 2.93 GHz. This is exactly 10% more than the nominal
frequency of 2.67 GHz and explains the observed CPU cycle reduction.

Guest OS To minimize the differences at the OS Level, the same guest OS binaries
were used for all measurements. The same Linux Kernel (2.6.32) and Slackware
installation was chosen for this purpose.

Device Models Linux has drivers for a number of devices of the same class. On a native
x86 machine it can use for instance the Local APIC of the CPU, the PIT, the PM-
Timer (Power Management Timer), or the HPET as timeout source. Unfortunately,
many virtualization stacks support only a subset of these different devices. As the
virtualization overhead depends on the device interface, we forced Linux to use the
devices available in all environments. This means Linux got its timer interrupts
from the i8254 PIT [PIT94] and acknowledged them at the i8259 PIC [PIC8S].

Note that there was no common disk controller available everywhere. Thus, configu-
rations using Qemu as their VMM had to be measured with a virtual IDE controller,
while others were using an AHCI model®3.

38Qemu got AHCI support with version 0.14, which was announced only a couple of months later.

73

CHAPTER 2. A SMALLER VIRTUALIZATION STACK

Physical Disk All configurations would use the physical disk controller in AHCI mode.
Furthermore, NCQ had to be disabled on the Linux command line. Otherwise
NOVA, which did not virtualize this feature, was actually running the benchmark
faster than a non-virtualized system. One reason for this unexpected result seems
to be that Linux delays disk requests longer if NCQ is enabled to be able to merge
requests before they are submitted to the disk.

Fixed Timer Frequency Linux does not use a fixed periodic timer per default anymore,
but dynamically adapts its frequency depending on the load of the system. This
means the frequency of timer interrupts and therefore the overhead to virtualize
them, will vary through the runtime of the benchmark. To exclude this variability
and measure approximately the same number of timer interrupts in repeated runs,
we forced a fixed timer frequency by adding the nohz=off parameter to the Linux
command line.

Parallel Make The make should run in parallel to ensure that enough active jobs exist
so that the CPU will not be idle if one job waits on the completion of disk I/O.
This minimizes the influence of any disk delay. Using four parallel jobs led to the
best results.

CPU idle times could not be completely avoided with this simple approach because
kernel compilation cannot be fully executed in parallel. There are very few runnable
processes at the beginning of the benchmark where dependencies are checked, and
at the end where the kernel is linked and compressed.

Finally, having another process ready at the end of a thread’s time slice, ensures
an address space switch will happen. The kernel can otherwise avoid this costly
switch by directly scheduling the previous thread again. Thus, a parallel build will
simulate a loaded system more accurately.

Buffer Cache The Linux caches have a limited, but measurable influence on the dura-
tion of the benchmark. We therefore dropped the buffer, the dentries, and the inode
caches before starting the benchmark. To avoid reading blocks twice from disk, we
gave all guests 512 MB of DRAM. This should result in the same strategy for buffer
cache prefetching during all measurements.

The virtualization layer was given all the memory of the host platform. Note that
these gigabytes of memory could have been used for a second buffer cache in the
host. A very intelligent virtualization layer could even trace and predict the access
pattern of the benchmark. It could then fetch the disk blocks before our benchmark
even runs. For NOVA, KVM, Xen, and the paravirtualized systems we could make
sure that double buffering was not happening, either by design or by configuring the
system accordingly. For the measured closed source systems we could not assure
this. However, our results do not indicate that they gained much from it, if they
have employed this technique.

2.6.2 Results

We compiled the Linux kernel on 18 different system configurations for more than 1500
times. This was only feasible by automating the measurements as much as possible. A
single benchmark run booted the machine, compiled the kernel, uploaded the results to a
server, and rebooted the system to start the next run. The results of these measurements
are shown in Figure 2.17 as the median of the runs.

74

2.6. PERFORMANCE EVALUATION

Relative Native Performance (%)

0 20 10 60 80 100

Native | 466.595 | 100.0

Direct 469.10s 995

NOVA | 470.465 | 992

Intel Core i7 KVM : ‘475‘53S ‘ ‘ ‘ 98.1
EPT with VPID ESXi 479.60s 97.3
XEN 479.78s 973

Hyper-V 488.38s ‘ 95.5

NOVA

Intel Core i7 97.7
EPT w/o VPID KVM o7 4
Intel Core i7 NOVA 97.0
EPT, Small Pages KVM 057
Intel Core i7 ~ NOVA 0645525 72.3
Shadow Paging vy L pgugas o
Intel Core i7 XEN 483835 96.4
Paravirtualization LALinux | 5 3017s """""""""""""""" 280

AMD Phenom : : : : }
NPT with ASID NOVA 698.21s L 99.4
KVM-L4 713.80s 979

Figure 2.17: Performance of Linux kernel compilation within hardware-assisted virtualization
and paravirtualized environments.

(0]

CHAPTER 2. A SMALLER VIRTUALIZATION STACK

The two Native bars represents the time needed to run the benchmark on Core i7
and AMD Phenom machines respectively without any virtualization involved. They are
the baseline for all other measurements. We normalized the results of the virtualized
systems with respect to them. Thus, higher percentages in the Figure indicates better
performance with less overhead.

To quantify the overhead caused by nested paging (EPT) alone, we run a virtual
machine with all intercepts disabled?®. Furthermore, the VM got direct access to all
devices and received all interrupts without invoking the hypervisor. The second bar
labeled Direct shows that even without virtualizing any devices, the benchmark needs
2.51 seconds more than on native hardware. This overhead can be attributed to the
longer page walk that is needed to fill the TLB, which requires more memory accesses.
Furthermore, additional TLB entries are needed to cache intermediate results. Note that
this overhead depends not on the employed software, but only on the particular hardware.
Every virtualization stack that relies on nested paging has to pay this overhead and cannot
achieve more than 99.5% of the native performance on this particular machine.

NOVA

The third bar shows that compiling a Linux Kernel inside a virtual machine on NOVA
v0.1 takes only 0.8% or 3.9 seconds longer than on bare hardware. I will later quantify
how much we benefit from nested paging (EPT), large pages, and a TLB tagged with a
virtual processor identifier (VPID). Furthermore, I will perform a detailed breakdown of
this overhead in Section 2.6.4.

KVM, ESXi, Xen, and Hyper-V

The next four bars give the results for KVM 2.6.32, VMware ESXi 4.0 U1, Xen 3.4.2, and
Microsoft Hyper-V Build 7100. KVM performed best in this group. ESXi and Xen are
on the very same level whereas Hyper-V needs significantly longer. KVM surely benefits
from the hugetlbfs Linux feature because this provides large pages for the guest memory
and thereby reduces the TLB overhead. The bad results of Hyper-V are unclear. One
reason could be that Hyper-V has a longer context switch path than NOVA and does not
implement neither the interrupt nor the timer model inside the hypervisor as KVM and
Xen do. Another reason might be that we have not found a way to disable NCQ in the
parent partition. Finally, Hyper-V may not be using all of the optimizations to speed up
virtualization such as tagged TLBs or large pages.

Tagged TLB

The second set of bars in Figure 2.17 shows the benefit of tagged TLBs. The benchmark
is run with VPIDs disabled. The hardware TLB is therefore flushed on any VM resume
and has to be refilled later. This costs NOVA 1.3% or more than 6 seconds. KVM is still
slower than NOVA without VPIDs, but looses only half of that number. In other words
KVM benefits less from tagged TLBs. KVM probably touches more memory pages than
NOVA to handle a single virtualization event and therefore needs a larger portion of the
TLB for itself. Consequently more entries of the guest will be aged out of the TLB before
the VM is resumed.

39The cpuid exit cannot be disabled on Intel VT, but handling it during the benchmark took less than
a millisecond.

76

2.6. PERFORMANCE EVALUATION

Small vs. Large Pages

The third set of bars illustrates the influence of the page size to the benchmark results.
By mapping the guest memory with small 4k instead of large 2M pages, up to 512 times
more TLB entries are needed to access the same amount of memory. Kernel compila-
tion on NOVA takes 10 seconds longer with small instead of large pages. This means
its virtualization overhead is tripled. NOVA is now slightly slower than Xen or ESXi.
Similarly KVM needs twelve seconds longer and more than doubled its overhead. The
performance is now similar to Hyper-V. Thus, using small pages will lead to a significant
performance drop in a TLB-hungry benchmark. These results are remarkable because
certain techniques such as page sharing between virtual machines [GLV 10|, VM migra-
tion [CFH'05], and VM forking [LCWST09] assume small pages. Because Xen, ESXi,
and Hyper-V support at least migration, they might not benefit from large pages.

Shadow Paging

The next two set of bars compare the performance with older systems, which do not sup-
port nested paging. We simulate a system without nested paging support by configuring
NOVA and KVM to use shadow paging. This means the CPU will not flatten the nested
page tables in hardware anymore. Instead, the hypervisor has to combine the guest and
the host page tables into a single shadow page table on its own. Note that a parallel
kernel build will be the worst case for such a software TLB because of many short living
processes, frequent address space switches, and the huge number of page faults caused by
memory-mapped files. In fact, kernel compilation on NOVA takes up to 3 minutes longer
than on native hardware. KVM takes only two minutes longer, probably due to a smarter
shadow paging implementation.

Paravirtualization

We also compare the performance of hardware-assisted virtualization with older paravir-
tualization approaches. For this, we run the benchmark on two paravirtualized systems,
namely a 2.6.18 kernel running inside Xen’s dom0 and an L4Linux 2.6.32 running on top
of L4/Fiasco. Both had direct access to the hard disk as there is no efficient way to
virtualize storage in these systems. For Xen, we also relied on a patched 1libc, which
avoids the expensive segment reloads during every thread switch by not using segments
for Thread Local Storage (TLS). Thanks to this optimization, Xen’s paravirtualized do-
main can achieve 96.5% of the native performance. This is similar to the results from
[BDF 03| and only 4 seconds slower than a faithfully virtualized domain on Xen. With-
out the changed 1libc, a paravirtualized Xen was as slow as a NOVA VM with shadow
paging. L4Linux on the other hand needs one minute more than a native system to
compile a Linux kernel. This corresponds to 88% or more than twice what was reported
previously as paravirtualization overhead [HHLT97|. However, the current L4Linux im-
plementation does not use the small address-space optimization anymore. This means
additional address space switches have to be paid for every system call and every page
fault. Nevertheless, both paravirtualized systems could beat hardware-assisted virtual-
ization with shadow paging. These results are aligned with the observation that early
hardware-assisted virtualization was slower than software techniques [AA06]. However,
our measurements indicate that this does not hold true anymore on hardware with nested

paging support.

(s

CHAPTER 2. A SMALLER VIRTUALIZATION STACK

20 I I I I I I I
15 F 1

10 | 1

Number of Samples

0 1 1 1 1 m LM LM
—1000 —500 0 500 1000 1500 2000 2500 3000

Distance to Median in ms

Figure 2.18: A histogram of the measured runtime relative to the median.

AMD and KVM-L4

To compare our system with KVM-L4, a port of KVM to the L4/Fiasco microkernel
[PSLWO09], we had to run the benchmark on an AMD machine because KVM-L4 was
not supporting Intel CPUs at that time. The last set of bars in Figure 2.17 shows the
results. Because it is not possible to compare the absolute times between the two different
platforms, we also performed Native runs on this platform and normalized the results to
these runs. For NOVA we measured 99.4% of the native performance. This is slightly
better than what we measured on the Intel systems. This advantage is likely caused by
the different nested page-table formats. AMD has reused the legacy x86 format, which
has two levels whereas Intel defined the new EPT format, which requires four levels to
describe the physical address space of the guest??.

For KVM-L4 we measured 97.2%, which is similar to Xen but less than what we mea-
sured for KVM. This difference can be attributed to the additional layer of indirection
introduced by KVM-L4. To resume a VM the KVM code running inside an L4Linux
process will prepare the VM state. Instead of using this state directly, it has to be trans-
ferred to the kernel and validated by it. The additional kernel entry and the validation
costs approximately 1% performance in a CPU and memory bound benchmark like kernel
compilation.

2.6.3 Measurement Error

We spent considerable time to set up the benchmark in a way that the measurements are
as accurate as possible. In the following, I will try to quantify the remaining measurement
erTor.

Figure 2.18 shows a histogram of multiple benchmark runs for the Direct configura-
tion. Most of the results are clustered around the median. However, there are a couple
of outliers where the benchmark took significantly longer. The standard deviation of
this distribution is approximately 500 milliseconds. The left side of Figure 2.19 shows
that other configurations have even larger standard deviations. This means running the
benchmark only once can lead to a measurement error of several seconds. Note that the
NOVA numbers show that hardware virtualization itself does not necessarily increase this
jitter.

We therefore executed all benchmarks numerous times and used the median to get a

40T arge pages allow to skip the last level, which further increases AMDs advantage.

78

2.6. PERFORMANCE EVALUATION

Deviation of the Results in ms Deviation of the Median in ms

Native
Direct
Nova
KVM
Xen
KVM/L4

2000 1500 1000 500 O 0 50 100 150 200 250 300

Figure 2.19: The jitter and the accuracy of the measurements expressed as the standard deviation
of the results and the standard deviation of the median.

700 T T T T T T T
600
500

400
300 — Results

200 — Median | |

100 | .

0 Il Il Il Il Il Il Il
0 10 20 30 40 50 60 70 80

Samples

Standard Deviation in ms

Figure 2.20: The jitter versus accuracy through a set of samples.

single result. We did not rely on the average because this would give outliers a larger
impact. The accuracy of this approach can be measured as the standard deviation of the
median over many runs. The right side of Figure 2.19 shows that the median of several
measurements is at least five times more accurate than performing a single run only.

Figure 2.20 reveals that the standard deviation of a single run remains at its high level
whereas the deviation of the median approaches zero if more samples are taken!. Thus
the results will get more and more accurate over time. This observation can be used to
calculate the number of measurements that have to be taken for a certain configuration
to achieve a given accuracy.

The measured results should follow an inverse normal distribution because the system
can be modeled as a set of jobs that have a lower bound on their runtime, but which are
randomly delayed with a certain variance. One reason for such delays is the arrival time
of hardware interrupts. A different arrival, which depends for instance on the exact disk
head position, will lead to another process scheduling and therefore a different utilization
of the CPU resources, which is less efficient than the optimum.

To simplify the calculations, a normal distribution is used as a first approximation.
This would mean more than 95% of the measurements are contained within two times of

41Single runs should be completely independent from each other. More samples means outliers have a
smaller effect on the median.

79

CHAPTER 2. A SMALLER VIRTUALIZATION STACK

Event EPT vTLB
vTLB Fill 181,966,391
Guest Page Fault 13,987,802
CR Read/Write 3,000,321
vTLB Flush 2,328,044
PIO 540,680 723,274
INVLPG 537,270
Hardware Interrupts | 174,558 239,142
MMIO 76,285 75,151
HLT 3,738 4,027
Interrupt Window 2,171 3,371
> 797,352 | 202,864,793
Injected Interrupts 131,982 177,693
Disk Operations 12,715 12,526
Runtime (seconds) 471 645
Events per second 1,693 314,519

Figure 2.21: Distribution of Virtualization Events during Linux Kernel Compilation

the standard deviation. Thus the results of Native, Direct, NOVA, and KVM are accurate
within plus/minus two hundred milliseconds. This corresponds to 0.08% of the relative
performance measurements.

2.6.4 Detailing the Overhead

While most measured systems can only be taken as a black box, our intimate knowledge
of NOVA allows us to further breakdown its overheads. Figure 2.17 reported that Linux
kernel compilation on NOVA is 0.8% or 3.87 seconds slower than on a native system. In
the following, I will show where this time is spent.

Counting Events

To get an overview of the system behavior, we counted the number of hypervisor invo-
cations and related system internal events such as the number of served disk requests
during a benchmark run. Figure 2.21 shows the distribution of these events in NOVA
with nested (EPT) and shadow paging (vTLB).

One can see that a shadow-paging setup causes two orders of magnitude more virtu-
alization events than an EPT-based one. On average, there are 315 thousand events per
second or one event every 8500 cycles. Given that any event needs at least 1000 cycles
to transition between VM and hypervisor on the Core i7 920 CPU [SK10a] and that the
hardware TLB is flushed on all of these transitions, the majority of the three minute
overhead for the shadow paging configuration is already lost in hardware.

Note that the number of events could be further reduced with a more sophisticated
virtual TLB implementation. However, the number of guest page faults and the number of
control-register accesses will be the same, even with an implementation that can perfectly
prefill the TLB. Furthermore, each guest page fault will lead to an additional virtual TLB
fill event to synchronize the page table entry that was just created by the guest OS. These
three types of events sum up to more than 35 times the number of events in the nested
paging case. Thus, any TLB-heavy benchmark such as a parallel kernel compilation will
tremendously benefit from nested paging hardware. I therefore concentrate the further
analysis on this case only.

80

2.6. PERFORMANCE EVALUATION

Name Hardware | Emulated | Acknowledgment
Timer Timer
PIC 11214 22198 4x PIO exits
APIC 7826 18740 1x MMIO exit
x2APIC 4216 13815 1x wrmsr exit
Auto EOI 2883 13629 delivery only

Figure 2.22: Cycles needed to generate a timer interrupt periodically, deliver it to a VM, and to
acknowledge it. These numbers were measured inside a NOVA VM running on the Core i7 CPU.

Running the benchmark with EPT leads to approximately 1700 events per second. The
guest system timer that periodically ticks with 250 Hz causes already 1250 of them?2. The
remaining events are the MMIO exits to access the disk and the host timer interrupts
that are used by the hypervisor to schedule its threads.

There are also some HLT exits, which indicates that the virtual CPU was idle at certain
times. The benchmark sometimes waits for I/O, even if we tried hard to keep the CPU
busy by executing the make in parallel. Idle times occur especially at the beginning of the
benchmark where the buffer cache is still empty. The measured 3738 HLT exits correspond
to less than 15 seconds because any idle phase ends whenever the system timer fires or
the outstanding disk job completes. On average, the guest CPU will be idle only half of
that time because the HLT events should happen randomly within a timer period. In fact,
a native Linux reported that the CPU was idle for 7.2 seconds during the benchmark.
The very same time was measured within a NOVA VM. Thus HLT exits should have not
influenced the NOVA overhead.

The high number of virtual TLB related events indicates that the benchmark will
also put a large pressure on the nested paging hardware. The Direct measurements have
already shown that nested paging is responsible for 2.51 seconds of the overhead. Thus
only 1360 milliseconds or 35% of the NOVA overhead can be directly attributed to our
implementation.

IRQ Overhead

Figure 2.21 showed that interrupt handling caused most of the events in a nested paging
configuration. Interrupts are not only responsible for the direct effects such as exiting the
virtual machine and injecting the interrupt but also for secondary events like emulation
of the PIO to acknowledge and mask the IRQ at the virtual interrupt controller.

To more accurately estimate the influence of interrupt handling to the overall per-
formance, I wrote a small application that can measure the overhead in isolation from
memory and TLB effects. The application performs number crunching by simply incre-
menting a register in a tight loop. It does not touch any memory inside this loop. The
loop is first executed without and then with interrupts enabled. The delta between these
two runs can be attributed to the interrupt path. Interrupts are generated periodically by
either using a hardware HPET that is directly assigned to the virtual machine or by using
an emulated timer such as the PIT and the Local APIC. The number of loop iterations
is calibrated beforehand so that a single run takes at least one second. This is enough for
a couple of thousand interrupts to occur.

Figure 2.22 shows the results of this microbenchmark. By comparing the left column
with the right, it is clear that between 9,000 and 11,000 cycles are needed to implement

420ne event to inject the interrupt and four PIO events to program the interrupt controller.

81

CHAPTER 2. A SMALLER VIRTUALIZATION STACK

CPU utilization in % KCycles per Request
95 4120
94 - 100
23 |- 4 80
221 60
21 b \/\——/- 10
0 - 1

29 2110 2111 2112 2113 2114 2115 2116 217 29 2110 2;.1 2112 2113 2114 2115 2116 217

Blocksize Blocksize

Figure 2.23: CPU utilization and corresponding cycles per disk request for a native (bottom),
direct assigned (middle) and fully emulated (top) SATA disk on the Core i7 machine.

a virtual timer. This includes the time for calling the timeout service, programming the
host HPET, forwarding the timeout to the VMM, and updating the device model. This
path could be optimized by implementing timeouts directly in the hypervisor.

The left column shows that the overhead heavily depends on the employed interrupt-
acknowledgement method. Using the PIC leads to the highest number of exits and the
largest overhead. Relying on the Local APIC is a bit faster, even though its single MMIO
exit is more heavyweight than a single PIO exit (5k vs. 2.1k cycles). The x2APIC is
even faster than the Local APIC because its wrmsr interface does not need an instruction
emulator. However, the fastest method measured was the virtual PIC in Auto EOI (End
of Interrupt) mode. In this mode, no acknowledgement is required at all. Unfortunately,
the used interrupt-acknowledgement method is chosen by the guest OS independently
from the VMM.

In the kernel compilation benchmark, we measured the worst case by using the virtual
PIT to generate 250 timer interrupts per second and deliver them through the 18254 PIC.
By multiplying the runtime of the benchmark with the timer frequency and the overhead
per timer interrupt and dividing this through the processor frequency, one can see that
approximately 980 milliseconds can be attributed to the virtual timer handling.

Disk Performance

The MMIO exits are the third largest group of virtualization events in Figure 2.21. They
are caused by the Linux disk driver, which issues disk requests through the emulated
AHCI controller. To quantify the impact of the disk emulation speed to the overhead
observed in the kernel compilation benchmark, we evaluated how the disk performs in-
dependently of the kernel compilation benchmark. We read from the 250 GB Hitachi
hard disk sequentially and varied the block sizes. We relied on direct I/O to exclude the
influence of the buffer cache.

Figure 2.23 shows the CPU utilization (left) and the cycles needed per disk request
(right). The left part is reprinted for comparison from [SK10a|. The bottom curve shows

82

2.6. PERFORMANCE EVALUATION

T T T T T T T T
EPT 2510
Timer 1980
Disk [240
Other [J140
Total] 3870
| | | |

| | | |
0 500 1000 1500 2000 2500 3000 3500 4000

Figure 2.24: Breakdown of the NOVA overhead during kernel compilation in milliseconds.

the native hardware without any virtualization involved. The middle curve represents the
direct assignment of the disk controller to the VM. Its overheads stems from the interrupt
path and the cost of remapping DMA requests with the IOMMU. The fully emulated
SATA disk (top) additionally includes the register emulation of the disk controller and the
forwarding of the guest requests to the host disk driver. One can see a large performance
gap between native and virtual I/O. The directly assigned disk already doubles the CPU
utilization. The emulated SATA controller increases the CPU utilization by a factor of
four compared to the native case.

The middle curve on the right shows that the cycles per request scales with the block
size. This is expected as Linux usually programs one DMA descriptor per 4k page. This
effect is further amplified in the emulated disk because an increasing number of DMA
descriptors means not only more work of the disk driver, but also additional emulation
overhead for fetching and translating these descriptors. The directly assigned disk reveals
that approximately 20k cycles are needed for receiving, injecting, and acknowledging a
disk interrupt. Compared to Figure 2.22, this seems to be a surprisingly high number.
However, we have an idle system here where additional HLT exits will cause more overhead.
The fully emulated numbers show that between 40k and 50k cycles have to be paid for
every disk request above the interrupt handling. Approximately 30k of them are used to
handle the six MMIO exits. The remaining cycles are needed to contact the disk driver
and perform the physical disk access.

The 50k cycles for disk emulation and the 20k cycles for the interrupt path are an
upper bound of the disk emulation overhead during the kernel compilation benchmark.
The actual numbers are surely smaller because disk requests are not always issued with
the maximum block size and the system is more often busy than idle. A lower bound
would be to use the minimal measured disk emulation overhead (40k cycles) and the
value from Figure 2.22 to handle a single hardware interrupt (11k cycles). These lower
and upper bounds correspond to 240 and 340 milliseconds respectively.

Summary

Our intimate knowledge of the NOVA system allowed us to break down the overhead
during the Linux kernel compilation benchmark into smaller parts as shown in Figure 2.24.
We started with a total of 3.87 seconds more to compile a Linux kernel inside a NOVA
VM. Of this total time 2.51 seconds can be attributed to the nested paging hardware.

83

CHAPTER 2. A SMALLER VIRTUALIZATION STACK

The periodic guest timer accounts for 980 ms. The emulated disk costs at least 240 ms.
This leaves less than 140 ms or 0.03% of the relative performance for the host scheduling
timer and for secondary effects such as cache pollution and increased TLB pressure from
the virtualization layer. I will not further analyze these overheads here because they are
below the measurement accuracy of 160 ms.

2.6.5 Performance Outlook

The kernel compilation benchmark has shown that NOVA is virtualizing CPU and mem-
ory slightly faster than state-of-the-art virtualization stacks. Furthermore, we observed a
significant performance gap between native and virtualized 1/O. The superior CPU per-
formance is especially surprising as we have to pay for our split architecture and a smaller
codebase. Our performance optimizations seem to be enough to compensate these over-
heads.

However, the reported results provide only a snapshot of the performance from a
certain point in time. It is unknown whether the ongoing development of the NOVA
system will improve these numbers or not. I will therefore analyze the performance
impact of new and upcoming features in this subsection.

There is a group of features that make the system slower because they increase either
the CPU state that needs to be transferred between hypervisor and VMM or the number of
virtualization events. For instance, virtualizing performance counters or debug registers,
will result in additional state that has to be context switched by the hypervisor and
provided to the VMM. Features such as an accurate TSC or virtual IOMMUs will lead to
more events that need to be handled. Similarly, the introduction of the parent protocol
has slowed down the backend connection as it requires an additional capability translation
for any request.

There are some features that will be neutral with respect to the performance. Porting
the system to 64-bit is such an example. A 64-bit VMM can benefit from more registers
and a larger address space, but it will suffer from slower TLB fills and increased instruction
bytes that have to fit in the caches. Furthermore, supporting 64-bit guests requires more
memory accesses to parse the page tables during instruction fetch and more branches in
the instruction emulator to distinguish the new operand size. Positively, it reduces the
number of MMIO events because guests can use the faster wrmsr interface of the x2APIC
for interrupt and timer handling.

Finally, there are many new features that would improve the performance of the
system:

e An optimized instruction emulator that supports only mov-instructions and falls
back to the current emulator for uncommon cases would improve the MMIO path.

e The ability to transfer only minimal state on an EPT fault would also accelerate
MMIO emulation, even though this requires additional checks to detect when non-
available state is accessed.

e Recalling the VCPU directly from the services would remove the helper threads and
further shorten the I/O path.

e CPU-local timeouts provided by the hypervisor would minimize the overhead of

timeout programming. They could be implemented with the VMX preemption timer
or directly with the host scheduling timer.

84

2.7. CONCLUSIONS

Hypervisor NOVA HV 0.3
Environment shared | unique
VMM shared | unique
generated Instruction Emulator |
0 2500 5000 7500 10000 12500

Figure 2.25: Size in SLOC of the NOVA system.

e Modeling newer devices that have queues and that can be emulated through polling
would reduce the number of MMIO faults per request. Examples are the 82576
network model and the NVM Express interface for disks [NVM12]. This could
make virtual network and disk I/O as fast as paravirtualized I/O without the need
to modify the guest OS.

In summary, it should be possible to keep the near native performance for CPU and
memory bound workloads but significantly improve the I/O performance of our system
in the future.

2.7 Conclusions

With NOVA, we aimed to reduce the TCB impact for both unmodified guest operating
systems running in virtual machines and applications not depending on virtualization
at all. The size of the NOVA virtualization stack is shown in Figure 2.25. The NOVA
user-level environment NUL, which multiplexes the physical resources between different
VMDMs, consists of 12 KSLOC. This includes around 7 KSLOC of code shared with the
VMM. Most notably, the instruction emulator and multiple device models are reused by
NUL to emulate VESA BIOS code. The Vancouver VMM consists of 14 KSLOC hand
written and more than 8 KSLOC of generated code. The NOVA hypervisor contributes
around 9 KSLOC to the TCB. In summary, virtual machines in NOVA are implemented
within approximately 30 KSLOC. This is at least an order of magnitude smaller than
existing virtualization stacks.

In this chapter, I have described my contributions to these results, centered around
the implementation of the small Vancouver VMM:

e A software component design for the VMM and the user-level environment that
enables the specialization of the codebase to the requirements of the guest as well
as the host platform (§2.2).

e Newly developed device models to emulate a PC that are significantly smaller;
mostly achieved by externalizing debugging and checkpointing functionality (§2.3).

e An x86 instruction emulator that relies on code-generation for a smaller size. I also
suggested hardware support to speed up the emulation and introduced a simpler
implementation approach based on physical CPU analysis (§2.4).

85

CHAPTER 2. A SMALLER VIRTUALIZATION STACK

e A BIOS virtualized inside the VMM, which can even be emulated (§2.5).

Moreover, I have reevaluated the benchmarks, quantified the measurement error, and
detailed the overheads we are causing (§2.6). This showed that NOVA is virtualizing
CPU and memory slightly faster than state-of-the-art virtualization stacks. Finally, I
estimated the impact of future developments on the performance of NOVA (§2.6.5).

2.7.1 Size Outlook

Will the current size advantage of NOVA remain in the future if new features are added
and new platforms have to be supported? Or will NOVA grow similar to Linux or Windows
as depicted in Figures A.4 and A.77

In this thesis, I show that certain parts of the system functionality can be implemented
outside of the TCB and that various techniques such as code generation or a heuristic
allow to implement the same features within less code. This suggests that NOVA will not
grow as fast as comparable systems, given the same rate of innovation. There are even
a number of reasons indicating that the trend of an ever increasing codebase might be
broken:

Microhypervisor The microkernel approach to the hypervisor design means that many
features such as migration, can be implemented completely outside of it [Gall3].
Other features such as record/replay or replication that traditionally require kernel
support, can be moved into a second hypervisor layer with the help of recursive
virtualization [KVB11].

Deprecated hypervisor functionality can be traded against the code needed to run on
newer platforms. It is, for instance, possible to remove 32-bit support after porting
the system to 64-bit. Similarly the virtual TLB code could be removed, whenever
a large enough fraction of the target platforms supports nested paging. Thus the
size of the hypervisor should not increase significantly in the future.

Device Drivers Device drivers are typically the largest portion of monolithic kernels.
Our ability to completely isolate these drivers at the user level means that only
those device drivers, which are actually needed by a VM, have to be part of its
TCB. Furthermore, running device drivers inside virtual machines (Driver VMs)
ensures backward compatibility without the need to maintain legacy drivers and
their support code inside the TCB.

Specialization The component architecture of the VMM and the user-level environment
enables the specialization of the TCB to the usage scenario. Device models, drivers,
and services that are not needed can be easily removed from the codebase.

Compatibility through Virtualization The code size increase for software compati-
bility reasons should be met with a consequent use of virtualization. Deprecated
features should be removed as early as possible. Old NOVA applications, which are
not adapted to the changing interfaces, should run inside a virtual machine within
their original software environment.

In summary, NOVA has shown that the TCB of a virtual machine can be significantly
reduced without inducing more overhead. Additional effort will be needed to retain this
advantage in the future. However, the information available today indicates that there
are many opportunities to further reduce the TCB.

86

Chapter 3

TCB-aware Debugging

There are two ways to write error-free programs; only the
third one works.

A. Perlis in Epigrams on Programming [Per82]

Sophisticated debugging capabilities are crucial for the success of a system. They will not
only reduce the time that is spent in bug hunting, they can also help external developers
to write drivers and applications faster for the new system.

Debugging means more than single stepping an application or producing a core dump
for a crashing component. It also includes inspecting a running machine to investigate
any kind of unexpected system behavior, which could be caused by configuration errors,
hardware failures, or even remote attacks.

Adding debug support to NOVA seems to be contrary to the goal of a small TCB
(Trusted Computing Base), as debugging features usually lead to additional interfaces of
trusted components and require additional code to implement them. To solve this issue, I
researched how debugging support can be implemented in a TCB-aware way based on the
previous results from the FULDA experiment [KauO7a] and Julian Stecklina’s diploma
thesis [Ste09].

Please note that simply removing debugging code during compile-time is not a viable
solution, as to many programs depend on it. For instance, configuring a Linux kernel
without a proc-filesystem is rarely done, even in highly secure environments. Loosing
the ability to easily inspect a system just outweighs the reduction in TCB size. Instead,
debugging features should be easily available even in a production system.

In this chapter, I discuss the requirements of a debugging infrastructure for NOVA
(§3.1), the implementation of VDB (Vertical DeBugging) (§3.2), and how Firewire can be
used to minimize the target driver (§3.3). Finally, I develop a minimal debug stub that
can be injected into a running system (§3.4).

3.1 Requirements

3.1.1 Virtual Machines and Emulators

Virtual machines and emulators have been proposed multiple times as a debug platform for
operating [GG74, Bel05, KDCO05] and distributed systems [HH05]. The main advantage
of using VMs for debugging is the full control over the machine: VMs can be halted,

87

CHAPTER 3. TCB-AWARE DEBUGGING

restarted, replayed, and the machine state can be manipulated. Finally, adding debug
support to a virtual environment is easier than adding it to a physical machine.

There are various arguments against this approach, besides the fact that a virtual
machine for NOVA would need to support nested virtualization [BYDD"10]. Most im-
portantly, virtual environments emulate only a limited set of hardware devices. There-
fore only a fraction of the drivers, which are known to be the major cause of OS bugs
[CYCT01], can be debugged. Qemu [Bel05], for example, models only 18 different network
cards, which covers approximately 5% of the 349 network drivers of Linux 2.6.38.

Furthermore, the emulation of hardware is usually not perfect due to bugs, incomplete
implementations, or performance reasons, which limits its debugging use. Qemu, for
instance, does not check x86 segment limits because this would significantly increase its
overhead. An OS, which violates these limits, will run on top of Qemu but would crash
on a real machine.

Moreover, timing in a virtual environment can be very different, which may just hide
certain bugs. [CCDT10] reports that measurements in PTLsim, a cycle-accurate x86
simulator, can deviate from the hardware by up to 30%. The timing in a general-purpose
emulator may even be worse, as these implementations usually aim for speed but not cycle
accuracy. Another example for timing issues is the synchronization of multiple CPUs. It
is for example impossible to reproduce many race-conditions in multiprocessor workloads
with Qemu because it strictly serializes the execution of guest CPUs.

In summary, relying on an emulator or a virtual machine for debugging NOVA is not
feasible. Instead, the debuggee has to run on real hardware.

3.1.2 On-target versus Remote Debugger

A system debugger can reside in two locations: it can either be part of the target or it
can run remotely on another machine. In the following, I discuss these options in detail.

Kernel Debugger A kernel or hypervisor internal debugger can directly access the
hardware and kernel data structures without the need for a special debug interface. It
can also include features for application debugging. Fiasco’s JDB [MGL10], for example,
allows an application developer to upload symbol information to beautify the backtrace
of an application thread.

Nevertheless, kernel debuggers tend to be quite complex, as they suffer from the
limited programming environment available at kernel level. Higher-level services and
libraries such as graphical output or an USB (Universal Serial Bus) input driver are
typically unavailable especially in small kernels. Furthermore, these debuggers are seldom
online extensible. Every change will require a kernel recompilation and a time-consuming
restart of the debugging session. Finally, if debugging is a compile-time option, it cannot
be used to debug errors observed in the wild. However, if it is compile-in, debug code will
significantly increase the TCB. JDB, for instance, adds more than 30 KSLOC to Fiasco’s
codebase [Ste09].

Remote Debugger The alternative to a debugger on the target is one running remotely
on another machine with direct access to the kernel and the applications on the target
machine. This has the advantage that such a debugger can manipulate all parts of the
system and that its development can benefit from a richer programming environment.
Compared to an in-kernel debugger, the side effects of the debug session to the target can

88

3.1. REQUIREMENTS

be limited and the additional lines of debug code in the TCB of an undebugged system
can be minimized.

A remote debugger on the other hand requires a second machine and a fast transport
medium to access the target. However these requirements are not a real problem anymore,
as mobile devices are widely deployed and a wired or wireless network connection is
available on nearly all of them.

Application Debugging Most developers and users will not debug the kernel itself
but will target applications instead. In this case, it might be sufficient to implement the
debugger as a service that runs on top of the target kernel. The development of such a
debugger benefits from the richer programming environment as it can use existing libraries
and frameworks. Furthermore, it can be implemented in any programming language
available on the target. Finally, it would be relatively easy to replace. Nevertheless an
application debugger would not support the most-critical and the hardest to debug code
in a small system such as the kernel, the device drivers and all the services it depends on.

An application debugger has to rely on kernel debug interfaces! to control other appli-
cations and request information only available inside the kernel such as the list of threads,
the layout of address spaces, and the installed capabilities. Such a debug interface does
not exist in the NOVA hypervisor yet. Fortunately it will be very similar to what a remote
debugger needs, except that a local implementation needs to restrict the set of protection
domains a debugger can target. This keeps the isolation boundary of protection domains
and would not taint applications that are uninvolved in the debugging session.

Summary A debugger that runs inside the hypervisor will be complex and will increase
the TCB significantly. Furthermore, an application debugger alone is insufficient. I
therefore designed and implemented a remote debugger. Such a remote debugger can
run later directly on the system to debug applications without requiring a second machine.

3.1.3 Tracing and Interactive Debugging

Together with fail-stop debugging, tracing is one of the simplest non-interactive debugging
tools of an operating-system developer. Tracing can sometimes be just a printf to a serial
console, but may also be a tracebuffer in memory where entries can be added with little
overhead. A tracebuffer may be dumped later to a remote machine or may be inspected
directly on the target. Even though tracing is helpful, especially for debugging control-
flow-related issues, it has a fundamental limitation: either all changes to the machine
state are traced, which is often infeasible due to the sheer amount of data this produces,
or critical events may be missed. Because it is often unknown at the beginning of a debug
session, which events will lead to the bug, the tracing process has to be restarted multiple
times with varying tracing points in the code. This can make debugging cumbersome or
even infeasible in situations where it takes hours to reproduce the exact error condition.
Furthermore, extensive tracing will influence the timing of the system and the so called
heisenbugs will silently disappear [Gra85]. Thus, tracing cannot detect certain classes of
bugs.

Interactive debugging on the other hand allows to inspect a remote system and even
manipulate it. The debuggee is usually halted, to have a consistent view of the system.
Halting may be requested by the programmer or may be the result of some CPU internal
condition. The CPU, for instance, could have executed a certain instruction or modified

ILinux provides the ptrace system call and the proc filesystem for this purpose.

89

CHAPTER 3. TCB-AWARE DEBUGGING

a certain variable. Because the developer can refine his view on the system without the
need to rerun the debuggee, bugs can be found more easily.

Because tracing is often to simple to be helpful, I aim for a debugger that can inter-
actively inspect and manipulate the whole system.

3.1.4 Special Requirements for NOVA

The NOVA architecture leads to additional requirements for a system debugger. The
complexity of the system does not primarily originate from a single component because
it may be tested and debugged in isolation. Instead the interactions between different
components, the nesting of services and the legacy code in virtual machines are the main
reasons for unexpected behavior. It is therefore necessary to be able to inspect and
manipulate all layers of the system to understand and fix these bugs.

This can be achieved if the debugger provides a vertical view of the target system
that includes the hypervisor, the applications, the user-level drivers, the virtual machine
monitors, and the virtual machines itself. Even an application inside a virtual machine
should be accessible by the debugger. Thus, applications written in different programming
languages have to be supported as well.

Finally, NOVA is an open system where new components emerge and old ones are
plugged together in unforeseeable ways. To support such configurations the debugger
needs to be easily extensible.

3.2 The Vertical Debugger VDB

The last section showed that an interactive debugger is needed that provides a vertical
view of a remote system. It should allow to manipulate programs written in different
languages, which run on multiple CPUs in their own address spaces.

In the following, I explore whether GDB could be used for this task. I then describe
the VDB (Vertical DeBugging) architecture and reveal some implementation details.

3.2.1 Reusing GDB?

The de facto standard for remote OS (operating system) debugging is the GNU Debugger
(GDB) [SPS13|. There are multiple reasons for this: First, GDB is already known to
many developers, which limits the time that is needed to get familiar with the debug-
ging tool. Second, it has rich debugging features, which might need extensive work in a
novel debugger. Especially data-type inspection, expression evaluation, and source-level
debugging are commonly assumed as too complex to justify a new implementation. Fi-
nally, GDB supports many architectures, there are a lot of frontends to GDB, and the
remote protocol is relatively simple. Relying on GDB as debugger therefore minimizes
the development effort for an OS project.

However, the GNU Debugger has, due to its roots in Unix application debugging, a
couple of drawbacks when utilized as a full system debugger:

Single address space Most importantly, GDB has no distinction of virtual and phys-
ical memory. It also lacks the concept of multiple address spaces. This makes it difficult
to show physically addressed data structures such as page tables, impossible to handle
unpaged areas in the virtual address space, and difficult to set breakpoints in one instance
of a program but not in the other. However, multiple address spaces can be emulated

90

3.2. THE VERTICAL DEBUGGER VDB

manually to some degree by using multiple GDB instances in parallel. Nevertheless this
workaround is not a viable solution for NOVA, as it does not allow, for instance, to
efficiently inspect a single variable in all instances of a program.

Unsupported hardware registers GDB has no support for various hardware regis-
ters. For example, on the x86 architecture it does not support the control registers, the
shadow parts of the segment registers, and the model-specific registers (MSRs). Therefore,
it cannot detect processor mode changes, which is especially important when debugging
mixed 16-bit and 32-bit code. Furthermore, inspecting code that uses non-zero segment
bases is cumbersome, as breakpoints and memory reads do not work as expected as the
segment base has to be manually added to the corresponding debugger expressions. Be-
cause the segment bases and the MSRs are usually not accessible by GDB, developers
have extended the remote protocol to get at least read-support from their targets. Un-
fortunately, their extensions are not integrated into GDB and have to be redeveloped for
every new system.

Slow remote debugging protocol The remote protocol of GDB was designed for
the slow serial port and its core commands roughly resemble the ptrace() interface. A
lot of performance is already lost at this protocol level. For instance, memory reads are
requested in small chunks, encoded as hexadecimal string and the protocol requires a
round-trip before the next command can be issued. Thus, executing GDB scripts with
a remote target can be really slow. For instance, displaying the run queue of the NOVA
hypervisor with the GDB protocol without any intermediate caching may take multiple
seconds [Ste09]. Such a low performance makes interactive debugging impossible.

Large Size GDB has grown to over 400 thousand lines since its debut in 1986. This
number increases to over a million lines [LHGMO09], if the supporting libraries are counted
as well. Understanding, extending, and optimizing such a giant codebase is a tremendous
task. An alternative and simpler approach seems to be preferable over fixing GDB.

GDB is insufficient In summary, GDB is insufficient for systems debugging [Ste09].
Instead a new debugger is needed that should natively support address spaces on mul-
tiple CPUs, give access to all available hardware state, and is faster then GDB.

3.2.2 Design

Due to the results of the previous investigation, I started to develop my own debugger
named VDB (Vertical DeBugging). VDB is a portable and interactive systems debug-
ger that aims for a small TCB footprint. Figure 3.1 depicts the key components of its
architecture.

Target Driver and Debug Stub On the target side a target driver and a small debug
stub are added to the hypervisor. The driver programs the hardware and provides the
backend for the low-level transport-layer. The stub implements any higher-level protocol
on top of it.

Usually remote debuggers have only a monolithic debug stub running on the target.
Splitting them instead into two parts allows to customize them. For example, if a par-
ticular host debugger implementation will never issue remote I/O operations, the debug
stub does not need to support them. Similarly, the target driver can be customized to

91

CHAPTER 3. TCB-AWARE DEBUGGING

Host Target
presentation
User Interface
layer
middle Arch| ABI| OS

<
HiE

layer z86 | ELF |NOVA VMM

. . Initiator Target
Tanspor
P Stub Driver

Hypervisor

Transport Medium

Figure 3.1: The VDB (Vertical DeBugging) architecture.

the particular platform. The driver can even be omitted as shown in the next section, if
its tasks can be completely performed by hardware.

Transport Layer The transport layer abstracts from the actual hardware that is used
to connect the two machines. It consists of an initiator on the host side that sends requests
with the help of an host driver over the transport medium to a target driver.

The transport protocol is much simpler than the GDB remote protocol with its dozens
of commands. Instead it supports only three operations: to read and write from physical
memory as well as to signal the target machine. The simplicity of this protocol has a
couple of advantages. First, it improves the portability as the protocol is independent of
the target OS and the processor architecture. Second, it reduces the complexity of the
target driver and allows to support a large set of transport mediums with a minimum of
driver code. Third, its operations are sufficient enough so that higher level features such
as CPU register access or halting the target machine can be efficiently implemented on
top of it as shown in Section 3.4. Finally, most of the operations that inspect, analyze,
and manipulate a remote machine can be already performed on this low level.

Middle Layer The middle layer is the core of the debugger. The Architecture-specific
part abstracts from the machine architecture, for instance x86 or ARM. It understands
hardware-specific data structures such as page tables and provides virtual address spaces
to other debugger components. The A BI-specific part abstracts from the object file format
such as Unix ELF (Executable and Linkable Format) or Windows PE (EXE), and the
representation of debug information such as DWARF or PDB (Program Database) files.
It parses program files and provides this information to other debugger components. The
OS-specific part abstracts from the target OS that should be debugged. It provides the
ability to stop and continue a target as well as to manipulate CPU registers. Moreover,
it supports tasks that are frequently needed when debugging a particular target OS such
as producing a process-list or listing the runnable threads.

By splitting the middle layer at its natural dependency boundaries, portability is

92

3.2. THE VERTICAL DEBUGGER VDB

ensured. If, for example, the NOVA system is ported to ARM, only the architecture
dependent debugger code needs to be adapted. Similarly, if the debugger should target a
non-NOVA system, only the OS part is affected.

Presentation Layer The presentation layer visualizes the collected data and presents
it to the developer. An example is a user interface for interactive debugging.

Scripting A powerful scripting language provides extensibility and flexibility, as it al-
lows to develop new debugger components and plug them together in unforeseen ways.
It can also be used to automate common debugging tasks.

3.2.3 Implementation

I have implemented a prototype of the VDB architecture in Python. In the following, I
will describe some noteworthy details of it.

The implementation consists of approximately 3 KSLOC today. While the prototype
misses certain features such as single stepping or a sophisticated GUI, it is already usable
for many tasks such as:

e Getting access to the memory of a running OS via Firewire, the GDB protocol, or
ptrace.

e Parsing symbols and types from DWARF debug information attached to ELF bi-
naries [Eag07, DWA10, ELF95].

e Retrieving PDB files for Windows binaries from Microsoft symbol servers [SchO01].
e Evaluating data structures symbolically.
e Accessing deeply nested address spaces such as an application inside a VM.

e Viewing certain x86 data structures such as page tables, GDT, TSS, and the VGA
text screen.

Python

I have chosen Python as programming language for VDB because of its excellent rapid-
prototyping properties. Python programs are compact, easily extendable, and the test
cycles are short.

An implementation in a scripting language will surely be slower than one written in a
low-level language like C. Nevertheless, performance was seldom an issue. The only case
where Python came to its limits was the decoding of DWARF debug information. While
this code might be a good candidate for a reimplementation in C, I've chosen the simplest
way out and just cached the results between different runs.

Python supports several ways to interface with code written in other programming
languages. A simple approach is os.popen that executes an external program in another
process. It establishes pipes to stdout and stdin that can be used to communicate with
the process. I used this technique to demangle C++ symbols and for disassembling code
with objdump.

A quite elegant way to use system libraries in Python programs provides the ctypes
module. Figure 3.2 shows how it can be used to implement a ptrace binding within just

93

CHAPTER 3. TCB-AWARE DEBUGGING

libc = ctypes.CDLL(ctypes.util.find_library("c"), use_errno=True)

def ptrace(command, pid, addr = 0, data = 0):
if command == PTRACE_PEEKDATA:
data = ctypes.byref (ctypes.c_long(data))
if 1ibc.syscall(SYSCALL_PTRACE, command, pid, addr, data):
raise Exception("ptrace error %s"/(os.strerror(ctypes.get_errno())))
if command == PTRACE_PEEKDATA:
return data._obj.value

Figure 3.2: Implementation of a ptrace(2) binding in Python. This requires only a handful of
lines when using the ctypes module.

eight lines of code. Note that I could not have used libc.ptrace directly because it
overloads the error code with the result of PEEKDATA.

Finally, one can write extension modules for Python in C and dynamically load them
at runtime. However, I have avoided this solution due to its complexity.

Abstractions

The VDB implementation is internally based on three abstractions: spaces, variables, and
viewers.

A space allows to read and write to a region of memory. The space interface is provided
by all transport layer implementations. Notable examples are the Firewire and ptrace
target as well as a space that implements the GDB debug protocol. Page tables and
caches are special spaces because they can be stacked. It is therefore possible to describe
a space hierarchy of a Linux program in a VM (virtual machine) running on the NOVA
hypervisor inside Qemu.

A wariable associates a type such as uint16 or char to some region in a space. Vari-
ables allow to evaluate expressions symbolically. While it is possible to synthesize types
by hand, they are usually taken from the DWARF debug information [Eag07]. DWARF
describes independent of the programming language the types and variables in a binary.
Many compilers already generate DWARF output.

The possibility to freely and dynamically generate classes in Python allows to craft a
local shadow object for every variable in a remote program. Members of the variable are
attributes of the shadow object. Overloaded operators lead to a compact representation:
the unary plus yields the address, the bitwise-negation the type and a call returns the
value of a variable. See Figure 3.3 for an example how this can be used to evaluate a
single linked list in a straightforward way.

A viewer renders a data structure in a human readable way by producing a stream
of lines. I relied on the generator feature of Python [PEP| to implement viewers with
a minimal latency. A viewer yields the output it produces line by line to the caller.
This is similar to pipes on a shell, except that the data is transferred not byte- but line-
wise. Furthermore, a generator in Python can be easily aborted and it can even throw
exceptions.

There are viewers that are specific to the operating system or machine architecture
such as the capability space viewer for NOVA or the page-table viewer of x86. Additionally
there are generic viewers that for instance recursively show members of nested classes.
Viewers can be stacked, which allows to decorate an anonymous disassembly with a set
of symbols or to filter another viewer via regular expressions similar to grep.

94

3.3. DEBUGGING WITHOUT A TARGET DRIVER

def show_vma_list(space):

start = +space.vma_head

vma = space.vma_head.list_next()

print "VMA in", (“space).name

while True:
print vma.node_base(), vma.node_order(),
print vma.node_type(), vma.node_attr(), +vma
vma = vma.list_next() ()
if +vma == start:

break

Figure 3.3: Symbolic expression evaluation. The function prints the virtual memory area (VMA)
list, which the NOVA hypervisor keeps for the memory and capability space of every protection
domain.

User Interface

VDB has a simple console interface. Input is provided by 1libreadline with command his-
tory and tab completion of expressions. It supports shell-like tools such as less, hexdump,
and grep to handle large output in a reasonable way. VDB also implements simple timer-
based dumps. This can be used to show the state of a UTCB (User Thread Control
Block) as it changes dynamically or to periodically monitor a remote VGA console.

Future Work

VDB was already useful to detect dozens of bugs. However it is surely not complete yet.
Most importantly, VDB lacks a graphical user interface to inspect multiple data structures
in parallel. This GUI could be similar to the Data Display Debugger [ZL96]. Second,
the inspection of the thread state should be more detailed. Evaluating the corresponding
DWARF expressions should allow to identify local variables on the stack even in nested
calls. Third, the performance, especially when parsing DWARF information, needs to be
improved. Finally, the support for Windows debugging is highly experimental. It should
be fully integrated in the existing debugger core and it should be extended to speak the
serial protocol of the windows kernel debugger [RS09] to be able to receive debug messages
from a virtual machine running Windows.

3.3 Debugging without a Target Driver

A remote debugger needs a transport medium to access the state of a debugged machine.
The transport medium chosen for this task does not only have an impact on the perfor-
mance and cost of the resulting system, but also on the lines of code that are needed to
drive the hardware. A fast transport medium supports use cases besides debugging. It
may also be useful for trace extraction, remote booting and the implementation of remote
services.

In this section, I will show that Firewire excels at these tasks and that a creative use
of its features allows to reduce the TCB impact, so that in the best case, no driver code
is required in the target after initializing the platform.

95

CHAPTER 3. TCB-AWARE DEBUGGING

3.3.1 Choosing the Hardware

In the following, I discuss the advantages and disadvantages of choosing a serial line,
Ethernet, USB, or Firewire as transport medium. Other options such as an In-circuit
emulator (ICE), a self-built PCI (Peripheral Component Interconnect) card, IPMI Serial
over LAN, and Intel’s Thunderbolt technology can be easily dismissed due to their high
costs and limited availability.

The Serial Line

The de-facto standard to connect to an OS development machine is the RS232 serial line,
due to the following reasons: On one hand, programming a serial port is easy and no
complicated software stack is needed. Thus it can be used early in the operating systems
implementation phase to give feedback to an OS developer and help to debug the system.
On the other hand, the hardware is cheap and was, until recently, already built into most
main boards.

However, a serial port is not the best choice for debugging, tracing, and as a general
support interface anymore. Most important, its relatively low speed (typically less than
1 Mbps) forbids certain use cases such as retrieving a large memory dump or performing
a live analysis of a high-volume trace on another machine. Moreover, as serial ports are
usually not built-in anymore, they have lost the advantage of the cheapest hardware. For
these reasons, the serial line is not the right choice. The transport medium has to be
faster.

Network Cards

NICs (network interface controllers) might be a good alternative to the serial port since
fast and gigabit Ethernet as well as wireless networks promise at least two orders of
magnitudes more bandwidth. Additionally, the hardware is already present on most
platforms.

On the other hand, a large number of different NICs are deployed. Linux for example
supports more than a hundred Ethernet adapters, including at least three dozen gigabit
NICs. Unfortunately, most of them come with their own interface and require a dedicated
driver. The large set of drivers makes it infeasible to use Ethernet as transport medium
in a small OS project. In fact, solving the device driver problem is beyond the scope of
this thesis and rather a part of future work.

A transport medium should require only a small set of of drivers.

USB

Another alternative is USB. With a nominal speed of 480 Mbps (USB 2.0) it is fast
enough for many debugging scenarios. Furthermore, USB ports are readily available on
every recent PC, thus expansion cards are seldom required. However, two hosts cannot
be directly connected with standard cables, due to the master/slave architecture of USB.
Instead a special link cable is needed. This makes a USB based solution more expensive
than an Ethernet based one.

Theoretically, there are only a few drivers needed to support the most widely deployed
USB chips (e.g. OHCI, UHCI, and EHCT). Nevertheless, Linux 2.6.34 contains approx-
imately 50 KSLOC for the USB host drivers alone, which form the lowest layer of the
much larger USB software stack. Several thousand lines of a USB stack are a significant
burden for an OS aimed at a small TCB. Fortunately, there exists an extension to the

96

3.3. DEBUGGING WITHOUT A TARGET DRIVER

EHCI standard, namely the USB debug port which has a much simpler programming
interface and does not require a full USB software stack. This minimizes the code, but
also significantly limits the transfer speed to approximately 1 Mbps, which makes it too
slow to be a real alternative.

USB would be a good choice if it had a smaller software stack.

Firewire

Firewire, officially known as IEEE-1394 [IEE(S], is a high speed serial bus interface. Up
to 63 devices can be connected to a single bus. Bridges allow to connect multiple busses.
Firewire supports isochronous as well as asynchronous transfers with speeds between 100
and 3200 Mbps. The 400 Mbps and 800 Mbps versions are the most common ones.
Thus Firewire is approximately three orders of magnitude faster than a serial line. See
Section 3.3.5 for a performance evaluation of Firewire.

Most Firewire controllers follow the OHCI (Open Host Controller Interface) specifi-
cation [OHCO00]. This is an important advantage of Firewire, as only a single driver is
required for all cards. Furthermore, the designers of OHCI moved most of the bus man-
agement into hardware. A Firewire/OHCI driver will therefore be much simpler than an
USB/UHCI one.

Firewire does not employ a master/slave architecture like USB. Instead all nodes on
a bus are equal. Therefore, multiple machines can be directly connected with standard
cables without requiring special hardware. The only disadvantage of IEEE-1394 seems
to be its falling popularity. New machines do not necessarily come with a Firewire port
anymore. Nevertheless, this is not serious drawback as a Firewire expansion card is as
expensive as a USB-link cable or a missing serial port.

In summary, Firewire is faster than a serial port, requires less driver code than USB
or Ethernet, and the hardware costs are moderate. Consequently, I employed Firewire as
transport medium to debug other machines.

3.3.2 Remote Access Without Runtime Code on the Target

In the following, I will discuss how the target driver can be reduced by using Firewire.
First, I describe how remote memory can be accessed without involving a driver. Second,
I show how this mechanism can be used to inject interrupts as well.
Memory Access
The programming model of Firewire/OHCI is similar to the one of a NIC:

1. The driver configures a RAM region for incoming requests.
If a request is received by the card, it transfers the data into these receive buffers.

The card notifies the driver by raising an IRQ (interrupt request).

The driver looks at the request, creates an answer and puts them into a reply queue.

AN S

The card asynchronously sends the reply.

Involving software on every request can be a bottleneck for high performance scenarios.
Therefore, OHCI based controllers allow to handle physical DMA (direct memory access)
requests completely in hardware. This feature makes all or parts of the main memory of a
machine accessible to a remote node. Write requests that target this area are transferred

97

CHAPTER 3. TCB-AWARE DEBUGGING

autonomously by the Firewire controller via DMA into main memory. Similarly, the
controller replies to a read request with data directly from RAM.

Using physical DMA is especially elegant for a debugger because it gives access to
a remote host without involving any target driver. This allows to inspect even a stuck
system. Moreover, it is minimally intrusive because no interrupt disturbs the program
flow and no driver code will pollute the CPU caches.

Allowing any node on a Firewire bus to autonomously access the physical memory of a
machine is a security risk. Many publications, for instance [BDKO05], have shown that this
can be used to compromise the operating system and to steal private data. The impact
of this threat is quite low in our case, as we usually debug our system in a development
environment and therefore need to have access to physical memory anyway. However, in
a production system it might be necessary to restrict debugging access to a limited set
of users. With OHCI’s features to selectively allow certain nodes to use physical DMA
and to run handler code for received messages, it is possible to implement a challenge
response protocol between two Firewire nodes. A handler for these messages would only
enable physical DMA for a particular node after successful authentication.

Interrupt Injection

Having access to remote memory is necessary but not sufficient for a fast debugger, as
any higher level debugging protocol between target and host would have to use polling to
detect incoming messages. An implementation that aims for better performance needs a
way to signal a new message to the target.

In 2007 I discovered [KauO7a] that Firewire DMA can be used to trigger MSIs (Message
Signaled Interrupts). MSIs are 4-byte messages that target a certain address range?
[Bal07, SDM13]. They can be send as a normal DMA write transaction by any device on
the PCI bus. The PCI host bridge will forward these messages to the system bus where
all CPUs will receive it. A CPU interprets an MSI as a new interrupt vector. MSIs can
also trigger a NMI (non-maskable interrupt), which is especially important for a debugger
that wants to examine interrupt-disabled kernel code paths. MSIs have been supported
for a couple of years now since they were introduced on the x86 platform with Intel’s P4
and AMD’s K8 CPUs.

Thus, the remote CPUs can be directly signaled with Firewire through MSIs. Polling
on requests and interrupt forwarding to other CPUs is not required.

3.3.3 Surviving a Bus-Reset

Unfortunately, physical DMA stops working as soon as the Firewire bus is resetted. A
bus-reset occurs, if a new device is attached or an old one leaves the bus. They will
happen often in an OS debugging environment where machines are constantly rebooted.

During the bus-reset phase, the new topology of the bus is detected and unique node
identifiers are assigned to the devices. These identifiers are later used to target requests
to particular nodes on the bus. If a reset occurred, an OHCI driver needs to clear the
bus-reset indicator in an hardware register, before physical DMA will work again®. Thus,
target driver code has to run after a bus-reset, which negates the benefit of Firewire to
work without runtime code. Furthermore, a debugger would need to be written very

20n x86 they are mapped to the standard Local APIC (Local Advanced Programmable Interrupt
Controller) address range of OxFEExxxxx.

3Drivers usually initialize the physical request filters as well. This step can be omitted, if accesses
from non-local busses are permitted and the requests are sent with a different bus number.

98

3.3. DEBUGGING WITHOUT A TARGET DRIVER

Descriptor 1

Size: 4
Address
Descriptor 2

Size: 512

Address
Packet .-
Header |.-~ Buffer
Payload DMA Data

Figure 3.4: Self-modifying DMA. The first DMA descriptor specifies that the header of the
incoming packet should be moved in the address field of the second descriptor. The second DMA
descriptor defines that the payload of the packet should be moved to a buffer residing at this
address.

carefully, to not disturb the driver during a bus-reset and loose the connection to the
remote machine.

In the following, I will describe a novel technique that allows remote DMA even after
a bus-reset without involving a driver anymore.

Self-modifying DMA
While searching for a solution to the bus-reset problem, I made two observations:

1. Firewire supports not only asynchronous transfers but also isochronous ones. Iso-
chronous data is broadcasted over one of 64 channels and is not addressing a par-
ticular node on the bus. It can therefore be received independently of a bus-reset.

2. A Firewire/OHCI card transfers received packets autonomously via DMA into main
memory. DMA descriptors are memory structures that define the destination ad-
dress for these transfers.

The fact that the DMA descriptors reside itself in physical memory, can be exploited in
the following way: If the header of the packet overwrites the address of the next DMA
descriptor, which is afterwards used to transfer the body, the data in the packet itself
chooses its destination. I call this technique self-modifying DMA, in short SMD, as the
first part of a DMA program modifies the destination of the second part. See Figure 3.4
for an example.

Please note that SMD is independent of Firewire and can be implemented on top of any
device that supports DMA, reads DMA descriptors from main memory, and receives ex-
ternal packets such as USB or Ethernet. The implementation of SMD on Firewire/ OHCI
cards is especially elegant due to the following four reasons. First, DMA programs can
be never-ending because the DMA descriptors are implemented as a linked list instead of
a circular buffer. Thus, a loop in the descriptors can be made by pointing to a previous

99

CHAPTER 3. TCB-AWARE DEBUGGING

descriptor in the list. Reprogramming the card to recycle already used descriptor slots is
therefore unnecessary. Second, the DMA engines on OHCI cards can perform scatter/-
gather DMA with byte granularity. This makes the technique robust as only the necessary
parts such as the address of the next DMA descriptor can be overwritten through SMD.
Third, the packet data can be received in raw mode without the need to strip off any
header or footer. Finally, there is a special receive mode, called packet fill mode where
a fixed number of DMA descriptors is used to define the destination of a single packet.
Descriptors that are not needed for a small packet, are simply ignored. This allows to
receive variably sized packets without any alignment restrictions.

SMD provides write-only access to a remote machine; memory cannot be directly read
with it. However, read-access can be implemented on top of it by using SMD to modify
a running isochronous transmit DMA program. To distinguish answers from different
nodes and to detect outdated messages, the node replies to isochronous read requests not
only with the data but also with its Global Unique ID and the requested address.

Currently, SMD on Firewire can access only the first 4 GB of main memory because
the addresses fields in DMA descriptors used by OHCI v1.1 are only 32 bits wide. The
whole 48 bit address space of physical DMA can therefore not be used. Nevertheless, the
technique is sufficient to inject code, trigger MSIs and recover the physical DMA path
after a bus-reset occurred.

3.3.4 Implementation

The target Firewire driver is quite simple. It consists of approximately 200 SLOC (source
lines of code) and runs once at boot-time just before the hypervisor gets control. It
searches for Firewire cards on the PCI bus and initializes them to allow physical remote
DMA. Tt also programs the isochronous DMA engines for self-modifying DMA.

If an IOMMU (I/O Memory Management Unit) is used by the hypervisor, a Firewire
card cannot freely access memory. Disabling the IOMMU in the debugged system is not
an option, as this would make features such as pass-through PCI devices infeasible. In-
stead an exception needs to registered at the IOMMU. This issue can be easily solved by
extending the DMA Remapping ACPI table (DMAR), which the BIOS (Basic Input/Out-
put System) uses to announce its own DMA regions to the hypervisor. The hypervisor
uses this table as a white list during initialization time and will program the IOMMU
accordingly.

Similarly, interrupt injection of a Firewire card can be inhibited by the hypervisor.
Requesting the corresponding interrupt vector from the hypervisor would be the natural
choice, however the NOVA interface does not allow to assign the NMI vector to any device.
Changing the interrupt redirection table via remote DMA is not an option as the IOMMU
may cache entries. Because interrupt redirection is currently only a security feature, but
has no additional functionality yet?, we can simply disable it in the hypervisor.

3.3.5 Firewire Performance

The performance of the debugger depends on the speed of the transport medium. Firewire
has a nominal bandwidth of up to 3200 Mbps. However, protocol overhead and imple-
mentation issues will limit the available application throughput. Since the literature
misses a consistent study on the performance that can be reached with Firewire, I have
benchmarked different low-cost 400 Mbps cards (S400).

4This does not hold true anymore with the introduction of the x2APIC.

100

3.3. DEBUGGING WITHOUT A TARGET DRIVER

S400 =
P
— 16M
o
=
é 4AM
>
2
< 1M
=
B
T 256K
=
M % =y
64K o
g’
4 16 64 256 1024 4096
Packet Size (bytes)
- Isochronous —— Write NEC --©-- Write Ricoh
Read NEC -~ Read Ricoh

Figure 3.5: Firewire S400 Throughput

S400 Results

The microbenchmark transfers a large amount of bulk data between two directly con-
nected nodes. To minimize the influence of driver and OS, I excluded scenarios where the
hardware could not fulfill the requests on its own. I measured asynchronous reads and
writes into the physical DMA region and isochronous transfers where DMA engines where
programmed beforehand. I varied the packet size during the measurements and ran the
benchmarks multiple times with half-dozen different controllers. The results for all chips
are quite similar. However, in general newer chips achieve a better performance. The
results for the controller with the best (Ricoh 1180:e832) and the worst (NEC 1033:00e7)
performance are shown in Figure 3.5 and Figure 3.6.
From these figures the following points are worth a detailed look:

Isochronous Transfers The nominal bandwidth of S400 is approximately 400 Mbps
This corresponds to 6144 bytes that can be sent every period of 125us. The
IEEE 1394 specification defines that 80% of the bandwidth are guaranteed to be
available for isochronous transfers. This would be 320 Mbps or one packet of
4915 bytes every period. The actual implementation limit for isochronous traffic
is higher and depends on the bus topology.

Over a single point-to-point link I was able to successfully transfer packets with
any size between 4 and 5700 bytes. This is equivalent to 364 Mbps or 93% of the
nominal speed of S400.

Controller Dependencies The throughput of asynchronous transfers depends on the
Firewire controller. The fastest S400 controller can sustain writes with nearly
190 Mbps whereas the worst of the measured controllers barely reaches 100 Mbps.

101

CHAPTER 3. TCB-AWARE DEBUGGING

Packet Latency (usec)

175 /a
150

125 = 1 s = aEis = & = 7 _ B8
100
ey
75 X
e
50 <
25
4 16 64 256 1024 4096
Packet Size (bytes)
- Isochronous —— Write NEC --©-- Write Ricoh

Read NEC -~ Read Ricoh

Figure 3.6: Firewire S400 Average Burst Latency

Similarly, the asynchronous read throughput varied between 130 and 100 Mbps.
Isochronous transfers on the other hand do not dependent on the controller.

Isochronous vs. Asynchronous The bandwidth of isochronous transfers is nearly two

times higher than what can be achieved with asynchronous transfers. One reason
is that isochronous requests have the priority on the Firewire bus, to ensure their
bandwidth guarantees. Asynchronous transfers on the other hand have to use a slow
arbitration protocol. A controller has to wait quite a long time before it can take bus
ownership and send asynchronous data over the wire. Finally, chip designers might
have tweaked their chip for isochronous transfers to be specification compliant.

Reads vs. Writes Asynchronous reads are usually slower than writes. The NEC con-

troller was the only exception to this rule. A reason for this might be that most
Firewire controller implement posted writes to buffer the write request and send the
reply before the data reaches main memory. This allows to piggyback the reply on
the acknowledgement. A read request, on the other hand, cannot be acknowledged
and replied in one step because the controller has to wait for the data to arrive from
main memory. Even if the controller has received the data, it cannot immediately
reply with it. Instead it has to wait at least an arbitration gap to gain bus ownership
again.

4-byte writes It may look surprising that 4-byte writes are faster than 8-bytes ones.

However, they are send as quadlet instead of block-write requests over the bus.
This allows a more efficient encoding and requires less data to be transferred per
request.

102

3.4. MINIMIZING THE DEBUG STUB

Beyond S400

Unfortunately, I couldn’t get the hands on Firewire cards that are faster than 400 Mbps.
However, the newer Firewire standards up to S3200 are already approved and hardware
for S800 is purchasable now. Even if I was not able to measure them, the specifications
allow to estimate the effect of the higher nominal speeds.

The 80% bandwidth guarantee of isochronous transfers holds for all Firewire versions.
Thus, S800 guarantees up to 600 Mbps (75 MB/s) and S3200 up to 2400 Mbps (300 MB/s)
for isochronous traffic. This is implemented by keeping the very same timing constraints
(a period is still 125 ps long) but increasing the maximum size of a packet that can be
send in a single period. Similarly, the maximum size of asynchronous packets are doubled
with every version.

Furthermore, S800 introduces a new arbitration protocol. This protocol allows to per-
form bus arbitration in parallel to the data transfer by relying on an additional cable pair.
This significantly reduces the transfer gaps and thereby the overhead of asynchronous
traffic. I therefore expect that S800 more than doubles the achievable asynchronous
bandwidth.

Summary

Isochronous transfers can fully use 80% of the nominal bandwidth. This corresponds to
320 Mbps for the 400 Mbps version of the Firewire standard. Between 100-200 Mbps
can be achieved with asynchronous transfers, depending on the used Firewire controller.
Finally, the newer Firewire standards will improve the performance significantly.

3.3.6 Related and Future Work

Firewire was used with various existing debuggers in the past. The Windows kernel
debugger for instance can use serial ports, USB debug cables and Firewire to access a
remote machine [Gre04]. Similarly, Fireproxy [Kai08] on Linux allows to tunnel the GDB
remote protocol over Firewire as an alternative to the serial port of KGDB [KGD]. On
FreeBSD the dcons console driver allows to use GDB remotely [Shi08]. However, in these
projects, Firewire was solely employed to tunnel an existing remote debug protocol over
a faster medium. Firewire’s ability to directly access the machine without any protocol
was not used. One reason might be that the ability to send MSIs over Firewire is largely
unknown and that no solution to the bus-reset problem was previously known.

Firewire is useful in a development system for other scenarios besides debugging. I use
Firewire regularly for booting and retrieving large amounts of trace output from remote
machines because it is faster than 100 Mbps Ethernet. Furthermore, I plan to tunnel
service requests over Firewire to give a development machine network and remote disk
access when the corresponding hardware drivers are missing.

3.4 Minimizing the Debug Stub

In the previous section, I showed that remote memory can be accessed with Firewire
without a target driver in the TCB. This leaves the debug stub on the target system.
Unfortunately, it cannot be omitted because it is necessary for debug requests that require
the cooperation of the debugged CPU®. Examples of such requests are:

5Relying on additional hardware such as an In-circuit Emulator would also solve the problem, however
this is to expensive to be employed in the large scale.

103

CHAPTER 3. TCB-AWARE DEBUGGING

Stopping and restarting a CPU,

Reading and writing CPU registers,

Flushing cached data to memory, and
e Accessing platform devices.

Currently, debugger developers would add a large debug stub directly to the OS kernel
that supports all needed requests. However, linking the stub to the kernel makes it part
of the TCB even in a system that is never debugged. Moreover, this approach is inflexible
because it does not allow to add new features in a backward compatible way. Old kernel
versions will never support new debugging features.

I developed another technique instead: by injecting a small stub into a running system,
it will not be part of the TCB and can be specialized to the debug problem. Such stubs
need only a handful of instructions. They can be independent of the target OS, which
minimizes the implementation and testing effort.

Note that Julian Stecklina already presented in his master thesis how a monolithic
debug stub can be injected from a remote machine into the NOVA hypervisor [Ste09]. I
significantly improved his work by splitting the stub in multiple pieces and reducing the
complexity of them. I also simplified the injection procedure by performing more steps
in the debugger and not in the stub itself.

3.4.1 Design of a Halt and Resume Stub

In the following, I will show that a very small debug stub is enough to halt and resume
a CPU. More functionality can be provided on top of it by injecting additional debug
plugins into the target. At the end of this section, I describe what is necessary to debug
the NOVA hypervisor with this stub.

The debug stub will be triggered by a NMI. It first saves the CPU registers to memory
to make them available to the remote debugger. It then halts the CPU until the next
NMI is received. Finally, it loads the CPU registers from memory to resume execution.

I have chosen an NMI instead of a normal IRQ to be able to debug kernel code that
runs with disabled interrupts. While this increases the applicability of the stub, it also
leads to a serious problem. The NMI can interrupt the system in a state where not
enough stack is available to save the previous CPU state, especially the current stack and
instruction pointer. The NOVA hypervisor for instance uses the execution context (EC)
as stack during kernel entry for a couple of instructions to push the user-level registers
directly into the EC. If an NMI hits one of these instructions, it can easily corrupt the
EC data structure.

The NMI handler should therefore execute on its own stack. A TSS (task state
segment) can be used for this purpose in 32-bit mode®. An NMI leads then to a hardware-
task switch, which saves the current CPU registers in the previous TSS (RUN-TSS) and
loads new register values from the NMI-TSS including a new stack and instruction-pointer.
The general-purpose registers need not to be explicitly saved and restored in the stub.

The CPU will be resumed at the previous state by switching back to the RUN-TSS
with iret. Unfortunately, a hardware-task switch does neither save the CR3 (control
register #3) nor the LDT (Local Descriptor Table) register, but just loads them from
the destination TSS. It is therefore necessary to fix these two fields in the RUN-TSS

6In 64-bit long mode, where the hardware-task switch is not supported, an interrupt stack can be used
instead.

104

3.4. MINIMIZING THE DEBUG STUB

halt: hlt // wait for an NMI
jmp halt // repeat on the next invocation
nmi : dec ‘Yesi // count NMIs
js doiret // filter NMIs that would resume too early

xchg Yeax, 32(ebp) // xchg EIP in the running TSS
xchg %ecx, 36(%ebp) // xchg EFLAGS

xchg %edx, 76(%ebp) // xchg CS

xchg %ebx, 80(%ebp) // xchg SS

doiret: iret // return to the running TSS to halt or resume
jmp nmi // repeat on the next NMI

Figure 3.7: A debug stub to halt and resume a CPU can be implemented within ten instructions.
The NMI code is executed on its own T'SS and switches between running and the halt loop. The
registers and the resuming CR3 are initialized from the debugger.

before the previous state can be resumed. The fix-up could be directly done from the
NMI handler. However, this would surely complicate the stub, as this code is highly OS
dependent. The debugger therefore corrects these values from the outside, just before it
sends the NMI to resume the CPU.

Halting the CPU

Halting the CPU while running on the NMI-TSS is not possible because NMIs and normal
interrupts need to be blocked while this T'SS runs. Thus, the debugger would not be able
to signal continuation to the debug stub except through shared memory. However, polling
on memory wastes a lot of CPU resources and consumes power unnecessarily.

I figured out that the RUN-TSS can be reused for halting the CPU7. This means the
NMI handler just flips the instruction pointer and segments in the RUN-TSS with new
values, to let it point to the hlt-loop. It then returns to the RUN-TSS. A second NMI
then flips these values back. The NMI handler switches in this way between the halt and
run state.

Please note that an unconditionally switch between these two states is not robust
against spurious NMIs generated by watchdogs or overflowing performance counters. To
filter these unwanted wakeups out, the number of received NMIs can be counted and a
resume can be aborted if this value is below a threshold.

Implementation

A 32-bit stub code implementation is shown in Figure 3.7. The control flow is the follow-
ing:

1. The stub code is injected into the target machine by writing it into remote memory.
The NMI-TSS is initialized and the interrupt descriptor table points to it.

2. The CPU is signaled with an NMI to halt execution.

"Previous work required another TSS for this purpose [Ste09].

105

CHAPTER 3. TCB-AWARE DEBUGGING

3. The CPU performs a hardware-task switch to the NMI handler. The NMI handler
flips the EIP, CS, SS, and EFLAGS in the RUN-TSS to the hlt-loop. It then
returns with another hardware-task switch to the RUN-TSS.

4. The CPU executes hlt in a loop with interrupts disabled. This effectively stops the
CPU and saves power. The debugger can inspect and manipulate the system.

5. The debugger fixes the CR3 as well as the LDT values in RUN-TSS and triggers an
NMI to break out of the hlt.

6. The CPU performs a hardware-task switch to the NMI-TSS. The NMI handler
flips the previous values of EIP, CS, SS, and EFLAGS in the RUN-TSS back. The
CPU is resumed at the same place it was interrupted before by returning with a
hardware-task switch to the RUN-TSS.

The stub code largely benefits from the hardware-task switch, as this already saves the
general-purpose registers in the RUN-TSS and thereby makes them available to the de-
bugger. Initializing the data structures and performing the fix-up from the outside sim-
plifies the stub further. Consequently, it consists of only ten instructions that compile
to 20 bytes compared to approximately 250 SLOC for an injectable stub in the previous
version [Ste09].

Adding More Features

The debug stub does very little itself, except stopping and resuming a CPU. However, it
solves one of the major problems. It puts the CPU in a known state where the system can
be inspected and safely resumed afterwards. Any additional code can then be directly
executed in the NMI-TSS context. The following steps show how other debug features
can be supported by letting a halted CPU execute a so called debug plugin:

1. Save a copy of the NMI-TSS

2. Inject the plugin

3. Modify the NMI-TSS to point the EIP to the plugin and set the input parameters
4. Trigger an NMI and wait for completion

5. Read result registers from NMI-TSS

6. Restore the saved NMI-TSS values

Examples for debug plugins can be found in Figure 3.8. Note that all CPU registers
can be made accessible in this way. In fact, all debugging requests, mentioned at the
beginning of this section, should be implementable within such simple code.

3.4.2 Debugging a NOVA system

Three things are necessary to use the debug stub within a kernel or hypervisor such as
NOVA. First, memory has to be found and allocated in the kernel address space to hold
the injected code as well as all the needed data structures. Second, the code as well as
the data has to be injected and the necessary pointers have to be set, such that an NMI
invokes the stub code. Finally, the OS-specific fix-up code in the debugger has to be
written that corrects the CR3 and LDT fields in the TSS.

106

3.4. MINIMIZING THE DEBUG STUB

// save debug registers // save the FPU state

mov %drl, %eax clts

mov %dr2, %ebx fnsave (Yeax)

mov %dr3, %ecx iret

mov %dr4, Yedx // flush the current VMCS to memory
mov %dr6, %esi vmptrst (%eax)

mov %dr7, %edi vmclear (%eax)

iret iret

Figure 3.8: Three debug plugins that save the debug registers, the FPU (Floating Point Unit)
state and flush the VMCS (VM Control Structure) to memory. They can be injected into a
target and executed as NMI handler from a CPU halted with the debug stub.

Free Space

The easiest way in the NOVA hypervisor to gain free memory is to reserve it in the linker
script. Unfortunately, this requires changes to the source code, which are unlikely to be
merged upstream. Another solution would be to remotely allocate memory from one of
the kernel allocators. However, this would require to synchronize with running CPUs and
to have intimate knowledge of the corresponding data structures. Instead, I observed that
there is enough slack space in the layout of the hypervisor address space. The CPU-local
memory region for instance leaves currently 788 bytes empty. Similarly, the kernel stack
resides on a 4k-page, but only a fraction of it is actually used during execution.

A new TSS can be allocated in any of these areas. Unfortunately, this would also
require a new GDT (Global Descriptor Table) because the current one does not have any
free entry to point to it. Additionally, the CPU would have to execute an 1gdt instruction
before the new table can be used.

Instead I favored a simpler approach and reused the double-fault TSS to run the
NMI handler. The double-fault TSS previously printed only a panic message on the
screen when an unrecoverable error occurred. Reusing it for the debug stub has no
functional consequence except that it would halt the CPU in these cases instead of printing
a message.

I also discovered that the stack pointers in the T'SS, which are required for interrupt
handling, will never be used in the NMI-TSS because the NMI handler always runs with
TRQs disabled. Interestingly, these 24 bytes are enough to hold the instructions of the
whole debug stub. It is therefore unnecessary to allocate any memory in the NOVA
hypervisor, thanks to the small size of the stub.

Extending VDB

Putting the debug stub in the NMI-TSS avoids not only changes in the source code, but
also simplifies the injection procedure. In fact only the two T'SS need to be accessible
in the debugger to inject and use the debug stub. Both reside in the hypervisor address
space in a region that is reserved for CPU-local data. The physical address of this region
can be found by using the boot page tables to read the PD: :root data structure, which
points to per-CPU page directories, which include the CPU-local memory. The DWARF
support in VDB helps to get the addresses for the symbols and to traverse the pointers as
well as the PD data structure. There is no need to change the IDT (Interrupt Descriptor
Table), as the NMI entry already points to the double-fault TSS. In summary, injecting
the stub code and initializing the NMI-TSS requires less than 20 lines of code in VDB.

107

CHAPTER 3. TCB-AWARE DEBUGGING

The TSS fix-up code for the NOVA hypervisor is quite simple as well, due to two
reasons. First, the LDT feature of the CPU is not used in NOVA. Instead, the LDT field
is always zero and need not to be corrected. Second, the previous CR3 can be recovered
from the Pd: :current variable. The fix-up code is therefore only a single line in VDB.

3.5 Summary

I showed in this chapter how an operating system like NOVA can be debugged in a
TCB-aware way. First of all, I analyzed the requirements and found that only a remote
debugger would support most use cases without increasing the TCB. Second, I presented
the design and implementation of VDB, a remote debugger that allows symbolic debug-
ging of operating systems and its applications. Third, I described how Firewire can be
leveraged to get high-speed access to the memory of a remote machine without involv-
ing any runtime code. Finally, I developed a minimal stub that can be injected into a
production system to debug it without increasing the TCB beforehand.

108

Chapter 4
Simplifying the Compiler

Concentrate on the essential, purge the rest.

N. Wirth and J. Gutknecht in Project Oberon [WG92|

In the previous chapters, I have shown how the lines of code of different parts of an
operating system can be minimized. In the following, I will look at the compilation process
that generates binaries from source code and describe how the size of the compiler as well
as the build tools can be reduced.

The compiler is usually assumed to be trusted in projects aiming for a small TCB
(Trusted Computing Base), even though any defect in it will have a large security impact.
Thompson for example explained in his famous Turing Award lecture [Tho84] that a
subverted compiler can easily omit security checks in programs it compiles. Security
assumptions, which are perfectly valid on the source-code level, may not hold anymore
after the program was compiled to machine code. It is therefore strictly necessary to
include the compiler in the TCB.

Unfortunately, the size of current build environments can easily surpass the size of the
trusted software it produces. For instance building the OSLO bootloader [Kau07b| with
a GCC toolchain [GCC] involves approximately 2.4 MSLOC as shown in Figure 4.1. This
is three orders of magnitude more code than the 1534 lines of OSLO. Thus, the enormous
size of state-of-the-art compilers seems to nullify any advances in TCB reduction. Fur-
thermore, compilers are far from bug free. GCC for instance received more than 3000 bug
reports for every major version since 4.0. I therefore studied how compiler, assembler,
and linker can be made much smaller.

In the following section, I will introduce B1, a new programming language specially
tailored for low-level systems programming. In the second section, I describe the imple-
mentation of a corresponding toolchain that compiles B1 source code to x86-32 machine
code. This is followed by a performance evaluation of B1 programs.

4.1 Design

Not all C compilers are as large as GCC. LCC [FH91] or more recently TinyCC [Bel02]
need only tens of KSLOC to compile a C file to a non-optimized binary. These promising
developments are still an order of magnitude larger than OSLO. The most likely reason
for this gap is that the C language is to complex to be easily compiled. Thus it seems
to be not sufficient to improve the implementation alone to get a toolchain as small as

109

CHAPTER 4. SIMPLIFYING THE COMPILER

OSLO
Tools

ccl

gee

as

1d

make

sh
Libraries
libe] 200
libbfd] 127
libm] 98

libgmp] 71

libmpfr] 54

libopcodes] 27

libpthread] 15

libz] 15

libmpc] 11

librt 14
libdl 1

1549

Figure 4.1: More than two million lines of code are needed to compile OSLO with a GCC
toolchain. The numbers are estimates from the binary sizes as described in Section A.1.

OSLO.

Instead I propose to simplify the programming language as well because it eases writing
the compiler and reduces the TCB of the whole system. Compiler verification [Ler09] will
also benefit from a simpler language, as this reduces the effort to specify and prove the
semantics of the language. Finally, a language simpler than C increases the likelihood
of different toolchain implementations, which is a prerequisite for detecting a subverted
compiler [Whe05].

In this section, I will present a new programming language called B1 and discuss the
design decisions that have lead to it. Please note that I have not aimed for the simplest
possible system programming language. Instead I carefully balanced language features
against compiler complexity. I thereby deliberately added syntactical sugar if it was easy
to implement in the compiler and if it would make B1 programs less complex.

4.1.1 The Syntax

Instead of developing a new syntax for Bl from scratch, I reused the syntax of Python
v3.2 [Pyt] and defined a new semantics for it. This allows Python source code to be
statically compiled to machine code. A subset of Python is sufficient for this purpose.
Yet enough unused syntax elements remain for future language extensions.

Reusing an existing syntax for a new language has the advantage that programmers
need not learn another programming language and source code can even be shared between
the two languages. Furthermore, the compiler implementation can be simpler as shown
in the next section. A disadvantage is that the changed semantics of the very same
operations might confuse programmers that use both languages in parallel. For example
arithmetic operations in B1 silently overflow similar to C instead of being converted to a
longer integer type as in Python.

In the following, I will describe the semantics of different language elements.

110

4.1. DESIGN

Name Size in Signed Byte- Type

Bytes Swapped Code
Mword 2,48 no no 0
Uint8 1 no - 1
Int8 1 yes - -1
Uint16 2 no no 2
Int16 2 yes no -2
Uint16s 2 no yes 3
Int16s 2 yes yes -3
Uint32 4 no no 4
Int32 4 yes no —4
Uint32s 4 no yes 5
Int32s 4 yes yes -5
Uint64 8 no no 6
Int64 8 yes no —6
Uint64s 8 no yes 7
Int64s 8 yes yes -7

Figure 4.2: Type codes for dereferencing pointers and for structure members in B1. Types larger
than the Mword are not supported by a platform.

4.1.2 Variables and Constants
Variables are mwords

Variables in Python are dynamically typed. Consequently there is no syntax for declaring
the type of a variable, even though a compiler needs to know this information to choose
the corresponding machine code. To still compile B1 code statically, one could annotate
variables for instance by reusing the is operator or by relying on Python’s parameter
annotations. Another option would be to let the compiler automatically infer the types,
as done for instance in PyPy [RP06].

I have chosen the simplest solution and used the machine word (short: mword) as the
only data type for variables!. An mword is an unsigned number large enough to fit into
the integer registers on the target machine. It is basically the same as an unsigned long
when compiling C code with GCC on x86.

If all variables and expressions are mwords, type declarations are unnecessary. This
simplifies the compiler, as it does not have to parse type definitions, propagate types, and
check for type compatibility in assignments.

Accessing Other Types

A B1 program needs to read and write other types besides mwords from memory. Exam-
ples are characters from a string or 16-bit hardware registers when programing a device
driver. To support these use cases, any mword value can be used as a pointer. A rich
dereference operator [index:type] reads and writes shorter integer types from a pointer
and converts them to or from an mword. All types that fit into an mword can be accessed
this way, including signed, unsigned, and byte swapped types. See Figure 4.2 for a list of
types defined in B1.
To make B1 programs easier to write, I added the following syntactical sugar:

e The type can be omitted in the dereference operator if mwords are accessed.

IThe language is called B1 because having only a single data type makes it similar to the predecessor
of C, namely the programming language B [Tho72]|.

111

CHAPTER 4. SIMPLIFYING THE COMPILER

LinkedList = ["next", Mword, "prev", Mword]
Union = [0, ["u8", Uint8, "ul6", Uinti16]]
Element = ["value", Union, "list", LinkedList]

def getValuel6(element):
return element.Element.value.ul6

Figure 4.3: Structures in B1 are defined as lists, which combine a name with a type code. Casts
and member access is performed via qualified names.

e The index in the dereference is scaled with the size of the access type to enable fast
iteration over arrays.

e Structure members are accessed from a pointer with dotted names. This avoids to
specify the right index and type on every dereference.

e Structure definitions are lists that combine a name with a type code. A type code
is a small integer such as 1 for uint8. See Figure 4.2 for a list of type codes.

e Structures can be nested. If zero is used as name, the definition becomes a union.

e Every structure has the underscore (_) as implicit last member, which can be used
together with the address operator to get the size of a structure and to navigate
through an array of structures.

e The last occurrence of a name in a structure is used when multiple members share
the very same name. This provides member overriding, which eases emulating of
C-++ style classes.

An example of struct and union definitions in B1 is given in Figure 4.3.

Translating the Constants

Python supports a rich set of constants namely booleans, integers, floating point and com-
plex numbers, strings, bytes, lists, sets, dictionaries, and tuples. Bl defines operations
only on a subset of them, to keep the compiler sufficiently simple. However constants of
these types are made available to B1 programs. This will significantly ease the implemen-
tation of library code that likes to operate on them.

Basic constants such as booleans, integers and floating-point numbers are converted
to mwords, if they occur in global variables and expressions. These constants can then
emitted by the assembler as immediates in the machine code.

Other constants are put into the data section of the binary. The size of the constant
is prepended, to make a sizeof operator unnecessary. Strings are null terminated and
decoded as UTF8 before they are converted into an array of bytes. Variable-sized longs
are reduced to the smallest array of bytes they fit into including their sign bit.

Lists of booleans, integers, floating point and complex numbers are converted to arrays
of fixed-size integers. This allows to define char and word arrays and even arrays with
elements larger than mwords. Sets and dictionaries are converted to sorted lists. Nesting of
lists, sets and dictionaries is implemented by converting the child and using the reference
to it as mword element in the parent.

Because tuples are basically the same as lists in Python, except that they are read
only, they are freely available for special purposes. I use them in Bl to specify inline

112

4.1. DESIGN

assembler, to allocate additional stack space, and to communicate alignment as well as
section names to the linker.

Local vs. Global Variables

Local variables are declared inside a function body by assigning a value to them. They
are allocated on the stack and hold mword values including pointers. Global variables
are declared outside function definitions by initializing them with a constant. They may
hold basic constants such as integers or immutable pointers referencing complex constants
such as lists or functions. Additionally, the general purpose CPU registers are available
as global variables. This eases lowest-level programming for instance when implementing
binary interfaces.

4.1.3 Operators, Functions and Control Structures
Operators

Operators are only defined for mwords because all variables, constants, and pointer deref-
erences return this type. The arithmetic (+,-,*,//,%) and bitwise («,»,&,|,~,~) op-
erators are the same as in C, except that the double slash is used for integer division.
Similarly, the address of local variables and of structure members is returned by the unary
plus instead of the ampersand operator. This makes B1 code more similar to Python code
and eases code reuse.

Assignments can be used to update local variables (x="foobar") and CPU registers.
Global variables cannot be directly modified because they are either basic constants or
immutable pointers referencing complex constants. Arbitrary memory locations can be
written by assigning a value to a pointer dereference such as x[3:Uint8] = 0.

The following syntactical sugar is inherited from Python to shorten Bl programs:

e In-place assignments for any binary arithmetic operator. x += y is the same as
x = x+(y).

e The three boolean operators: or, and, not. The expression x or y is equal to
x 7 : ywith GCC, x and yisequaltox ? y : 0, and not x is equal to !x.

e The ternary if: y if x else z corresponds to x ? y: zin C.

Inline Assembler

Assembler instructions can be directly embedded as constant tuples into B1 source code.
This provides low-level access to processor features otherwise not available through the
core programming language. See Figure 4.4 for an example.

A program may also register new instructions at the assembler. This is useful for
instance to add floating-point instructions when implementing a corresponding library.
Finally the general processor registers are accessible as global variables in B1.

Functions

Currently, only function definitions and global variables are handled as B1 code by the
compiler. Global code and class definitions that are found in a source file are simply
ignored.

113

CHAPTER 4. SIMPLIFYING THE COMPILER

def memcpy(dst, src, count):

def memcpy(dst, src, count): ("mov", dst, EDI)
for i in range(count): ("mov", src, ESI)
dst[i: Uint8] = src[i: Uint8] ("mov", count, ECX)

("code", 0xf3, Oxad)

Figure 4.4: A simple memcpy implementation in Bl native code (left) and x86 inline assembler
(right).

def divmod(a, b): return a//b, alb
def get(which):
return which and (lambda x,y: (x*y, 0)) or divmod

Figure 4.5: Functions in B1 are defined with def and lambda. They can return multiple values
including function pointers.

Functions are defined with the def keyword or anonymously with a lambda expression.
Functions are the main way to structure a Bl program. See Figure 4.5 for an example.
Nested function definitions are possible. Closures are not.

Functions can be called with a variable number of arguments, similar to variadic
functions in C. Arguments are mwords and have the same semantics as local variables
inside a function. Default values for arguments and Python’s keyword-argument feature
are not supported, yet.

A function may return up to four mwords in registers?. Returning more values or even
supporting Python’s generators would require memory allocation in B1, which I avoided
for simplicity.

Control Structures

B1 supports loops for structured programming. There are while loops and counting loops
of the form for i in range(...). In contrast to Python, it is not possible to directly
iterate over arbitrary lists or arrays with the for loop because only the size of constant
arrays are known at compile time.

The statement break can be used to jump behind a loop and continue to start the
next iteration prematurely. The optional else statement of a loop allows to execute code,
if the loop was not aborted with a break. This will lead to efficient code without requiring
the goto statement, for example when searching an element in a list [Knu74].

Furthermore, B1 supports the conditional statement (if/elif/else). Compared to
C there is no switch statement. It can be substituted either by multiple elif con-
structs or by calling through a dispatch table, if a sufficiently continuous range should be
distinguished.

Labels and goto directives are not directly available in B1. Inline assembler can be
used for this purpose if required.

Exceptions can be thrown via raise and caught with try/except/finally. This will
make error handling in B1 programs much simpler than in C. The assert statement is
provided as a shortcut. It will raise an AssertionError if some condition does not hold.

2The register EAX, EDX, ECX, and EBX hold the return values on x86.

114

4.1. DESIGN

4.1.4 Discussion

B1 is a new programming language powerful enough to write low-level system code with
it. I have moved seldom required language features such as floating-point support from
the core of the language into external libraries. Furthermore, I reduced the number of
syntactic and semantic checks that are performed by the compiler. These steps have
led to a toolchain smaller than before. Compared to Hoare’s now classical hints on
programming-language design [Hoa73], B1 shines on simplicity, readability, and (poten-
tially) fast compilation but lays the security of the program in the hand of the developer.
In the following, I will compare B1 to other languages.

Comparison with B and C

The semantics of Bl is very similar to B [Tho72] the predecessor of C. B1 does not have
labels, declaration of local variables, and the switch statement. Instead, it includes access
to non-mword memory and more powerful loops to make the goto statement redundant.
Furthermore complex constants, inline assembler, and exceptions make programming in
B1 much easier than in B.

The most important difference to C is that Bl only defines operations on mwords.
While this makes most Bl programs shorter and surely simplifies the compiler, it also
means the following C features are unavailable:

Type Checks A programmer has to be careful when converting between pointers and
values or between different pointer types, as this does not require an explicit cast
and no type checks are performed in the compiler. Static code analysis tools should
be employed to find bugs in such code.

Signed Operations There is no support in the core language for multiplying, dividing,
shifting, or comparing signed integers. If an algorithm needs this functionality, it
should be provided by library code. Using assembler instructions and inlining those
functions can limit the overhead of this design decision.

Floating-Point Operations Only floating-point constants but no operations on them
are supported in B1. This limitation comes from the observation that a lot of kernel
and low-level code does not need floating-point support at all.

Instead, floating-point support for B1 programs should be provided by library code
with the help of inline assembler. This allows to choose the fastest available in-
struction set extension on the particular machine such as SSE (Streaming SIMD
Extensions) or AVX on x86 without complicating the compiler for all the programs
that do not require floating-point code.

There are several less important C features not supported in B1. Most of them can be
efficiently emulated on top of it such as bit fields, enums, the switch statement, and
casting of expressions. Others are seldom used in low-level systems code, but removing
them simplifies the compiler. For instance omitting alloca() means that a frame pointer
is never needed.

However Bl is not a strict subset of C. It supports additional features to make Bl
programs easier to write than programs written in plain C. Examples are:

e Complex constants such as dictionaries or variable-sized longs;

e Byte-swapped types for big and little-endian access;

115

CHAPTER 4. SIMPLIFYING THE COMPILER

e Types such as uint8 are constant numbers and structure definitions are ordinary
lists available to the B1 program. This can be used for type introspection and to
implement dynamic casts.

e Raising and catching exceptions for error handling, including final sections to
execute cleanup code even if an exception occurred.

Other System Languages

Numerous programming languages were proposed for systems programming, either by
introducing a new language, extending an application level language with lower-level
primitives, or by changing the semantics of an existing interpreted language so that it can
be compiled to machine code. In the following, I will compare B1 to a few of them.

Oberon The most similar approach to B1 is probably the Oberon Project by N. Wirth
and J. Gutknecht [WG92|, which tried to reduce the complezity of programming languages
[Wir04]. Oberon was derived from Modula-2 by removing less important features such
as unsigned and complex numbers. Bl can be seen as a next step in that direction. In
addition to Oberon, I have removed floating-point numbers as well as garbage collection
and strongly checked types from the language. Besides low-level features and certain
syntactical sugar, B1 adds only exceptions to the language. All removed features can be
emulated on top of Bl, except for the static type checks, which would require external
tool support.

Go An example for a language designed from scratch is Go [GO] that tries to combine the
ease of programming of a scripting language with the performance of a compiled language
like C. Unlike B1 it has a full-featured type system and special support for concurrency.
While Go supports exceptions, the authors discourage to use them. A Go toolchain is
very similar to a C toolchain both in size and complexity. In fact, the first Go compiler
was derived from the Plan9 C compiler suite [Tho90]. Other compiler implementations
are just frontends to GCC or LLVM.

House A different approach was taken by the House project [HJLTO05], which extended
Haskell with low-level primitives. While a functional language like Haskell might ease
verification [KEH'09], a system based on Haskel has not only the compiler but also a
large runtime of several hundredth KSLOC in its TCB.

Small Java Small Java [Fre09] is a subset of Java that can be fully compiled to machine
code. A special class called MAGIC provides low-level hardware access and allows to
embed machine code into the binary. The corresponding compiler is self-hosting, but
with 38 KSLOC more than an order of magnitude larger than the B1 toolchain.

Python Syntax Bl is not the first language that shares the syntax with Python. The
PyPy Project [RP06] for instance defined the RPython language [AACMO7| to imple-
ment a Python interpreter with just-in-time compilation support. By forbidding certain
language constructs such as modifying class definitions during runtime and deducing the
type of variables at compile time, RPython can be compiled statically to machine code.
Similarly, the Boo [BOO] language has a Python-inspired syntax with static types for the
.NET environment. A Bl compiler can be simpler than these two examples because it
does not need to perform any type interference.

116

4.2. IMPLEMENTATION

B1 Python Intermediate Machine ELF
Source Opcodes Representation Code File

Figure 4.6: Data flow through the B1 toolchain to produce ELF files from B1 source code.

Component SLOC

Parser 25
Compiler 361
Optimizer 121
Assembler 294
Linker 137
Misc 42
Sum 980

Figure 4.7: The size of the B1 toolchain in lines of Python3 code.

4.2 Implementation

In the previous section, I presented the syntax and semantics of B1. In this section, I
discuss the implementation of a B1 toolchain that compiles B1 programs to static x86-32
binaries for Linux, NOVA, and the multiboot environment [MBI10]. It can also be used
to generate ELF (Executable and Linkable Format) object files to be linked with code
written in other programming languages.

The toolchain consists of five components as depicted in Figure 4.6:

1. The Parser reads B1 source code and outputs Python bytecode,

2. The Compiler translates them to an intermediate representation (IR),
3. The optional Optimizer improves the IR,

4. The Assembler produces x86-32 machine code from the IR, and

5. The Linker generates ELF files.

The five components were implemented in less than 1000 Lines of Python. This is at
least an order of magnitude smaller than TinyCC and 2-3 orders smaller than GCC (See
Figure 4.7). In the following, I will describe noteworthy implementation details that lead
to this small size.

4.2.1 Implementation Language

While many compilers are implemented in a low-level language like C, I have chosen
Python v3.2 instead. Python turned out to be wery suitable for this purpose [Ern99|
because it provides several features that simplify the implementation of a compiler:

117

CHAPTER 4. SIMPLIFYING THE COMPILER

e Dictionaries, Lists, and other high-level data structures allow lookup, iteration, and
data manipulation in a consistent and compact way.

e A lot of small objects are constantly created and destroyed during compilation.
Garbage Collection takes care of memory management without cluttering the code
with malloc and free calls.

e Several transformation passes can be pipelined through Generators without produc-
ing large intermediate results.

e Range checks are often unnecessary because overflows raise Exceptions that are
more easily handled in a central place.

Using Python has also some drawbacks. First, a compiler written in Python might
not be as fast as an implementation in a lower-level language. This is only an issue with
very large projects. Caching already compiled and optimized code should significantly
improve the performance of the toolchain.

Second, implementing the toolchain in Python means a Python interpreter needs to
be part of the TCB. The PyMite [PyM] project has shown that such an interpreter can
be quite small. Own experiments indicate that approximately 2 KSLOC are required for
a simple implementation in B1, which would make the current toolchain self-hosting.

This leaves the problem of bootstrapping the whole process because another B1 com-
piler is required to build this interpreter, similarly how a C compiler is needed to build
TinyCC. Writing a B1 toolchain in B1 itself and manually converting it to machine code

is one approach to solve this issue?.

4.2.2 Let Python Parse

Sharing the syntax with Python allows us to reuse the parser and code generator of
Python. This has the following advantages:

First, it significantly reduces the implementation effort, as not only the parsing, but
also most of the compiler error handling comes for free. The parser just imports a B1 file
as a Python module and converts the Python bytecode of the global functions to Python
opcode tuples. This can be done in merely 25 lines of code. Given the experience from
Tiny-IDL [Kau06], where a simple IDL parser required only 200 SLOC (source lines of
code), I estimate that a standalone B1 parser can be written in less than 1 KSLOC.

Second, the Python interpreter can execute any global code in the source file it loads.
Thus Python can be used to generate B1 source code. One can for instance compute a Bl
function as a Python string and call compile() on it. Compared to a preprocessor like
CPP, Python is much more powerful as metalanguage, as one can also freely transform
Python bytecode. This can be used for instance to apply optimizations like loop unrolling
and constant propagation.

Third, Python’s module and package support can be reused to structure B1 projects
because import statements are evaluated at compile time.

Finally, global variables can be used to configure the toolchain. This feature is ex-
ploited for instance to register new instruction encodings at the assembler. A developer
needs just to define a global B1_ENCODING_ variable.

However reusing Python’s bytecode may lead to slower programs, as Python operates
on a virtual stack machine, whereas physical CPUs are usually register based. I will show
later that the optimizer can recover most of the performance lost in this detour.

3As done for instance for WEB by Knuth [Knu84].

118

4.2. IMPLEMENTATION

Type Instructions

Arithmetic add, sub, mul, div, neg, lea
Logical xor, or, and, not

Shift shl, shr

Conditional cmp, jz, jnz, set{b,be,z,nz,a,ae}
Control Flow jmp, call, ret

Memory Access | mov, push, pop, lsubscr, ssubscr
Special data, reloc, local

Figure 4.8: Intermediate Representation (IR) Instruction as emitted by the B1 compiler.

lambda r: r[0][0] == "STORE_GLOBAL" and (1, ("asm", "pop", r[0][1]))

Figure 4.9: A compiler transformation rule. It replaces a store to a global variable in Python
bytecode with a POP to the very same name in IR. This is later translated by the assembler to
an x86 pop instruction and a relocation entry to address the named variable.

4.2.3 Compiling to an Intermediate Representation

The B1 compiler does not directly generate machine code as opposed to TinyCC. Instead
it translates Python opcode tuples to an intermediate representation (IR). Using an IR
is required to split the toolchain into compiler, optimizer, and assembler. Furthermore it
improves portability, as the compiler and optimizer can be platform independent. Only
the assembler needs to be changed to support a new target.

IR instructions are tuples in Python consisting of a name and a variable number of
operands. Many of them share the semantics with their x86 counterpart. This allows the
assembler to translate IR instructions easily to x86 machine code. Porting the toolchain
to other platforms might require to relax this strong relationship in the future.

The IR is also used to communicate relocation entries (reloc) and binary blobs (data)
to the linker. Figure 4.8 lists all IR instructions emitted by the compiler.

The transformations in the compiler, optimizer, and assembler are performed on a
stream of tuples, instead of the usual tree-like data structure. This means compact
transformation rules can be used, which are written as a small function or as lambda
expression. Such a rule typically checks the current and possibly former instructions for
a certain pattern. If the pattern matches it rewrites one or more tuples in the instruction
stream. See Figure 4.9 for an example rule.

The compiler uses the following four passes over the input stream to gradually translate
Python opcodes into IR instructions:

Pass 0 compile-time constants, unpack tuples before return
Pass 1 constant folding, for loops, inline assembler

Pass 2 structs, nested functions, exceptions

Pass 3 generate IR instructions

Using multiple passes is a simple way to express the precedence of translation rules, even
though it may slowdown the compilation process as the IR has to be inspected multiple
times.

4.2.4 Optimizing the Compiler Output

The compiler translates Python opcodes directly into corresponding IR code without elim-
inating any superfluous stack access. Operations just pop their arguments into registers

119

CHAPTER 4. SIMPLIFYING THE COMPILER

and push results onto the stack. While this leads to valid intermediate and machine code,
it surely costs performance to access the CPU stack unnecessarily. I therefore added a
standalone optimizer to improve the intermediate code.

The optimizer is currently based on 38 translation rules with different complexity.
There are simple peephole-like optimizations that among others remove arithmetic in-
structions operating on zeros, replace a multiplication by a power of two with a corre-
sponding shift instruction, or detect a bitwise rotation in a series of shift and bitwise or
instructions. There are also more complex rules that reduce stack operations by keeping
values in registers, replace memory references to read-only data with immediate values,
and merge arithmetic instructions. The most effort is needed to optimize function calls.
This rule rearranges the stack layout so that the function address is not pushed before the
arguments to the stack but made directly available as immediate to the call instruction.

I will show in the evaluation that these rules can compensate most of the overhead
caused by translating Python bytecode in a straight forward way. However, the optimizer
does not implement many optimizations found in GCC and LLVM such as an efficient
register allocator or the elimination of common subexpressions. Bl binaries therefore pay
for the simplicity of the toolchain with a certain runtime overhead. I will quantify the
effect of this size vs. performance tradeoff in the evaluation section (§4.3.1).

4.2.5 Generating Machine Code

The assembler produces machine code in three steps. First, it calculates the stack depth
for every instruction. This is needed to reference local variables relative to the stack
pointer without requiring a frame pointer. This step also eliminates any unreachable
code that was created by the optimizer for instance by replacing always-taken conditional
jumps with unconditional ones. Second, the assembler translates IR tuples to x86-32
instructions. This is done twice so that shorter encodings can be chosen for near jumps.
Third, relocations to local labels are resolved and nested data structures are flattened
recursively.

The assembler supports 14 different instruction formats such as binary instructions
with a Mod/RM encoding®. It uses only 78 encodings of 31 different instructions to
translate intermediate to machine code. This is more than an order of magnitude less
than the 1475 instructions that the binutils-2.22 know for x86. Interestingly, this
resembles an old observation from [AW75]| that has lead to the development of RISC
processors [PD80].

There are several reasons why this small set of instructions is sufficient for B1. Most no-
tably omitting floating-point operations in the core language removes all floating point and
SSE instructions. Furthermore, operating only on machine words means byte, word, and
signed encodings are unnecessary. Finally, restricting the instruction set to the ones re-
quired by the B1 compiler allows to omit all system instructions such as cli or sysenter.

The assembler can be extended from Bl source code by defining new instruction
encodings through B1_ENCODING_ variables. Thus, floating-point libraries and system
code can be written in B1, even though certain instructions are not directly available in
the core language.

4See Section 2.4 for the x86 instruction format.

120

4.2. IMPLEMENTATION

4.2.6 Linking the Binary

The linker takes the machine code as well as the data produced by the assembler and
writes it into an ELF object file [ELF95]. This file can be linked to code written in other
programming languages. The linker can also generate a static ELF binary by linking the
assembler output to some address and resolving all relocations.

Two design choices make the B1 linker smaller than other linkers. First, it supports
only ELF as output format. This means a large compatibility layer such as the 1ibbfd
is not required. If other executable formats such as Windows PE (Portable Executable)
are needed for instance when generating UEFT (Unified Extensible Firmware Interface)
programs, they should be converted from the ELF files with the help of external tools.
Second, the Bl linker does not support linker scripts. Due to its size, it is easier to
modify the source code instead of adding another special-purpose language to make it
more configurable. Please note that the linker is largely target independent. So it is
unlikely to grow if additional platforms are supported.

4.2.7 Implementing the Standard Library

The B1 toolchain produces standalone binaries. Thus it cannot link against external
libraries such as the libc. Instead B1 programs use their own standard library.

Implementing libc-like functionality in B1 such as stdio, Linux system calls, or the
string functions (memcpy, memset, strlen, ...) was a straight forward task. Python’s
package feature allows to nicely structure the code and separate generic from x86 specific
code.

The B1 compiler does not depend on a standard library per se. In contrast to GCC, it
will never emit calls to string routines or to 64-bit arithmetic functions. The B1 compiler
still relies on library support if a program needs variadic functions or exception handling.
In the following, I will describe how I implemented these two features in the standard
library.

Variadic Functions

Variadic functions such as printf use the first argument to know how many parameters
will follow. Unfortunately, function parameters are evaluated from left to right in Python,
which is the reverse of the C calling convention. This means the first argument in B1 is
stored above all other parameters on the stack and can only be accessed by the callee if
the overall number of arguments is known beforehand.

There are various solutions to this issue: One could either force the programmer
to manually switch the parameters of variadic function calls, or one could reverse the
argument order at the bytecode level. Both solutions unnecessarily complicate either B1
programs or the compiler. Another option would be to put the number of transferred
parameters in a register. However, this would slow down every function call for a case
that is seldom required.

Instead I observed that it is sufficient to check the instruction at the address where
the function will return to. If arguments are transferred, this instruction will be an ADD of
the stack pointer to let the caller drop the previously pushed parameters. The immediate
part of the instruction reveals the number of mwords previously pushed to the stack. This
is equal to the arguments of the function for direct calls. It will be off by one for indirect
calls due to the additional function pointer. To distinguish these two cases, I let the

121

CHAPTER 4. SIMPLIFYING THE COMPILER

optimizer replace the ADD instruction with a SUB of the negative value when it generates
direct calls.

Instruction-based detection works as long as the optimizer does not merge or move
the cleanup instruction, which can easily be assured. Furthermore, it can be implemented
efficiently because only two instruction encodings occur in actual applications®. Finally,
the technique makes variadic functions robust against stack underflows, as it ensures that
only parameters actually pushed by the caller are accessed by the called function.

Exceptions

Exceptions should be a lightweight mechanism and not cause any runtime overhead if they
are not taken. This excludes a direct translation of Python’s block stack where exception
frames are linked during runtime. It also disqualifies the setjmp/longjmp approach used
in some C++ exception implementations [HMP97].

Instead, the B1 compiler emits a call to the raise_exception function, whenever a
raise or assert statement occurs. This function needs to unwind the stack and jump to
the right exception handler. Consequently there is no runtime overhead of a try/except
block if no exception occurred apart from an unconditional jump over the exception
handler code.

The raise_exception function needs to know the stack depth at every function call
to unwind the stack. But if asynchronous events such as UNIX signals or CPU interrupts
should be converted to exceptions as well, the stack depth has to be available for every
instruction. Please note that the assembler does not use a frame pointer register to
address the top of the current stack frame. Another way has therefore to be found to
recover the stack depth.

One option would be to recover the stack depth from the instruction stream by scan-
ning the next instructions until a function return is reached. However the complexity of
the x86 instruction encodings makes this option quite slow. Furthermore, the possibility
to extend the assembler with previously unknown encodings means this approach is likely
to fail. On a RISC processor like ARM, one would surely choose this solution as it does
not require any additional memory.

Instead, the B1 assembler stores the calculated stack depths in the special .blinfo
section in the binary. This section includes markers to identify function boundaries as
well as the beginning and the end of try blocks. The .blinfo section is compressed with
a run-length encoding to reduce its size. Additional function information and the function
names are recorded in the .bl1func and .blname section respectively. The three sections
are typically one third of the x86 code in the ELF file. They are not only used to handle
exceptions, but also for backtraces, profiling, and to ease debugging. I will evaluate the
performance of Bl exceptions in Section 4.3.2.

4.2.8 Summary

In this section, I described the implementation of the B1 toolchain and presented a couple
of reasons that lead to its small size, namely implementing it in Python, reusing Python’s
bytecode, working on an intermediate representation, splitting the optimizer from the
compiler, emitting only a small number of instructions and supporting a single output
format.

5These are add and sub with a byte immediate on x86.

122

4.3. EVALUATION

def fib(x): int fib(int x) {
if x < 2: return 1 if (x < 2) return 1;
return fib(x-2) + fib(x-1) return fib(x-2) + fib(x-1);
}

from lib.linux import *
main = lambda: fib(40) int main() { return fib(40); }

Figure 4.10: A recursive implementation of Fibonacci numbers in B1 (left) and in C (right).

I have already used the B1 toolchain to implement a couple of Linux tools used in the
Evaluation, the bootlets described in Section 5.2 and other low-level programs. Never-
theless, it waits to be employed in larger projects and ported to other architectures. In
the next section, I evaluate the performance of programs written in B1.

4.3 Evaluation

I will start the performance evaluation of B1 applications with two microbenchmarks to
reveal the influence of the optimizer and to quantify the cost of exceptions. Furthermore,
I have rewritten four Linux tools in B1 that are typical instances of I/O bound (dd) and
CPU bound (wc, gunzip, shalsum) workloads. While these programs will not have all
the features of their Linux counterpart like working with multiple input files, they should
show the current performance of B1 and reveal where further work is necessary.

All measurements were done with Linux 3.6 on a Lenovo T420 equipped with an Intel
Core-i5 2520M at 3.2 Ghz. Comparison is done against GCC v4.7.1, TinyCC v0.9.25,
Python 3.2.3, Java from OpenJDK-7-u3, GNU core utilities v8.13 and BusyBox v1.2.

4.3.1 The Influence of the Optimizer

With the first microbenchmark, I will evaluate the influence of compiler optimizations on
the performance of B1 programs. I have chosen a recursive implementation of Fibonacci
numbers as benchmark because the recursion will amplify the costs of any superfluous
instruction not removed by the optimizer.

The source code of the benchmark application for both B1 and C are given in Fig-
ure 4.10. The versions are very similar, except that B1 does not need to define types and
that it uses indentation instead of curly brackets. Furthermore it can use a lambda ex-
pression to define main() in a single source-code line. Finally the entry and exit functions
of the B1 program are not defined by a linker script as in C but imported from a library.

Figure 4.11 shows the time needed to run the benchmark with different compilers
and compiler options. I have compiled the C program with GCC for the first eight bars.
One would expect that enabling more optimizations would always result in faster code.
However the first two bars show that using no optimizations at all (gcc 00) produces
faster code then optimizing for code size (0s). The binary is even larger when optimizing
for code size. This unexpected result can be explained by the fact that Os relies on a
frame pointer to access local variables whereas 00 does not use one. Optimizing for size
but disabling the frame pointer gives the expected result as shown in the third bar (Os
-FP).

The first five bars are measured without tail-call optimization (TCO)® because B1 does
not implement this particular optimization yet. The next three bars have TCO enabled.

6By using the option -fno-optimize-sibling-calls on the command line.

123

CHAPTER 4. SIMPLIFYING THE COMPILER

Optimizer: £ib (40)

gcc Os
gcc 00
gcc Os —-FP
gcc 02

gcc 03

gcc Os TCO | 603
gcc 02 TCO | 505

gcc 03 TCO |345
S —

bl 00 | 1656
bl o1 | 884
bl 02 1673

| | | | | | | |
0 200 400 600 800 1000 1200 1400 1600

Milliseconds

Figure 4.11: The time to recursively calculate fib(40) written in B1 and C with different levels
of optimizations.

TCO optimizes a call at the end of a function by reusing the stack frame and replacing
the call instruction with a faster jump. Interestingly the TCO versions are always faster,
except in the 03 case where GCC additionally unrolls the recursive loop. This shows that
some optimizations are not compatible to each other and just using all of them may not
lead to the best performance.

The next bar reveals that TinyCC produces a binary that is always slower than GCC.
This can be explained by the use of a frame pointer and another temporary register that
is saved and restored on every £ib() call.

The last three bars give the performance of fib written in B1. The B1 00 case is
the slowest of all measured versions. This can be attributed to the direct translation
of Python’s stack-machine based bytecode to x86 instructions without performing any
optimizations. For the 01 and 02 bars the optimizer was used once or twice, respec-
tively. The first optimizer pass gives already a twofold speedup, by removing a large
number of redundant stack operations such as pushing intermediate results to the stack
and popping them directly afterwards. Running the optimizer twice, additionally merges
constants and omits redundant comparisons. This improves the performance by another
30%. Running the optimizer more then twice has no effect here, but still improves more
complex code. The speed of Bl function calls is comparable to gcc-02 with disabled
tail-call optimization.

In summary, the optimizer can compensate the overhead caused by translating Python
bytecode in a straight forward way. Nevertheless, recursive functions in B1 are not as fast
as in GCC yet because the optimizer misses loop unrolling and tail-call optimization.

124

4.3. EVALUATION

def test(frames):
if frames <=2:
raise 0
test (frames-1)
def main():
for i in range(10%*6):

try:
if STACK_FRAMES > 1:
test (STACK_FRAMES)
else:
raise 0
except:
pass

Figure 4.12: Benchmark program to evaluate the cost of exceptions in Bl. The number of
STACK_FRAMES is varied between 1 and 10.

4.3.2 Exception Handling

With the second microbenchmark I will quantify the cost of raising and catching excep-
tions in B1, Python, Java, and C++. Because the performance of exceptions depends on
the depth of the call stack that has to be unwind by the exception handling machinery, I
use a recursive function that calls itself a number of times before it raises an exception.
See Figure 4.12 for the B1 source code of the benchmark. All benchmark implementations
are quite similar except for Java where a statically allocated Exception object is used.
The results are presented in Figure 4.13.

I have implemented three ways to handle exceptions in B1. The simplest implemen-
tation labeled B1 linear in the figure searches linearly in the .blinfo section for the
stack depth of a given instruction pointer. Because the function information contains an
offset to the stack information, unrelated functions can be skipped in logarithmic time.
The complexity of this approach is linear with the size of the function. It does not need
additional memory during runtime.

A faster implementation calculates two lookup tables that combine the address with
the stack depth and exception block number. Binary search can now be employed. The
time complexity of this approach is logarithmic with the code size of the binary. It
needs three times the memory of the linear version or approximately one byte for any
x86 instruction byte. The line called BI binary shows that the binary search speeds up
exception handling by 50-100%.

The fastest method uses three tables with one entry per instruction byte. These tables
allow to lookup stack depth, function number, and exception-block number in constant
time. The line labeled B1 constant in the Figure 4.13 shows that this improves exception
handling by an order of magnitude. Exception handling is now faster than an uncached
memory access. However this approach needs seven times more memory then the binary
version when using 16-bit per entry. Please note that exception handling in B1 is not tied
to the compiler but implemented in the standard library. An application developer can
freely choose, which of the three versions fits his needs.

Handling a C++ exception within code compiled with g++ from GCC requires several
thousand CPU cycles. It is even slower if non-call exceptions are enabled”. Exceptions

"Normally only call-instructions may raise exceptions. The -fnon-call-exceptions compiler flag
allows all trapping instructions to raise exceptions as well. This makes g++ more similar to B1, which

125

CHAPTER 4. SIMPLIFYING THE COMPILER

Exception Handling

105 3 | | | | | |
27648
20864
10 F 6688
. 6400 5878
5226
3923
2 . 1661
T 10 976
@) N 749
330
170 @ *
10%]
i 70 A—A BI1 linear @ @ g non-call |]
B—8 Bl binary @ ‘@ Java JIT]
o*—# BI1 constant e::e Python3
0 g+t
101]]] I I I
1 2 4 6 8 10

Accessed Stack Frames

Figure 4.13: CPU cycles to handle a single exception in C++, Python, Java, and B1.

126

4.3. EVALUATION

in Bl are between three times and two orders of magnitude faster. There are various
reasons for the high cost of C++ exceptions: The encoding of the stack unwind informa-
tion might have the highest impact. The GCC runtime uses DWARF bytecode for this
purpose [Eag07]. Decoding this format requires a Turing-complete interpreter, which is
much slower than recovering the stack depth from the run-length encoded .blinfo section
in B1. Another source of overhead is the personalities function, which is called on every
stack frame to let exceptions propagate through code written in different programming
languages.

Exceptions in Java can be two to three times faster then in the B1 binary version if
just-in-time compilation (JIT) is used as shown in the java jit line. If a JIT is unavailable
this advantage is lost and exceptions take as long as in the BI binary case. This indicates
that Java uses a logarithmic search as well.

Exceptions in Python are even slower than in Java because Python creates a traceback
object on every exception. This was explicitly avoided in the Java benchmark by throwing
an existing object.

In summary, exceptions in Bl can be faster than in C++, Python, or even Java
because B1 trades CPU cycles against memory and neither deletes stack variables, creates
a traceback object, nor works across language boundaries in an application. B1 exceptions
are basically a fast way to divert the control flow.

4.3.3 System Calls: dd

The first macrobenchmark looks at applications that are I/O bound and spend most of
their CPU time outside the application code. The dd tool is a good representative for
this class of programs, if it is used to copy bytes from one file to another without doing
any data conversion.

Figure 4.14 shows the throughput of the dd tool written in B1 relative to a 32-bit C
version from the GNU core utilities when copying data from /dev/zero to /dev/null
with increasing block sizes and different kernel-entry methods.

One would expect that the performance of dd running on Linux does not dependent
on the programming language or the compiler, as very little calculation is done inside the
application. However a dd written in B1 has copied data in small blocks twice as fast as
a 32-bit C version from the GNU core utilities. It turned out that the B1 version entered
the kernel with the fast vsyscall method, whereas the C version relies on the particular
libc implementation, which used the legacy int 0x80 way to enter the kernel. However
if both binaries are using the same kernel-entry method, the performance difference is
below the measurement accuracy.

In summary, I/O bound applications that will not spend much time in user level,
should be as fast in B1 as in C.

4.3.4 Simple Calculation: wc

The second macrobenchmark compares a wc implementation in B1, with the C version
from the GNU core utilities. wc is a small program to count the number of bytes, words,
and lines in a file. It can also measure the length of the longest line. In addition to the
previous benchmark this adds buffer scanning and simple calculations to the workload.

I use multiple input files for the benchmark because the performance of word-count
depend on its input, as one can for instance tweak an implementation for consisting of

supports exceptions from all instructions.

127

CHAPTER 4. SIMPLIFYING THE COMPILER

Systemcalls in B1: dd

[\
at
[an)

[vsyscall
EE int 0x80 []

DO

o

[an)
|

= =
S ot
o o
T T

Relative Throughput in %
o
=)
I

o

Blocksize

Figure 4.14: Throughput of the dd tool written in Bl relative to a 32-bit C version from the
GNU core utilities using int 0x80. The Bl tool is using either the vsyscall or the int 0x80
method to enter the Linux kernel.

zero characters. Figure 4.15 lists the properties of the four input files. Furthermore, I
measure different operation modes, as programmers will typically provide optimized code
for the following four special cases with increasing complexity:

Bytes Counting the number of bytes without touching the data.

Lines Additionally counting the number of lines by finding the newline characters in the
input data.

Words Additionally counting words by distinguishing spaces from printable characters.

Maximum Line Additionally counting the printable characters in each line.

Figure 4.16 presents the results of the different runs, normalized to the throughput of the
C version.

The first set of bars exposes no measurable difference between C and B1 when count-
ing bytes alone. This resembles the results from the dd benchmark because only little
calculation is necessary here and both implementations use the same system calls to either
seek to the end of the file or to read blocks from a pipe.

The second set of bars show that Bl needs up to three times longer to search for
newlines. This large overhead can be attributed to the implementation of the memchr (3)
function, which scans a block of memory for a certain character. While the B1 version
checks four bytes at a time, the libc implementation relies on SSE2 instructions to check

Name Words Lines Ave.rage Max Description

Line Line
Zero 0 0 0 0 200 MB from /dev/zero
Random | 820829 4623664 255.5 498 generated from /dev/urandom
Long 8119625 33740753 25.8 318 pdftotext from a manual
Short 22153081 22153082 9.5 23 dictionary, one word on a line

Figure 4.15: Four different files of 200 MB were used for evaluating word-count performance.

128

4.3. EVALUATION

Simple Calculation: wc

3 Zero i
= Random 4
3 Long i
3 Short i

4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

Relative Throughput

Bytes Lines Lines ASM Original Optimized !Maxline

Figure 4.16: Throughput of the word-count (wc) tool written in B1 relative to the C version from
the GNU core utilities for different input files.

16 bytes in parallel. This overhead is not a limitation of the B1 compiler but caused by
the design decision of the library implementer to not use SIMD instructions.

To still get acceptable performance I have implemented a line counting algorithm for
B1 in x86 inline assembler without using any SSE instructions. The third set of bars shows
that this implementation is 2.3 times faster if there are enough newlines in the input but
2.5 times slower on zero files. On average it is 10% faster then the SIMD version. This
disparity is caused by the use of a different algorithm. Implementations based on memchr
are optimized for the absence of newlines, whereas my assembler implementation works
equally fast on all inputs. This was achieved by omitting all branches in the inner loop.

For the fourth set of bars I reimplemented the original algorithm from the GNU core
utilities in B1. Because B1 neither provides a switch nor a goto statement, I replaced them
with corresponding if/elif constructs. The slightly different results for the four input
files reveal that I did not exactly mimic the order of conditional jumps. It is therefore
17% and 9% slower on short and long texts respectively. However it is also 15% faster
on zero files and shows comparable performance on random input. On average the Bl
version is 4% slower then the C implementation.

A deeper analysis of the GNU algorithm revealed that it is far from ideal and severely
limited by the number of non-predictable branches. I therefore optimized the implemen-
tation by changing the branch order and using arithmetic instructions instead of branches
if possible. The fifth set of bars (Optimized) shows that such an optimization improves
the throughput by 13% to 53% with an average of 27% compared to the original C im-
plementation.

Finally, I observed that the version from the GNU core utilities does not implement
specialized code when words have to be counted but the line length is not requested.
However this particular case can be more efficiently implemented than the general one
because tracking the line length and looking for instance for TAB characters becomes
unnecessary. Furthermore, it is the default when invoking wc without parameters. The
last set of bars (/Maaxline) shows that such a specialized implementation will lead to an
average speedup of 2.4x.

In summary, this benchmark has shown that simple calculations in B1 can be nearly as
fast as in C. Furthermore, optimizing the algorithm and carefully using inline assembler
will lead to much larger improvements than what was previously lost due to the simpler
compiler.

129

CHAPTER 4. SIMPLIFYING THE COMPILER

‘High Middle Low Small-Files

Number of Files 1 1 1 11690
Uncompressed Size in MB | 145.9 43.5 54.2 442.2
Compressed Size in MB 25.6 11.1 54.2 117.6
Compression Ratio 5.7 3.9 1.0 3.8

Figure 4.17: Files with low, middle, and high compression ratio and a large set of small files were
used as input for the gunzip benchmark.

Complex Calculation: gunzip

_ 39T [0 Hien y
2 30F (Em Middle .
éo 25 | Low i
é 20k 2 SmallFiles i
= [Batch

o 1.5 B
= 1.0} -
(]

05t .

GNU 64bit BusyBox B1 native B1 asm

Figure 4.18: Throughput of gunzip implementations relative to the 32-bit GNU version.

4.3.5 Complex Calculation: gunzip

The third macrobenchmark compares a gunzip implementation in B1 with two C versions
from GNU gzip and BusyBox. gunzip unpacks a compressed file. In contrast to the
previous benchmark the gzip algorithm [Deu96] is quite complex and a mixture of bit
fiddling, table lookups, and CPU intensive calculation.

I evaluate four different inputs because an implementation can be tweaked for special
cases. There are three files with low, middle, and high compression ratio that will exercise
different parts of the implementation. Furthermore there is a set of more than ten-
thousand small files found in a Linux installation that have a compression factor similar
to the middle case. This dataset should reveal the impact of initialization code to the
performance. See Figure 4.17 for the input properties.

The results of the benchmark runs are given in Figure 4.18 relative to 32-bit GNU
gzip, with bars for each of the four input datasets. The fifth bar in each set labeled Batch
shows the throughput when the small files are given in batches to the application instead
of creating a new process for each input file.

I measured a 32-bit and a 64-bit version of GNU gzip v.1.5. The former is used as
the baseline in the figure because B1 uses 32-bit as well. The later shows the benefit
of an increased register set. Having 15 instead of 7 general purpose registers available
increases the throughput by approximately 10%. Especially the performance of compute
intensive inputs improves. Whereas 64-bit does not help in the Low compression case
because this uses only simple code paths. Similarly the results for SmallFiles get only
marginally better. This case seems to be dominated by the process startup time.

To put the GNU results in relation to another C implementation, I also evaluated
gunzip from BusyBox v1.2. While this code was derived from GNU gzip and shares
most of its structure, it was later tweaked for embedded systems. This process made the

130

4.3. EVALUATION

BusyBox version significantly slower. I measured only 50% throughput on low-compressed
files and 75% in the other cases.

For the BI native bars all code is written in Bl except in two cases where inline
assembler is required to shuffle registers for system calls and exception handling. Bl
achieves 65% of the baseline with the High and Middle input files. It is 256% faster in
the Low case. This can be explained by the use of memcpy when handling uncompressed
blocks instead of doing a byte-wise data transfer as other implementations. Furthermore,
gunzip in Bl is approximately 7% faster when operating on many small files, but 60%
slower when they are given to it in a large batch. This shows that the small program
size allows Bl gunzip to start much faster than the C implementations. The native
B1 implementation gets 85% throughput on average compared to the GNU gzip version
written in C.

One can see the limits of the simple optimizer here: For instance inlining functions
should significantly improve the performance. Furthermore using more than three reg-
isters to evaluate complex expressions should give a speedup similar to the 64-bit case.
Nevertheless, gunzip in Bl is on average faster than the BusyBox version. This shows
that a better compiler cannot fully compensate for unoptimized source code.

To improve the performance of the B1 implementation, I implemented three functions
in inline assembler. Using assembler for memcpy and memset is a fairly standard procedure.
However I have also used assembler to more efficiently calculate the CRC32 checksum.
This optimization was not employed in any of the C implementations yet. Altogether
these three functions are approximately 70 lines or less than 10% of the whole gunzip
code.

Using inline assembler gives a performance boost of more than 20% as shown in the B1
asm bars. The Low case is three times faster then before. Most of this improvement can
be attributed to the CRC function. The importance of the checksum to the overall gunzip
performance has been underestimated in other implementations. The High compression
case is now nearly as fast as the baseline. The 83% for the Batch and 88% for the Middle
case leave room for further improvements. The Bl assembler implementation is 50%
faster on average than the baseline due to the optimized checksum implementation and
its shorter startup time.

In summary, a B1 application with complex calculations is expected to be slower than
an equally optimized C program. Especially tiny loops and large expressions show the
limitations of the simple compiler. However, optimizing the source code and writing crit-
ical parts of the software in inline assembler can make a B1 implementation significantly
faster than one solely written in C.

4.3.6 Number Crunching: shalsum

The previous benchmark was based on a complex instruction mix. I will now look at
a ‘number crunching” scenario, where raw CPU performance counts and any additional
instruction in the so called “inner loop” will have a significant performance impact.

I used different implementations of shalsum, a small tool that calculates the SHA-1
hash of its input files. SHA-1 [SHA95| is a popular hash function that relies on 32-bit
unsigned arithmetic to produce a 160-bit hash from arbitrary sized input. This workload
should be representative for many number crunching algorithms that only depend on the
speed of the CPU without relying on the memory or cache subsystem.

Figure 4.19 shows the result of the different benchmark runs. A native B1 program
needs 74.7 cycles per byte to calculate the SHA-1 hash. This is the slowest of the measured
implementations. The very similar C program compiled with TinyCC is nearly twice as

131

CHAPTER 4. SIMPLIFYING THE COMPILER

Number Crunching: shalsum
| | | | | | |

Native Loop

B1 | 74.7
TinyCC | 42.4

B1 register |41.6

gee O0 |37.5

gee 02 1386 |16.5

Unrolled Loop
B1 33.9
B1 register 28.3
C core utilities 11.9

Assembly Code

B1 inline I 7.6
Intel SSSE3 I 6.6
l l l l l l l

0 10 20 30 40 50 60 70
Cycles per Byte

Figure 4.19: The performance of the SHA-1 hash function written in B1, C, and hand-optimized
assembler code.

fast as shown in the second bar. The most likely reason is that the B1 compiler uses only
three of the seven general purpose registers to evaluate expressions.

The third bar shows that shalsum in B1 will need 41.6 cycles per byte, if some of the
local variables are put manually in registers®. This is slightly faster then C code compiled
with TinyCC and approximately 90% of the performance of GCC without optimizations
(gcc -00). Enabling optimizations for i386 in GCC produces a binary that needs only
16.5 cycles per bytes as shown in the fifth bar. This is more than twice as fast as the
unoptimized version. Interestingly, optimizing instead for newer CPUs such as the 1586
tends to be 10% slower”.

To help the compiler to generate faster code, I also measured the throughput of
shalsum with the 80 rounds of SHA-1 fully unrolled in the sources. This not only saves
the loop overhead, but also removes branches and instructions to swap variables. The
sixth and the seventh bar in Figure 4.19 show a 2.2x performance boost for the native
B1 implementation and a 1.5 times improvement for the B1 register version. To compare
against C code, I used the shalsum implementation from the GNU core utilities. This
version needs only 11.9 cycles per byte to calculate the SHA-1 hash. This is approximately
40% faster than a C version without unrolling. The fastest C versions are on average 2.4x
faster than the corresponding B1 register versions.

To set these results in relation to the speed of the processor, I also measured two
SHA-1 implementations in assembly code as shown in the last two bars of the figure. The
first version consists of Bl inline assembler code and relies solely on 32-bit arithmetic
instructions. With only 7.6 cycles per byte it is 2.2x faster than the native C version and

8This is done by naming the variable after the register and defining it as a global variable. The effect
is similar to the register keyword in C.

9The compiler emits a rol instruction, even though the shild instruction is faster in rotating registers
on the SandyBridge CPU.

132

4.4. CONCLUSIONS AND FUTURE WORK

1.6x faster than SHA-1 in C with the loop unrolled. The second assembler version was
implemented by Intel [Locl0] and uses 64-bit registers as well as SSSE3 instructions to
achieve another 15% improvement. This is likely the fastest implementation on the Core-
i5 CPU. However none of the compilers can generate such efficient code from a high-level
description yet.

In summary, number crunching code compiled with the B1 compiler should be as fast
as C code compiled with TinyCC, if registers are manually allocated. It will be approx-
imately two times slower than C code optimized with GCC. Even though a production-
quality C compiler such as GCC produces faster binaries than B1 today, number crunching
is still significantly slower in C than with hand-tuned assembler code.

4.3.7 Summary

A small experimental system such as the Bl compiler will not be as efficient as a pro-
duction compiler like GCC that was tweaked for more than 20 years. Bl’s overheads
stem from the simple optimizer, which lacks various optimizations commonly found in a
compiler. For example, it does not support tail-call recursion, loop unrolling, function
inlining nor uses it all general purpose registers to evaluate expressions. Nevertheless,
B1 programs tend to be at least as fast as C programs compiled with TinyCC. Cases
that are I/O bound or that need only lightweight calculation might even be as fast as
GCC, but number crunching code is significantly slower. Finally, exceptions in B1 can be
exceptionally fast by trading memory against CPU cycles.

4.4 Conclusions and Future Work

Systems aiming for a small TCB need compilers that are significantly smaller than what
is common today. In this chapter I used a holistic approach to show how such compilers
can be build. I not only looked at the implementation but also at the semantics of the
programming language. To simplify the compiler I defined a new programming language
called B1, which is simpler than C, but still powerful enough for systems development.

To show that the Bl language can be easily compiled I developed a corresponding
toolchain from scratch. Instead of following the usual approach and writing a new frontend
for an existing compiler infrastructure such as GCC or LLVM, I have used the high-
level language Python to ease the toolchain implementation. This has not only led to a
working compiler within two man months, it also enabled different design tradeoffs in the
toolchain implementation. This made for example exceptions in Bl extremely fast. Most
importantly it resulted in a working toolchain within 1000 lines of code. This is more
than four times smaller than LCC [FH91|, TinyCC [Bel02], or OBC [Spi], even when
including another 3000 lines for a parser and Python interpreter for a self-hosting version.
In summary, using Python as much as possible proved to be an excellent choice. It might
be useful to implement other specialized compilers in Python as well.

I also evaluated the performance of programs written in B1. Application code pro-
duced by the B1 toolchain tends to be as slow as a less-optimized C version, or as C code
compiled with a non-optimizing C compiler. While B1 is not ready for number-crunching
scenarios yet, it is already fast enough for many use cases.

Nevertheless, there is still enough work to be done before B1 is ready for production
use:

e Writing B1 programs could be made easier by supporting more features from Python

133

CHAPTER 4. SIMPLIFYING THE COMPILER

such as classes, optional and named parameters, or the with statement'®.

e Porting the toolchain to other targets like ARM or x86-64 should stabilize the
intermediate representation and prove that only very little platform specific code
has to be written.

e A type interference tool should be developed that can distinguish values from dif-
ferent types of pointers to detect bugs in B1 programs automatically.

e Generating DWARF debug information would ease bug hunting.

e Caching intermediate results would speedup compilation by not translating the
whole code all the time.

e More optimizations could narrow the performance gap to C.

e Bootstrapping a B1 compiler from scratch would remove the dependency to Python.

10In the meantime classes were added to B1 by utilizing the metaclass feature of Python. This required
approximately 50 SLOC in the toolchain and another 100 SLOC in the standard library.

134

Chapter 5

Shrinking the Boot Stack

Security’s worst enemy is complexity.

N. Ferguson and B. Schneier in [FS03|

In the previous chapters I described how an OS (operating system) with a small TCB
(Trusted Computing Base) can be implemented, debugged, and compiled. In this chapter,
I show how it can be booted without inflating its TCB with a large boot stack.

Booting an operating system on a x86 machine involves a surprisingly large software
stack. The code needed for booting (i.e. firmware, bootloader, and ACPI interpreter)
sums up to at least 120 KSLOC (§A.4). Unfortunately, this huge code base is part of the
TCB of any operating system because it fully controls the platform and runs before and
within SMM (System Management Mode) even below the OS.

In this chapter, I present three approaches to make the x86 boot stack significantly
smaller, thus reducing the TCB of an OS. The first part (Section 5.2) focuses on the
bootloader. I show that a decomposed design and several implementation improvements
can decrease its size by more than an order of magnitude. A few thousand lines of code
are now sufficient to boot an OS. In Section 5.3 I analyze whether trusted computing
techniques will lead to a smaller and more secure boot stack. I will show that a secure
loader like OSLO can remove around 35 KSLOC from the TCB. Finally, I describe in
Section 5.4 how the TCB impact of the ACPI (Advanced Configuration and Power Inter-
face) interpreter can be minimized. Using a heuristic can reduce the code by more than
two orders of magnitude down to a few hundred SLOC (source lines of code).

Parts of this chapter were previously presented in [Kau07b, Kau09a).

5.1 Background: Booting an OS on a PC

Booting an OS on the PC platform is a complicated process. It starts with the firmware
initializing the platform, followed by the execution of several bootloader stages and ends
with the OS running its own initialization routines. In this section, I describe the x86
boot process in detail so that a reader not familiar with it may better understand the
technical details mentioned throughout this chapter.

135

CHAPTER 5. SHRINKING THE BOOT STACK

5.1.1 The Firmware

The x8 CPU fetches its first instruction after a reset or power-up occurred from a fixed
address, which is 16 bytes below 4 GB. This memory range is mapped by the chipset to
the firmware EEPROM that contains either BIOS (Basic Input/Output System) or UEFI
(Unified Extensible Firmware Interface) instructions. In the following, I will use the term
firmware for both of them.

The first task of the firmware is to initialize the CPU cores and the chipset. It
enumerates the available cores, loads microcode updates and enables processor caches.
It detects the installed memory and trains the DRAM controllers so that it can further
execute from DRAM and is not constrained to the CPU caches anymore. Finally, it
configures the chipset and assigns PIO (Port I/0) as well as MMIO (Memory Mapped
I/0) regions to PCI (Peripheral Component Interconnect) and other configurable devices.

The firmware initializes devices that might be needed by the bootloader and a legacy
operating system, like DOS. This includes devices necessary to fetch the bootloader such
as disk and network controllers but also platform (PIC, PIT, I/O APIC), input (key-
board), and output (graphics, serial) devices. The necessary drivers can be built into the
firmware, fetched from device EEPROMSs (the so called Option ROMs), or loaded from
disk (UEFI modules).

The firmware registers the services it provides in the Interrupt Vector Table (IVT)
and in specially tagged memory regions. These services can be called by later running
software, for instance to load blocks from disk, output characters on the graphics card,
or get the available memory in a platform-agnostic way. This significantly simplifies the
writing of initial bootloader and OS code.

The firmware also initializes system management mode (SMM), a x86 processor mode
invoked through a SMI (System Management Interrupt). An SMI suspends the running
OS and transfers control to a hidden memory area. SMM effectively allows the firmware
to use the CPU behind the OS to perform power management tasks like fan control
and handle fatal errors such as unrecoverable DRAM faults. OEMs (Original Equipment
Manufactures) also rely on SMM to emulate legacy or workaround faulty hardware.

Finally, the firmware writes several tables containing platform specific information to
memory. Examples are the ACPI, SMBIOS, and PnP tables but also the BIOS Data
Area (BDA). It then loads the bootloader code and jumps to it.

5.1.2 The Bootloader

Whereas all bootloaders will load the OS and transfer control to it, their implementa-
tion depends on the feature set, the location they are loaded from and the OS they are
booting. In the following, I describe how GRUB2, the most widely used Debian Linux
bootloader [DPC], behaves when starting Linux.

The BIOS loads only the first sector of the boot disk, the so called Master Boot Record
(MBR). These 512 bytes contain the initial boot code, but also the partition table, and
in some cases even filesystem parameters. Consequently, many bootloaders are split into
several stages to cope with the limited space.

The MBR code of GRUB2 loads the second bootloader stage from an unallocated
disk area just before the first partition. This area, which can be as small as 62 sectors,
is barely enough to hold the core, the disk driver, and the filesystem code of a feature-
rich bootloader like GRUB2. Additional functionality is later loaded on demand from
the disk. This includes a graphical user interface, read-only access to many filesystems

136

5.2. THE BOOTLOADER

even on RAID and encrypted partitions, the support for multiple OS boot protocols and
scripting languages.

The OS boot process is controlled by a script. It decides from what source the Linux
kernel and the initial ramdisk is loaded and what command line is given to it. GRUB2
extracts the boot code from the Linux kernel image, patches certain data structures and
finally transfers control to Linux.

5.1.3 The OS

As modern operating systems are initialize in parallel and start functionality on demand,
the initialization- and runtime-code cannot be easily distinguished anymore. Even if OSes
behave differently, the following steps are done by nearly all systems during startup.

The most important task of the OS boot code is to collect all the platform knowledge
that cannot be accessed later!. It will ask the firmware, for instance, for the memory
layout of the platform and the geometry of the disks. Furthermore, it searches for the
firmware tables and detailed information about installed legacy devices like floppy or PS/2
controllers. An OS also checks whether it was started on a supported platform to notify
the user early about any incompatibilities.

The OS then uses the firmware for the last time in the boot-process to access devices.
Linux on the one hand switches to graphics mode here. Windows on the other hand uses
the ability to access the disk without a dedicated driver, for loading the kernel and the
boot modules as late as possible. The boot code then extracts and jumps to the main OS
kernel, which initializes its data structure and the runtime environment.

The OS later resumes the hardware detection by discovering the devices and the
resources they are using. This step typically involves an ACPI interpreter to collect the
interrupt routing, legacy device information, and resource allocations.

Finally, the kernel executes the initial process, which in turn mounts filesystems,
invokes boot scripts, and starts background processes like network services, GUI, and the
login program. Additional services may be started later on demand.

5.2 The Bootloader

Originally, each operating system came with its own bootloader. This has changed with
the advent of common boot protocols like Multiboot [MBI10]. A bootloader can now start
different operating systems, understand multiple filesystems, and include device drivers
that are not already provided by the firmware. Contemporary bootloaders consists of
at least 15 KSLOC, whereas a feature-rich bootloader like GRUB2 can be as large as
300 KSLOC [GRU14].

Because the bootloader fully controls the platform, it will be part of the TCB of
any code running after booting is completed. The size of contemporary bootloaders is a
burden for any TCB constrained system. Booting, for instance, the NOVA OS described
in Chapter 2 with a stripped-down GRUB2 already doubles the TCB. Additional code
is added to the TCB of a guest OS if another bootloader is employed inside the virtual
machine. Significantly reducing the size of the bootloader is therefore an important step
towards a general purpose OS with a small TCB.

In the following, I analyze the required feature set needed for a bootloader, present a
decomposed design, and describe noteworthy implementation details that will reduce the

1 Linux implements this functionality in the boot/ subsystem whereas Windows relies on ntdetect . com.

137

CHAPTER 5. SHRINKING THE BOOT STACK

TCB impact of the bootloader by at least an order of magnitude while keeping enough
functionality to start multiple OSes.

5.2.1 Features

The feature set has probably the largest impact on the bootloader size. A minimal loader
like [Plo12| that only loads a single OS from a fixed location on the disk can be much
smaller than a bootloader like GRUB2, which understands different filesystems, provides
an interactive GUI, and supports multiple operating systems. We aim for a general-
purpose bootloader with the following features:

Boot Protocols It should be able to start both host and guest systems in a NOVA
setting. It therefore needs to support multiple boot protocols. At the minimum it
has to start Multiboot compliant OSes [MBI10], Linux kernels, and legacy systems
via chainloading.

Drivers The bootloader should rely on the firmware for device access. Dedicated device
drivers are purely optional.

Filesystems Loading OSes from a fixed list of disk blocks is too inflexible, especially on
dual-boot installations where different operating systems may act independently of
each other. If one of the OSes optimizes the disk layout or just updates a file, the
bootloader may get out of sync. The bootloader has to be able to read files from
a centralized boot partition as present in many Linux and UEFI-based systems. It
therefore has to understand a limited set of filesystems, most importantly EXT2,
FAT, and ISO9660.

Dual-Boot The user should be able to switch between different boot configurations.
The bootloader should at least be able to start an emergency system to recover
from a failed OS update. Supporting a graphical user interface where the user can
interactively modify existing boot configurations is optional.

Configuration A simple configuration file is sufficient to describe the different boot
configurations. A Turing-complete scripting language as present in GRUB2 is not
required.

Legacy Support for legacy firmware and hardware interfaces inflates the codebase?. Such
features should be dropped if possible or at least made optional.

In summary I aim for a general purpose bootloader with a feature set less than that of
GRUB2. However, the feature reduction alone will not be enough to significantly reduce
the TCB. The decomposed design described in the next subsection together with a careful
implementation are required as well to achieve this goal.

5.2.2 Design

A modern bootloader should run on a wide range of machines, support multiple operating
systems, understand different filesystems and may even provide an interactive GUI. This
requires a large feature set, which is in conflict with a small TCB.

In a previous experiment I reused components of the NOVA user-level environment
(§2.2.3) and extended them with boot specific functionality to get a small bootloader

2Examples: CHS vs. LBA addressing, floppy support, A20 mask, €820 memory map, firmware bugs.

138

5.2. THE BOOTLOADER

called BootSAK. Its design resembled a swiss army knife, where many small tools are
glued together. Unfortunately, this approach could not cope with the high variability
required from a bootloader because every customization required a recompilation of the
binary. Moreover, a core of more than 1,000 SLOC could not be removed easily. In
summary, the BootSAK experiment has shown that a monolithic design cannot provide
a fine-grained enough TCB.

Instead, I apply the divide-and-conquer principle and decompose the bootloader into
many small independent programs, which I call bootlets. This architecture enables the
administrator to choose an application-specific TCB [HHF 05, FH06| by selecting only
the subset of the bootlets that are required for a certain scenario. Bootlets have the
following properties:

Single Task Bootlets perform a single task of a monolithic bootloader and they should
do it well. There is for instance one bootlet that loads a Linux kernel from disk and
another one that starts it.

Having one tool for each task keeps the complexity low and makes the bootloader
highly configurable. This follows the Unix maxim: “Make each program do one
thing well.” [MPT78].

Independent Bootlets are independent binaries, which do not share any runtime code.
Thus, bootlets can be implemented in different programming languages. The run-
time overhead of the duplicated code should be negligible. The maintenance effort
can be kept low if shared code is collected in a common repository.

Alternative approaches like dynamic linking are too complex, as shown by GRUB2,
which needs more than 1,000 SLOC to implement it. Similarly, using a system-call
interface as in SYSLINUX [SYS13] includes a growing runtime environment into all
bootlets, even into those that will not benefit from the additional lines of code in
their TCB.

Specialization Bootlets can be specialized to cope with legacy interfaces and diverging
platform requirements.

Multiple implementations for the same feature can coexist: There might be for
example a smaller bootlet that works on most platforms and a larger but more
generic version that supports all of them.

Chainloading Bootlets are chainloaded. Most bootlets are Multibooted and start the
next bootlet, after performing their duty, in the Multiboot way as well [MBI10].
The remaining ones initiate a new chain from other interfaces. The final bootlet
then starts the OS.

Multiboot turned out to be especially suited as chainloading interface for the fol-
lowing reasons:
e The ability to specify multiple modules allows the construction of the chain at
the start and enables the manipulation of it at each intermediate step.

e Multiboot enables the parameterization of each bootlet through a command
line.

e A bootlet can use memory beyond its lifetime by reserving it in the memory
map.

e Existing Multiboot-compliant loaders and tools can be reused.

139

CHAPTER 5. SHRINKING THE BOOT STACK

mbr_hdd Master boot record (MBR) code loads initial bootlets from disk.
init_disk Extract bootlets from the disk blocks loaded.

mod_load Load additional bootlets and OS files from the disk.

mem_mmap Request the memory map from the BIOS.

ui_select Skip parts of the chain according to keys pressed by the user.

start_linux Start a Linux kernel.

Figure 5.1: Six bootlets are needed for the dual-boot scenario where a user can choose to start
either a Multiboot OS like NOVA or a Linux kernel from disk.

e The Multiboot interface is simple enough so that chainloading can be imple-
mented within 100 SLOC.

Resume Chainloading favors a linear execution flow: one bootlet is executed after the
other. However, a bootlet can also suspend its execution by adding itself anywhere
into the chain. If the bootlet is invoked again, it can resume its execution from the
very same state as before.

Suspend /Resume eases the implementation of user interfaces like a shell or GUL
It can also be used as a plugin-like extension mechanism to remove seldom needed
code from a bootlet. Finally, one could even implement cooperative multitasking
with it.

In summary, bootlets are independent programs that perform a subtask of a monolithic
bootloader. They are Multiboot chainloaded but a resume-style execution is possible as
well. An administrator can freely combine multiple bootlets to produce a specialized
bootloader with an application-specific TCB.

5.2.3 Implementation

Altogether, I implemented more than 30 bootlets that start a Multiboot chain, load files
from disk, inspect the platform, boot different OSes, or just reboot the system. Only the
six bootlets shown in Figure 5.1 are needed for a dual-boot scenario, where a user can
choose to start either a Multiboot OS like NOVA or a Linux kernel from a disk. In this
section, I explain noteworthy implementation details of the six bootlets that contribute
to the reduction in bootloader size by an order of magnitude.

Programming Language

The bootlets are implemented in Bl as described in Chapter 4 due to the compactness
of the language and the ability to directly include assembler code. Furthermore, many
helper functions did not had to be written and could be used directly from the B1 standard
library.

For the bootlets I choose a programming environment richer than the one in OSLO
[Kau07b]. This has eased programming but made the TCB slightly larger. The Bl
printf implementation, for instance, is around 80 SLOC larger than the minimal output
functions from OSLO.

The B1 import feature, inherited from Python, proved to be crucial to reuse code from
the standard library and even across bootlets. A bootlet can thus be easily specialized by
importing a more general bootlet and overwriting small parts of it. A few extra code lines
are usually sufficient for this purpose. For example, the mod_load_ext2 bootlet removes

140

5.2. THE BOOTLOADER

B1_ENCODING_OUTB = ["outb", "n", [Oxeell def ADD64(lo, hi, im):

def OUTB(ch, base): ("mov", lo, EAX)
B1_ENCODING_OUTB ("mov", hi, EDX)
("mov", base, EDX) ("add", im, EAX)
("mov", ch, EAX) ("adc", O, EDX)
("outb",) return EAX, EDX

Figure 5.2: The extensible B1 assembler makes low-level hardware access and 64-bit arithmetic
functions straightforward. The left shows that a new instruction decoding like outb can be
defined, referenced, and used within three lines. The right shows that using the add-with-carry
instruction (adc) eases a 64-bit addition.

all filesystems except ext2 from mod_load. Similarly, the mem_mmap bootlet removes all
legacy features from mem_bios and just uses the most recent €820 BIOS interface to
retrieve the memory map.

Implementing the bootlets in B1 was also beneficial to the language, toolchain and
the standard library for the following reasons:

e The newly introduced classes feature simplified the filesystem and disk driver im-
plementation through abstract interfaces as well as inheritance.

e Generalizing the instruction encodings made writing 16-bit realmode code much
easier. Furthermore, lowercasing the inline assembler statements makes larger func-
tions more readable.

e The standard library was extended with collections, allocators, and dozens of helper
functions.

Minimizing the Assembler Code

Low-level inline assembler code is required only in the few cases where Bl does not
provide access to low-level hardware features like PIO. Similarly, assembler code was
used for routines that would be either much slower, like memcpy() already shown in
Figure 4.4, or would be much more complicated in B1, like working with 64-bit numbers.
The extensible B1 assembler makes the implementation of such code straightforward as
shown in Figure 5.2.

Inline assembler is also needed for code that runs outside the normal 32-bit protected
mode. In the following, I will shortly describe how I minimized the 16-bit assembler code
used for BIOS access and for initiating a new Multiboot chain from the Master Boot
Record (MBR).

BIOS Access The bootlets rely on the BIOS for disk and keyboard access. While this
makes any driver code in the bootloader obsolete, it also means bootlets have to call into
16-bit realmode. Note that alternatives to realmode code execution exist. However, they
are either not as compatible (vin86 mode), too complex (instruction emulation), or not
available everywhere (hardware-assisted virtualization).

Calling into realmode is implemented as a library function that switches to realmode,
loads new register values from an address given as argument to the function, calls the
destination, saves the modified registers back and returns to the caller in protected mode.
Altogether 50 inline assembler instructions are sufficient to invoke the BIOS or jump to
any other realmode routine from a bootlet.

141

CHAPTER 5. SHRINKING THE BOOT STACK

Two assumptions make the code slightly simpler than comparable implementations.
First, reloading the stack pointer is unnecessary if the realmode and the protected mode
code use the same stack. Second, segment fix-up code can be omitted, if the stack, as
well as the instructions, are located within the lowest 64k of the address space. The
position independence and the small size of around 150 bytes makes it feasible to copy
the code to a trampoline page before invoking it. This also allows to transparently use
BIOS services from bootlets linked to an address above one megabyte — an area that is
normally inaccessible from 16-bit realmode code.

MBR The mbr_hdd bootlet is loaded by the BIOS from the first sector of the hard disk,
commonly called the master boot record (MBR). This code starts in 16-bit realmode and
performs four tasks: i) It enables the A20 gate® to make all memory addressable. ii) It
initializes the Multiboot information structure (MBI). iii) It loads a fixed set of blocks
from the disk. iv) It switches to 32-bit protected mode and jumps to the loaded code in
the Multiboot way.

To shrink this code down to 30 instructions, which is approximately 15% of the startup
assembler code in GRUB2, I made the following simplifications:

e The code assumes that the BIOS implements contemporary interfaces correctly.
There is neither support for CHS* addressing, nor for sophisticated A20 handling.
This functionality has to be provided either by a second implementation or by later
running bootlets if required for an ancient platform.

e The MBR does not extract binaries, add modules to the MBI, or request the memory
map. These tasks are left to later bootlets, where they can be implemented much
easier in high-level B1.

e The MBR directly includes the disk address packets (DAP) to map disk sectors to
memory regions as dictated by the BIOS interface. There is only a modest size gain
when generating this format at runtime from a dense data structure whereas the
additional instructions complicate the code.

e There is no need for a second loader stage to cope with the limited space in the
MBR. Since the DAP region is located at the end of the MBR, any loaded disk
block can extend it. This enables loading of an unlimited number of disk sectors.
Nevertheless, the relative low speed of the BIOS drivers and a 1 MB address barrier
of most BIOS implementations limits this feature.

Finally, the mbr_hdd bootlet is self describing, so that installation code can modify the
DAP region or the destination entry point, without having to recompile the code or consult
a manifest. If the bootlets that should be loaded fit into 254 sectors, the MBR does not
need to be changed. Installation then is as simple as writing mbr_hdd, init_disk, and
all other bootlets together with their command line at the first sectors of the disk. The
init_disk bootlet will then populate the Multiboot Information Structure from this
densely packed format.

3The famous A20 gate can force the 20th address line of the CPU to zero to enable an address
wraparound at 1 MB. This is a legacy feature of the PC platform for i8086 and DOS compatibility.
Enabling A20 early allows loading above 1M on platforms with a particular EDD extension.

4CHS is an ancient addressing mode for disks where the caller has to specify the cylinder, head, and
sector number. The modern linear block addressing (LBA) uses a single number instead.

142

5.2. THE BOOTLOADER

Chainloading via Code Generation

Multiboot chainloading is essential to split the bootloader into smaller bootlets. The idea
and with it the first implementation dates back to OSLO, where it was used to externalize
features that need not be part of the TCB in every scenario [Kau07b]. Optional features
like hashing of command lines were moved into separate tools that are Multiboot loaded
from OSLO and that would after finishing their task start the next tool in the Multiboot
way.

The original chainloading implementation was limited to non-overlapping binaries.
Each tool had to be linked to different addresses, as the decoder, which unpacks the
ELF (Executable and Linkable Format) files to memory, would otherwise overwrite its
own code, which in turn could crash the machine. This restriction was acceptable as
long as the number of binaries was small. However, as more and more tools, like morbo,
montevideo, or santamonica® relied on Multiboot chainloading, it became clear that this
simple approach would not scale to hundreds of different binaries produced by multiple
vendors.

In January 2010 Julian Stecklina and I discovered that code generation can solve
this issue elegantly. Our fancy chainloader does not call memcpy and memset anymore to
extract the sections from the ELF file. Instead, it emits x86 code that performs the exact
same task including the final jump to the target entry point. Since the generated code
is position independent, it will fit into a small scratch area outside of the target binary.
Furthermore, as the code neither requires the stack nor any other part of the original
binary, it can fully overwrite any memory the old binary is using. Lastly, the approach is
quite simple: 100 SLOC are sufficient to implement it.

In summary, code generation allows the bootlets to be linked at any address. This
makes Multiboot chainloading an universal extension mechanism for bootloaders.

Specialization

A significant TCB reduction can be achieved by implementing a specialized solution for
the common case, albeit with reduced functionality. Besides the specialization of whole
bootlets already mentioned before, the config language as well as the user interface are
two examples where this approach was successfully employed.

Config Language The mod_load bootlet retrieves OS binaries as well as bootlets from
disk and adds them to the MBI structure. The files to load are specified at the command
line or in config files expressed in a simple language inspired by Pulsar [Stel3]:

e Each line starts with a four character command followed by optional parameters.
e Unknown commands and short lines are ignored for forward compatibility reasons.
e The character # starts a comment that reaches until the end of the line.

Parsing and executing the eight commands shown in Figure 5.3 requires only 100 SLOC,
which is at least twenty times less than what GRUB2 needs to interpret its Turing-
complete scripting language. Yet, this simple language is powerful enough for the common
case, specifically to load multiple boot configurations from different filesystems. For the

Smorbo initializes a Firewire controller [Ste09], montevideo switches the graphics mode with the help of

VBE, and santamonica gunzips Multiboot modules. The last two are extensions to the OSLO codebase.
6The implementation is not fully compatible to Pulsar yet, as exec does not adjust the module load
address with the end address of the retrieved ELF file.

143

CHAPTER 5. SHRINKING THE BOOT STACK

Name Params Description
exec PATH CMDLINE Prepend a file to the list of modules.
load PATH CMDLINE Append a file to the list of modules.

conf PATH Load and interpret another script.

root PATH Set the directory for relative paths.

addr ADDR Change the load address.

fsnor NR Select an F'S (filesystem) to load files from.

uuid PATTERN Select an F'S through a unique identifier.

bdev [NR] Set the bootdevice in the MBI to the current FS or to NR.

Figure 5.3: The bootlet configuration language. The mod_load bootlet understand eight different
commands.

Layer Bl SYSLINUX Reduction GRUB2 Reduction
vis 260 1100 4.2 710 2.7
ext{2,3,4} 180 600 3.3 780 4.3
fat{12,16,32} | 200 700 3.5 660 3.3
1509660 150 260 1.7 880 5.9
Sum 790 2660 3.4 3330 4.2

Figure 5.4: Size of read-only filesystem code in SLOC. The Bl implementation is more than
three times smaller than the SYSLINUX and GRUB2 implementations written in C.

few use cases where this is not enough, a more complex bootlet should be loaded that
either implements the required functionality directly in Bl or provides it through an
existing scripting language like LUA or Python.

UI Interactively changing the boot configuration is seldom needed. In the vast majority
of cases, the default entry or one of a few predefined configurations is booted. However,
when implementing only the selection step and deferring the interactive editing to a more
sophisticated UI that is chainloaded from it, the complexity of the user interface can be
drastically reduced.

The ui_select bootlet implements this simpler task by evaluating the BIOS keyboard
state and skipping a certain number of bootlets in the chain, depending on the keys that
were pressed. Holding for instance the shift key could boot a second OS, whereas
pressing the space key could load a rescue system. The bootlet is only 40 SLOC large,
whereas an interactive shell might require several hundred SLOC, especially if graphic
drivers are required as well.

Filesystem Access

Filesystem code is one of the largest parts of a modern bootloader. GRUB2 for instance
needs more than 20 KSLOC to read two dozen file and filesystem formats. The fea-
ture analysis in Section 5.2.1 has already revealed that only a few filesystems have to be
supported. Moreover, neither encryption nor RAID support is needed, which are excep-
tionally costly to implement. Getting read-only access to a boot partition on disks, USB
(Universal Serial Bus) stick, and optical media is sufficient. Thus, supporting EXT2,
FAT, IS09660, and their extensions is basically enough.

Figure 5.4 compares the size of the read-only filesystem code in the mod_load bootlet
with the corresponding code in SYSLINUX and GRUB2. A fair comparison with more

144

5.2. THE BOOTLOADER

codebases is difficult, as they do not support all of these filesystems (ELILO, U-Boot,
OpenBIOS), reuse Linux headers (EMILE), or ignore file metadata (GRUB-legacy).

The B1 implementation is on average 3.4x smaller than the filesystem code in SYS-
LINUX, even though it has a slightly larger feature set by supporting UUID in all filesys-
tems and extents in is09660. The GRUB2 code is even larger, due to the following
reasons: i) GRUB2 implements more features like filesystem labels and the Joliet as well
as the RockRidge extension for is096607. ii) GRUB2 does not use a buffer cache to
simplify the code but accesses the disk directly. iii) The code contains definitions of
structures and constants that are never used.

Two advantages make the B1 implementation smaller than their C counterparts. First,
B1 code tends to be more compact. Defining structures as lists and returning up to four
values per function saves lines. Moreover, the recently added classes feature allows to
inherit and overwrite methods easily. Emulating this behavior in C by manually defining
a structure requires more code.

Second, B1 uses a filesystem interface optimized for size. It does not use file descriptors
nor open() or close() functions. Instead a file is identified through a 64-bit number
that references the inode in a POSIX filesystems like ext2 or the directory entry in non-
POSIX filesystems like fat. A read-only filesystem has to implement only four functions:
mount () to identify and initialize the filesystem, walk() to recursively visit directory
entries, read() to read blocks from a file, and stat() to retrieve metadata like the file
size. A generic translate() function, which converts paths to inode numbers, is already
provided by the VFS layer. A filesystem can still overwrite this function if a faster way
to translate a path exists.

In summary, interface as well as implementation improvements make the filesystem
access code at least three times smaller than in other bootloaders.

5.2.4 Evaluation

The decomposed architecture has no visible influence to the overall boot time. The
bootlets start an OS basically as fast as any other monolithic bootloader that relies on
the BIOS for hardware access. I therefore skip a detailed performance evaluation here in
favor of evaluating the code size improvements.

Even though I implemented more than 30 bootlets, I will only evaluate the six bootlets
from Figure 5.1, as they are enough for a dual-boot scenario that enables the user to choose
between a Linux and a Multiboot OS like NOVA.

Figure 5.5 reveals that the bootlets are between 80 and 1800 SLOC large, with
mbr_hdd, which is programmed in assembler, being the smallest and the mod_load boot-
let, which includes the filesystem code, being the largest one. The six bootlets together
consist of 2050 SLOC. This is around 60% of the size of the individual bootlets combined
because the bootlets share a significant portion of their code, like chainloading, output,
and string routines.

The 2050 SLOC can be reduced further by an administrator by choosing only the
necessary feature set. As the combinations are nearly unlimited, I will concentrate on the
most likely ones as listed in Figure 5.5:

e If a scenario fits in the sectors loadable by the MBR, the mod_load bootlet and with
it 1275 SLOC can be omitted.

"The fat numbers were taken before EXFAT support was added.

145

CHAPTER 5. SHRINKING THE BOOT STACK

Bootlet SLOC
Removal SLOC
mbr_hdd 80
. . mod_load -1275
init_disk 180
od load 1800 mod_load_ext?2 -360
- mbr_hdd+init_disk -100
mem_mmap 250 .
. ui_select -40
ui_select 470 .
. start_linux -60
start_linux 540 mem mma 30
Overall 2050 P

Figure 5.5: The six bootlets are between 80 and 1800 SLOC large. Overall they are build from
2050 SLOC (left). This number can be reduced by removing unnecessary features. For example
a scenario that does not require mod_load reduces the size by 1275 SLOC down to 775 SLOC
(right).

e If the files are only retrieved from an ext?2 filesystem, the specialized mod_load_ext2
can be employed, which saves 360 SLOC.

e If the MBR code is not needed, for instance within a Vancouver VM, 100 SLOC for
the mbr_hdd and init_disk bootlets can be removed.

e If boot selection is unnecessary, ui_select with its 40 SLOC need not to be in-
cluded.

e If only Multiboot OSes are booted, 60 SLOC from the start_linux code can be
saved. Alternatively, if one needs to boot only Linux kernels, a memory map need
not be provided by mem_mmap and the TCB becomes 30 SLOC smaller.

When comparing this to the example scenario measured in Appendix (§A4.4.2), only
1690 SLOC are required to start Linux or a Multiboot OS from an ext2 disk. In contrast
GRUB2 needs 30 KSLOC or around 17x more for the same task.

5.2.5 Summary

In this section, I showed how a significantly smaller bootloader can be constructed by
employing the following techniques:

1. Decomposing it into smaller bootlets to enable an application-specific TCB.

2. Reducing the required feature set and moving legacy features from the critical path.
3. Specializing bootlets to reduce the TCB in the common case.

4. Relying on firmware interfaces instead of own drivers.

5. Using Multiboot chainloading as flexible extension mechanism.

6. Choosing Bl - a programming language more compact than C.

7. Using a few implementation tricks, like an extensible DAP region, a simpler config
language, and code generation.

In summary, a bootloader does not need to be ten- or even hundred-thousand lines large.
A few thousand lines will be sufficient for most scenarios.

146

5.3. TRUSTED COMPUTING

5.3 Trusted Computing

The boot stack of the PC platform has been under attack since the Brain virus was released
in 1986 [Szo05]. It is currently easy for an adversary to replace the bootloader [KCWT06],
circumvent firmware security checks [Kau07b], take over SMM [DEGO6], or hide itself in
ACPI tables [Hea06]. Various techniques were developed to make such attacks on the
boot stack more difficult. In this section, I concentrate on Secure Boot and Trusted
Computing techniques that aim to improve the security of the whole boot stack including
the firmware and bootloader. I analyze whether they can be used to shrink the amount
of code that needs to be trusted and describe security threats to show the current limits
of these approaches.

5.3.1 Secure Boot

Secure Boot is probably the most widely deployed technique to harden the boot process.
It protects the Xbox and millions of iOS installations from running unauthorized appli-
cations [Ste05, i0S14]. It has reached the PC platform as well since hardware certified
for Windows 8 has to support UEFI Secure Boot [Mic14].

The idea underlying Secure Boot is to allow only known and hopefully secure software
to execute, by checking that each program is digitally signed by a trusted authority.
Additionally a revocation list ensures that vulnerable programs cannot be used any longer.

Secure Boot improves the platform security by raising the bar for attackers: simple
approaches to takeover the boot stack, like patching the bootloader, will fail. However,
various Secure Boot implementations have not withstood sophisticated attacks:

e Microsoft could not defend the Xbox secure boot system against determined attack-
ers [Ste05].

e Apple seems not to be able to protect any iOS version longer than a couple months
against jailbreaks [MBZ™12].

e Various attacks against UEFI Secure Boot are known. The technique is still “too
young to be secure” [BSMY13].

There are various reasons why Secure Boot systems are vulnerable:

Bug Free The whole boot stack needs to be bug free because a single defect can be
enough to circumvent its protection. The huge size of current implementations
makes this an impossible task.

Updates The long-term security of a platform depends on timely updates of the vulner-
able program and the extension of the revocation list. However, as [BKKH13| has
shown, a compromised platform can effectively avoid those updates while telling the
user that everything is well.

Code Signing The firmware, external modules, bootloaders, the OS kernel and any
other code that has full control over the platform needs to be signed. However,
verifying the integrity of even a single program is a costly task. Obfuscation can be
used to bypass automated security checks [HKY13].

Root of Trust The certificate checking forms a trust chain, where each component in
the boot process is trusted to correctly verify the signature of the next part it
boots. The first software in this chain, called the Root of Trust for Measurement

147

CHAPTER 5. SHRINKING THE BOOT STACK

(RTM), can only be protected by hardware mechanisms. However, considering
its importants in the chain, this protection is often not as strong as it should be
[Ste05, Kau07b, BSMY13].

Even though Secure Boot can be implemented relatively easily, protecting such a system
against determined attackers is a much harder task.

Finally, adding Secure Boot functionality to an existing software stack increases its
complexity and with it the TCB. Secure Boot does not reduce the size of the boot stack.

5.3.2 Trusted Computing with a Static Root of Trust for Mea-
surement

Secure Boot suffers from a fundamental limitation: There is no way to reliably tell what
software is running or what updates were installed on a particular machine. This restricts
trust to a binary value: either a certain software was signed by one of the trusted au-
thorities or not. A finer grained trust relationship seems not to be implementable with
Secure Boot.

Trusted Computing solves this issue by adding a smartcard-like chip called TPM
(Trusted Platform Module) to the platform [Pea02, Gra06]. Instead of checking a sig-
nature on the program to load, a hash of it is added to a so called PCR (Platform
Configuration Register) that resides in the TPM. PCRs are tamper proof and cannot be
directly modified. Instead they can only be extended by storing a hash over the previ-
ous value of the PCR and the value to add. Whereas this additional layer of indirection
changes little from a security point of view®, it allows to store a large number of hashes
within the limited memory of a small chip like the TPM.

In the initial implementation of Trusted Computing, the PCRs could only be set to
zero by rebooting the whole platform. At this point trusted firmware gets control over
the platform and can hash itself into a PCR. This code is called the Static Root of Trust
for Measurement (SRTM) because it is always invoked at a fixed point in the machine life
cycle. I will later describe the newer Dynamic RTM approach, where a new hash chain
can be started at anytime after booting.

The TPM can digitally sign the PCR values with a private key to attest to a third
party, which software stack is currently running (authenticated booting). The PCR values
can also be used by the TPM to make security-relevant data only available to a partic-
ular OS version (sealed memory). This feature protects data against reboot attacks for
instance in disks encryption systems like Bitlocker [Mic09].

Attacks on SRTM systems

There are two security assumptions in the SRTM design. First, all software layers have
to hash the next layer before they are giving control to it, starting from the first firmware
code until the OS takes over control. Second, the TPM and the platform have to reset
at the very same time. In [KauO7b] I described several attacks targeting all layers of a
TPM-protected system that violate these assumptions:

Bootloader The trusted bootloaders turned out to be the weakest link in the system.
Some bootloaders did not hash all the code they execute. Others can be tricked
into executing different code than what was hashed before.

8]t enables new cryptographic attacks, like reversing one extend or reversing all previous extends.
However, these are generally believed to be mathematically harder than collision attacks on the hash
function that would already break the cryptographic protection.

148

5.3. TRUSTED COMPUTING

Firmware The BIOS in a TPM-enabled platform could be fully modified as no update
protection was implemented. This includes the SRTM code that extends the PCRs
for the first time. As a patched BIOS will not extend PCRs anymore but leaves
them in their reset state, an attacker can fake any PCR configuration. The lack
of platform certificates means that this bug will affect the remote attestation of all
machines with the same TPM chip.

TPM Firmware A “feature” of a particular firmware allowed driver code to reset the
TPM independently of the platform. The remote attestation with the affected TPM
version cannot be trusted any longer. This attack revealed that the security of the
system also depends on hidden firmware.

Hardware Attack TPMs are usually attached to the Low Pin Count (LPC) bus. A
single wire connecting the reset line of this bus to ground will reset the TPM inde-
pendently of the platform.

Fixing the bootloader and the firmware bugs is a tremendous task, especially as those
large software stacks were never written with security in mind. Moreover, as trusted com-
puting based on an SRTM cannot protect against “simple hardware attacks” [Gra06], it
is unsuitable for many scenarios like kiosk computing [GCBT08], the Digital Rights Man-
agement scenario [RC05|, theft protection [CYCT08], or whenever physical modifications
for instance through an “evil maid” [RT09| cannot be excluded.

In summary, Trusted Computing based on a SRTM can easily be compromised. It
cannot reduce the TCB of the system but adds new code including the TPM firmware to
it.

5.3.3 Trusted Computing with a Dynamic RTM

In 2006 T implemented the Open Secure LOader (OSLO), the first publicly available
bootloader that relies on a Dynamic Root of Trust for Measurement (DRTM) to use
Trusted Computing even in the face of a “resettable TPM, an untrusted BIOS, and a
buggy bootloader” [Kau07b]. A DRTM is a hardware extension invoked through a special
instruction that puts the CPU into a known good state, stores a hash of a small piece
of code called the secure loader into a new PCR and transfers control to it. The secure
loader can then verify that the platform is configured securely before extending a PCR
with the hash of the OS it boots.

Intel and AMD provide different DRTMs. Intel uses the senter instruction to invoke
an SINIT module, a secure loader that has to be signed by the platform manufacturer.
AMD provides the skinit instruction to start any piece of code as secure loader. The
advantage of Intel’s approach is the ability to ship platform verification code that relies on
undocumented chipset features, whereas AMD’s approach is much simpler to implement
in hardware as no signatures have to be checked. OSLO works only with AMD machines.
However, the tboot project provides similar functionality for Intel platforms [TBO].

A DRTM counteracts the aforementioned attacks on the SRTM system because reset-
ting the TPM is not enough anymore. Newly introduced PCRs are not set to zero on a
TPM reset anymore. Instead, they are initialized to -1. Only the special LPC bus cycles
induced by the DRTM can force them to zero.

TCB Reduction with OSLO

Starting the trust chain after the firmware and a legacy bootloader have finished their
tasks allows removing their code from the TCB. Removing the ACPI interpreter from

149

CHAPTER 5. SHRINKING THE BOOT STACK

the TCB as well is tricky because validating the ACPI tables, the only source of certain
platform specific knowledge, seems to be unfeasible. Instead, one can use the solution
presented in Section 5.4 to shrink the ACPI code.

Replacing the firmware and bootloader with the 1583 SLOC required for OSLO reduces
the TCB significantly. However, one needs to trust more than just OSLO in such a
scenario:

Verification Code OSLO does not include code to verify that the platform is configured
securely. Whereas no such code seems to exist for AMD platforms yet, one can surely
assume that it will be as complex as on Intel chipsets. A SINIT module for the Intel
Haswell platform, for instance, has an estimated size of 9 KSLOC [TBO].

TPM The TPM has to be trusted to store the hashes and the signing keys safely. Mea-
suring the TCB impact of a TPM directly seems to be impossible, as neither the
firmware nor the hardware are freely available. The best available estimate are the
19 KSLOC of a TPM emulator [SS08].

External Device One needs an external device to receive and check the PCR values. A
simple microcontroller based implementation requires around 4 KSLOC [VCJT13|.

New Hardware Additional hardware is required to use OSLO. A platform not only
needs a TPM but also an IOMMU (I/O Memory Management Unit) for DMA
(direct memory access) protection. Furthermore, the CPUs as well as the chipset
have to securely forward the hash of the secure loader from to the TPM.

Requiring new hardware features excludes legacy and due to additional costs also
many embedded systems. Furthermore, it enables new ways to attack the system.
Finally, validating new features is costly.

Unfortunately, the additional complexity induced by Trusted Computing cannot be
easily expressed in SLOC because hardware implementations and validation proce-
dures are usually kept confidential by the manufacturers.

In summary, relying on trusted computing with a DRTM can replace the 70 KSLOC
of firmware and bootloader with approximately 35 KSLOC for the secure loader, TPM,
platform verification, and external device.

5.3.4 Security Challenges

Using a secure loader like OSLO alone, is not sufficient to construct a secure system. Most
importantly the booted OS needs to be able to protect itself against various attacks. It
must use the IOMMUs, hash any code that is loaded into the kernel and protect the
kernel interfaces that can compromise its security, may it be from the administrator of
the machine or not [VMQ™10]. Having an OS with a small TCB like NOVA significantly
simplifies this task.

The following hardware and software challenges have to be met as well to gain a secure
DRTM system:

Firmware One has to ensure that the untrusted firmware cannot get control over the
platform again after the secure loader was executed. Sandboxing BIOS code and limiting
the impact of ACPI code as explained in Section 5.4, removes two ways how malicious
firmware can takeover the system.

150

5.3. TRUSTED COMPUTING

A still open attack vector is SMM [WR09a|. This means the firmware has to be trusted
to install bug free SMM code and protect it against various attacks [DEG06, DLMGO9,
WRO09b]|. However, an adversary with physical access can avoid that the firmware runs
at all, by booting from an untrusted PCI device®.

The ideal solution would be to completely disable system management mode. How-
ever, this excludes several legitimate use cases and requires OS as well as firmware
changes [Man09]. Running the malicious SMM code instead in a VM, as proposed by
Intel and AMD [SVMO05, UNR ™05, will further increase the complexity of the virtualiza-
tion layer and with it the TCB of the system.

TPM The large distance to the CPU, the complexity of the interface, and the low cost
make the TPM a primary target:

e Tarnovsky could break the TPM hardware protection and expose its secret keys
[Tar10]. Even though it is infeasible to mount his invasive attack in the large, it
revealed that TPMs are not as tamper-resistant as believed before.

e Winter and Dietrich manipulated the LPC frame signal with an FPGA to turn
normal requests on the LPC bus into DRTM messages. They conclude that special
cycles on the LPC bus provide “little to no protection against adversaries with
physical hardware access” [WD12]. Thus, Trusted Computing with a DRTM is not
resilient against “simple hardware attacks” [Gra06].

Implementing a reduced TPM feature set directly inside the CPU as proposed for in-
stance by Intel SGX [MAB* 13|, would make hardware attacks harder. Nevertheless, the
challenge of bootstrapping trust into such a platform remains [Par08|.

Verifier OSLO does not include the verification code to ensure for instance that the
chipset is initialized correctly, security-critical registers are locked, the DRAM controller
is trained properly, and any platform backdoor is disabled. Writing such code is complex
and error prone, especially as chipset details are often undisclosed.

Moreover, securely verifying the DRAM configuration seems to be impossible on the
x86 platform because the only reliable source for this information, the EEPROM on the
DRAM, is only accessible through the slow and untrusted SPD (Serial Presence Detect)
bus, which can be easily manipulated.

Memory The ability to replace DRAMSs in a running or suspended system will com-
promise even an otherwise invulnerable OS. This so called Cold-Boot attacks [HSHT 09|
are a threat to Trusted Computing, especially as the code and data integrity is checked
only during startup. Once the OS is hashed and running, it should be able to protect
itself.

Intel SGX relies on a memory encryption engine [MABT13] to remedy these classes
of attack, even though this increases the complexity of the hardware and costs some
performance.

Similarly, cache attacks [OST06, DLMGO09| limit the confidentiality a system can
provide. Keeping valuable secrets in CPU registers [KS09] and implementing encryption
as well as random number algorithms directly in the CPU [SDM13|, counteracts cache
attacks with additional hardware.

9Intel Southbridges have a debugging feature publicly documented since 2005 (ICH6). They consult
the Boot BIOS functional straps to decide whether to load the initial code from EEPROM or from the
PCI bus. An attacker can enable these pins with two simple wires.

151

CHAPTER 5. SHRINKING THE BOOT STACK

Backdoors Contemporary platforms have rich management and debugging capabilities
to cope with the high system complexity. Unfortunately, these features may also be used
as backdoor into the system:

e The Intel AMT Management Engine (ME) can access memory and control devices
like network cards, graphics controllers, and USB. An attacker able to exploit a
defect in its firmware could remotely takeover the machine.

e The embedded controller in the AMD SB700 southbridge resides on the LPC bus to-
gether with the TPM. Malicious firmware code on this device could generate special
cycles and thereby break the DRTM without requiring any physical modification.

e There are various debug interfaces like JTAG or PECI that allow to read and modify
CPU as well as chipset internal state. If accessible in production hardware, they
could be used to compromise the OS.

Finally, malicious CPUs can be built easily but detecting them is hard [KTC*08]. Thus,
proving for a particular platform that all backdoors are closed remains an open research
challenge.

5.3.5 Summary

In this section, I analyzed whether Secure Boot and Trusted Computing can be used to
shrink the trusted boot code. I found that Trusted Computing based on a DRTM can
remove as much as 35 KSLOC from the TCB.

I also show that various security challenges have to be met before Trusted Computing
will offer the security guarantees it promises. Without a solution to these issues the
“additional security of current secure bootstrap facilities is minimal” [HvDO04].

A common pattern one can observe in the solutions that were already proposed, is that
security-critical functionality is moved to the hardware. However, this will not reduce the
overall TCB of the system, but just trade software against hardware complexity. Instead,
one should also account the hardware to the TCB and apply reduction techniques to it
as well. Ideally, the hardware of a secure platform should be verifiable independently of
the vendor.

5.4 ATARE: Parsing ACPI Tables with Regular Ex-
pressions

Fully supporting the ACPI [ACP| in an OS is a task many developers want to avoid
because it requires the understanding of a complex specification and the implementation
of a lot of code, most notably for an ACPI Machine Language (AML) interpreter.

Unfortunately, an OS needs to know how the interrupt lines of PCI devices are routed
to global system interrupts (GSI). This information is platform specific as it depends on
the chipset as well as on the board wiring. However, drivers need the routing information
to listen to the right interrupt vector for device interrupts. If the OS uses an incorrect
routing, no interrupts or even an interrupt storm may be received by the driver. An OS
might not successfully boot in this case.

The only authoritative source for this information are ACPI tables that are typically
evaluated by an AML interpreter. As the traditional approach of porting such an inter-
preter to a new OS adds tens of thousand lines to the TCB, I searched for a new approach.

152

5.4. ATARE: PARSING ACPI TABLES WITH REGULAR EXPRESSIONS

Name ‘ Path ‘ SLOC
Linux 2.6.27.4 drivers/acpi 50295
include/acpi 7325
FreeBSD head contrib/dev/acpica | 44621
dev/acpica 12878
ACPICA 20080926 | binary: 98.2k 73840

Figure 5.6: Lines of Code of ACPI implementations.

Because platform resource discovery and fine-grained power management need not to be
based on ACPI, only a fraction of the data available through AML is actually required.
In fact, the only mandatory information is the routing of PCI interrupt lines to global
system interrupts (GSI) [SA99]. In this section, I therefore discuss how this particular
information can be deduced from AML. Other platform-specific knowledge such as the
S3 sleep state parameters can be retrieved in the same way. Related approaches that
consume this information, like [Sch12], are orthogonal to this work whereas I focus on the
retrieval step.

By extending the results from [Kau09a] with a C++ implementation and evaluating
it on a recent and much larger ACPI table collection, I show in the following that regular
expressions can extract the interrupt routing in nearly all known cases with significantly
less code then a full ACPI interpreter.

5.4.1 Background

ACPI standardizes the interaction between hardware, firmware, and operating system. It
allows an OS to enumerate platform resources, change resource allocations, and perform
power-management tasks.

The ACPIT specification is quite large. Version 3.0b [ACPO06], for instance, consists of
more than 600 pages, defines 13 ACPI tables, and references 19 externally defined ones.
ACPI tables, which map a name like RSDT to a binary blob, either have a fixed layout
that can be easily understood by the OS or they consists of AML bytecode that needs a
complex interpreter. The DSDT and SSDTs fall into the later category.

AML is a domain specific language with many features: It knows named objects, meth-
ods that could be called on them, and control structures such as if, while, and return.
It supports various data types, for instance numbers, strings, and variable sized packages
of other objects. Different operations can be performed on these types, like arithmetic
and bitwise operations on numbers. In summary, AML is a Turing-complete and domain-
specific language specially tailored for platform configuration and power management.

Table 5.6 gives lines of code for the ACPI implementations in Linux, FreeBSD, and
in the reference implementation ACPICA [ACA]. The numbers for ACPICA also include
various tools, which are not strictly needed in an OS like an AML compiler. These
numbers show that the traditional approach of porting ACPICA will add more than
50 KSLOC to the OS.

Furthermore, interpreting AML code has security implications, as shown by Heas-
man [Hea06] who was able to hide a root kit in AML. The main issue stems from the
fact that the AML code needs to access platform resources to perform its duty. However
an interpreter in the OS cannot decide whether a certain access should be allowed or
whether it will open a backdoor without the knowledge that is only available in AML.
For example, Windows XP blocks access to some 1/O ports [Mic03], but just warns if

153

CHAPTER 5. SHRINKING THE BOOT STACK

AML code accesses kernel memory. In summary, if the AML code is not sandboxed, it
will be part of the TCB as well.

Alternatives to ACPI

The easiest available source for the interrupt routing is the PCI configspace where the
BIOS puts the IRQ (interrupt request) numbers for DOS compatibility reasons. Un-
fortunately, these numbers are only correct when using the legacy PICs (Programmable
Interrupt Controllers) [PIC88| but not with the newer I/O APIC (I/O Advanced Pro-
grammable Interrupt Controller) interrupt controller [Int96]. If an OS relies on this older
mode, it gives up most of the gains from the newer I/O APIC architecture such as reduced
IRQ sharing and fine-grained IRQ routing to different processors [Mic01]. Furthermore,
acknowledging an IRQ can be quite slow on the slave PIC. Finally, certain interrupt lines
may not be wired to the PIC at all. Solely relying on the PIC can therefore not be an
option for an OS.

MSI (Message Signaled Interrupt) [Bal07] are an alternative to interrupt controllers
and dedicated IRQ lines. A PCI device with MSI support can be programmed to directly
send the interrupt vector to a CPU. IRQ routing is not an issue with MSIs anymore as
all interrupt controllers in the chipset are bypassed. Unfortunately, MSI support is not
available on many devices and even broken on some platforms. Linux 2.6.27.4 for instance
disables MSI in 24 cases [LINO§|. MSIs are mandatory for PCI express devices and clearly
the future, but an OS cannot solely rely on them today.

There are other sources known for IRQ routing. One could, for example, rely on
the MP configuration table, as defined in the Multi-Processor Specification [MP97]. It
consists of a format that is simpler to parse than AML. However, many BIOSs do not
provide an MP table anymore, as it is deprecated since the first ACPI specification has
been published in 1999. Another solution would be to build an IRQ routing database
into the OS. However, collecting this dataset would be a tremendous task due to the large
number of different motherboards.

In summary, there is no real alternative to ACPI as the authoritative source for the
TRQ routing of a platform.

IRQ Routing Representation

IRQ routing information is returned in ACPI by evaluating the _PRT method of a PCI
bridge. This returns a package of IRQ mappings for devices on its bus. An IRQ mapping
consists of the following fields:

1. PCI device address,
2. TRQ pin (0 - #IRQA, 1 - #IRQB,...),
3. A name of a PCI IRQ router,

4. A GSI (global system interrupt) number if no IRQ router was given.

5.4.2 Pattern Matching on AML

There is a pattern in many DSDTs that can also be seen in Figure 5.7: The IRQ mappings
returned by the _PRT method in I/O APIC mode, use a fixed GSI value and not an IRQ
router. This means finding the IRQ mappings in the AML code is enough to know what

154

5.4. ATARE: PARSING ACPI TABLES WITH REGULAR EXPRESSIONS

Method (_PRT, O, NotSerialized) {
If (GPIC)
Return (Package (0x01)
Package (0x04) {
0x0014FFFF,
0x02,
0x00,
0x12})
else
Return (Package (0x01)
Package (0x04) {
0x0014FFFF,
0x02,
_SB.PCIO.LPCO.LNKC,
0x00})

Figure 5.7: A slightly modified real-world _PRT method. Depending on the value of the GPIC
variable, it returns different IRQ mappings. If the OS runs in I/O APIC mode the PCI IRQ pin
is routed to GSI 0x12 whereas in PIC mode the pin is mapped to an IRQ router named LNKC.

SEG = [A-Z_1[A-Z_0-91{3}

NAME = (\ | ~*) (SEG | (\x2e SEG SEG) | (\x2f. SEG*))

PKGLEN = [\x00-\x3f] | [\x40-\x7f]. | [\x80-\xbf]l.. | [\xcO-\xff]...
DATA = [\x00\x01\xff] | \xOc.... | \xOb.. | \xOa.

METHOD = \x14 PKGLEN NAME

DEVICE = \x5b\x82 PKGLEN NAME

SCOPES = \x10 PKGLEN NAME

DEFINE = \x08 NAME (DATA | \x12 PKGLEN)

IRQMAP = \x12 PKGLEN \x04 DATA{4}

Figure 5.8: The Regular Expressions needed to extract IRQ mappings from AML.

GSI is triggered through a PCI interrupt line. However, as not all DSDTs follow this
pattern the corresponding search algorithm cannot be exact. It will be an heuristic.

Note that the accurate parsing of AML elements is complex and impractical. To get
the start of the _PRT method in the bytecode stream, all the unnecessary elements have
to be skipped. Unfortunately, there is no clear hierarchy between different element types.
It is possible that a calculation of a variable is directly followed by a definition of a new
method. To find the start of a method, one has to know every AML element type, its
length and whether it would contain other elements or not.

A look into the ACPI specification reveals that AML is densely packed binary data
but still contains enough “space” in its encoding. In fact, distinct binary ranges are used
for different elements. This allows to apply regular expressions to search for specific AML
elements. Furthermore all variable sized objects such as METHOD or DEVICE directly specify
their length. Whether one object is contained in another one is therefore easily decidable.

Figure 5.8 lists all the regular expressions that are needed to find the required AML
objects. The first four definitions are just shortcuts to simplify the later expressions. The
last five are used for the search. Name segments, for example, are always four characters
long and start with an uppercase letter or an underscore. The last three chars may also
contain digits. Another example would be the data that is found in the four element TRQ
mapping packages. It consists either of one of the characters {0,1,255} or it starts with

155

CHAPTER 5. SHRINKING THE BOOT STACK

Files
good 456
no I/O APIC 270
compile error 108
TRQ router 17
Sum 851

Figure 5.9: DSDTs tested with the Python prototype.

one of {12,11,10} followed by a {4,2,1} byte-wide integer respectively. The pattern named
DATA in Figure 5.8 reflects this case.

5.4.3 The Search Algorithm

The regular expressions listed in Figure 5.8 allow searching for names, methods, devices,
scopes, definitions of variables, and packages with four elements that look like IRQ map-
pings. A higher level search algorithm can be built upon these basic primitives. To avoid
false positives, the search algorithm has to make sure that IR(Q mappings are returned
from a _PRT method. IRQ mappings can be directly defined within the method. Fur-
thermore, DSDT writers sometimes put the list of IRQ mappings outside the actual _PRT
method and just reference them directly or indirectly via name. To cope with those cases
all references have to be followed.
The search algorithm can therefore be described as follows:

1. Search for a _PIC method and fail if it is not present. The _PIC method is needed
to tell ACPI that the OS switched from the default PIC to the I/O APIC mode.
The absence of it is a good indicator that the ACPI table is too old to have support
for an I/O APIC.

2. Search for the next _PRT method. If nothing is found, finish.

3. Search for the _SEG, _BBN, and _ADR methods of the enclosed bridge device. These
methods return the PCI segment, bus, and device address respectively. They specify
to what PCI bridge the IRQ mappings belong.

4. Search for IRQ mappings directly contained within the _PTR method.

5. If nothing was found, search recursively within every object referenced by the _PTR
method.

6. Goto step 2.

5.4.4 Evaluation
Python Prototype

The search algorithm was first prototypically implemented in Python by using its regular
expression library to match the patterns depicted in Figure 5.8. This prototype was
used to evaluate the heuristic against 851 real-world DSDTs from a discontinued DSDT
repository [SFA]. The oldest entries in this repository date back to 2003 whereas the
latest ones were added in November 2007.

156

5.4. ATARE: PARSING ACPI TABLES WITH REGULAR EXPRESSIONS

bool match_seg(char *res) {
for (unsigned i=0; i < 4; i++)
if (V' ((res[i] >= ’A’ && res[i] <= ’Z?)
Il (res[i] == >_?)
|l (i && res[i] >= ’0’ && res[i] <= ’9’)))
return false;
return true;

}

Figure 5.10: The simplicity of the regular expressions made a C++ implementation easy. This
function matches the SEG regular expression from Figure 5.8.

Figure 5.9 shows the results. From the original 851 DSDTs 13% or 108 had compile
errors because they were submitted in the wrong format such as hex dumps or C-code.
Around 32% of the DSDTs had no I/O APIC. They either didn’t include a _PIC method
or they simply ignored it. This left 456 good cases, and 17 ones where the heuristic
failed. Please note that the database contains duplicates as users were uploading updated
versions. From the 456 DSDTs only 190 have a unique vendor and version number.

A manual inspection of the 17 failed ones showed that these cases rely on PCI IRQ
routers to forward IRQs not only to the PIC but also to the I/O APIC. This is possible
by connecting an unused router pin to the I/O APIC pins that are normally unavailable
in PIC mode. Fortunately the BIOS configures the IRQ routers for PIC mode to be DOS
compatible. Thus by falling back to the PIC interrupt numbers from the PCI configspace,
these 17 cases can be handled as well. Because the routers are not used in this case, more
interrupt lines have to be shared.

In more than 95% of the cases the heuristic extracts the IRQ routing successfully from
AML. A simple fallback results in a quality degradation for the remaining cases but not
in a failure. In summary, the approach is successful in all tested cases.

C-+-+ Version

Because the prototype proved the feasibility of the approach, a C+- version was imple-
mented using roughly 300 lines of code. Compared to the prototype, it does not rely
on a regular expression library anymore. Instead it implements the pattern matching
directly in C++ as depicted in Figure 5.10. Furthermore, it resolves object references
more accurately and searches for IRQ mappings recursively. Finally, it can extract the
values needed to put the platform into S3 sleep states.

To evaluate the heuristic also with more recent DSDTs, various sources were crawled.
Most notably are the Ubuntu bug database'® and the Bugzilla of the Linux kernel'!. Fur-
thermore several forums were scanned for submitted DSDTs'2. These sources increased
the number of available DSDTs to over ten thousand. The collection now includes 2845
unique DSDTs!? covering the last 15 years. Figure 5.11 shows how the C++ implementa-
tion handles these cases. I omitted percentage values in the figure because the collection
is not a good representative for the machines a general purpose OS will run on. Instead

Ohttp://launchpad.net

Hhttp://bugzilla.kernel.org

12E.g. http://tonymacx86.com

13Two ACPI tables are considered the same if they share the OEMID, OEM Table ID, and the OEM
Revision.

157

http://launchpad.net
http://bugzilla.kernel.org
http://tonymacx86.com

CHAPTER 5. SHRINKING THE BOOT STACK

Files Unique

good 8587 2293
IRQ router 664 227
no I/O APIC 645 298
multiple 207 50
broken 155 63
Sum 10258 2845

Figure 5.11: The C++ implementation classifies more than ten thousand files from the DSDT
collection.

Number Percent Unique

good 82,666 87.6 2,097
IRQ router 8,566 9.1 178
no I/O APIC 2,146 2.3 185
multiple 711 0.8 28
broken 321 0.3 41
Found 94,405 100.0 2,525
Missing 15,113 16.0 4,563
Sum 109,518 7,088

Figure 5.12: An unbiased distribution of DSDTs were taken from Ubuntu bug reports. The C++
implementation handles most of the cases correctly.

it is biased towards older (no I/O APIC) and defective DSDTs (multiple, broken) due to
the sources these files were retrieved from.

The Ubuntu bug database available through http://launchpad.net proved to be
a valuable source for an unbiased distribution of current hardware. The Linux boot
messages, which are attached to hundred thousands of bug reports, also mention the
DSDT the platform is using. Figure 5.12 shows how the C+-+ implementation handles
the DSDTs referenced this way. Even if the DSDT collection covers only a third of the
seven thousand unique tables mentioned in the boot messages, around 85% of the entries
could be successfully classified.

The heuristic extracts the IRQ routing in seven out of eight cases (good). In 9.1% an
IRQ router was used whereas 2.3% of the cases had no I/O APIC support. Both cases
can be handled by falling back to the PIC interrupt numbers from the PCI configspace, as
mentioned in the prototype evaluation. The DSDT defines multiple entries for the same
IRQ line in 0.8% the cases. To use these defective tables as well, an OS can implement
the same workaround as Linux and just ignore all but the first entry.

Altogether the heuristic and the two workarounds successfully return the IRQ routing
of a platform in 99.7% of the cases. The remaining 0.3% (broken) cases are caused by 41
different DSDTs, which rely on AML features not detected by our heuristic. These cases
fall into three categories:

1. Include superfluous entries in if (Zero) sections or reference the routing through
an Alias.

2. Select the IRQ routing information through the ID of a PCI device or through an
ACPI variable overridden by an SSDT.

3. The IRQ routing depends on the BIOS revision or a proprietary MMIO or PIO

158

http://launchpad.net

5.5. CONCLUSIONS

register.

Whereas the heuristic could be extended to cover the first and potentially even the second
category, it would surely fail to handle the third one. However, as the number of broken
DSDTs is relatively low'#, an OS could just include a few quirks to support all the known
cases.

5.4.5 Summary

Previously, there were only two ways of handling ACPI in an OS: either ignoring it or
using a full featured AML interpreter. I developed a third approach between these two
extremes. By using a heuristic to extract only the information needed from AML, the
complexity of the implementation can be drastically reduced by more than two orders of
magnitude from approximately 50 KSLOC to 300 lines of C++ code. The evaluation has
shown that the heuristic together with a small number of quirks can provide the platform
specific routing of PCI interrupts on all known platforms.

5.5 Conclusions

TCB constraint systems need a boot stack much smaller than today. In this chapter, I
have presented three approaches to reduce the TCB impact of the boot stack:

1. T decomposed the bootloader. A better design and several implementation improve-
ments reduced its size by more than an order of magnitude.

2. I'showed that Trusted Computing based on a DRTM can remove around 35 KSLOC
from the TCB. However, several software and hardware challenges need to be solved
until this technique is as secure as it aims to be.

3. I introduced a heuristic to reduce the ACPI table parsing code by more than two
orders of magnitude.

These results can be employed in two ways to shrink the TCB impact of the x86 boot stack
from 120 KSLOC to approximately 35 KSLOC: One can use the platform initialization
code from Coreboot (See Appendix A.4.1) together with the disk and input drivers from
the NOVA user-level environment (§2.2.3) to run the decomposed bootloader developed
in Section 5.2. Alternatively, one can keep the normal firmware as well as the legacy
bootloader but use Trusted Computing with a DRTM to limit its TCB impact. Relying
on the ACPI heuristic is useful in both cases.

To further reduce this size one should improve the platform initialization as well as
the verification code and reduce the complexity of the TPM. Both tasks are left to future
work.

14Linux v3.10 ships with 99 PCI quirks on x86.

159

Chapter 6

Conclusions

In this work I aimed to increase OS (operating system) security by significantly reducing
the security-critical part of it, commonly called the TCB (Trusted Computing Base). As1
argued in the introduction, a single defect in the OS exploited by an attacker can give full
control over all the software running on the machine. Unfortunately, current operating
systems consist of several million lines of code. For example, a minimal cloud-computing
scenario requires 1.2 MSLOC, whereas the typical case will be around 14.5 MSLOC.
These numbers indicate that the OS is too large to be defect free, as even “good quality
software” comes with “1 defect per every 1,000 lines of code” [Cov14]|. Reducing the size
of the OS and with it the number of defects in it, therefore increases the overall security
of a platform.

By following a holistic approach and improving several system layers I could shrink
the TCB below 100 KSLOC. We started with a new OS called NOVA, which can provide
a small TCB for both newly written applications but also for legacy code running inside
virtual machines. Virtualization is thereby the key technique to ensure that compatibility
requirements do not increase the minimal TCB of our system. The main contribution of
this work is to show how the VMM (virtual machine monitor) for NOVA was implemented
with significantly less code without affecting the performance of its guests. Additional
contributions towards a smaller TCB were made in debugging, compiling, and booting
the operating system.

Figure 6.1 compares the size of our system with the minimal and typical configuration
measured in Appendix A. The largest improvements could be achieved in the OS and
VMM layer, compared to the minimal configuration from Appendix A. The compiler is

Name Thesis | Minimal Factor | Typical Factor
OS 21 830 40 9400 448
VMM 9 220 24 2000 222
Debugging 3 30 10 1000 333
Compiler 4 20 5 1800 450
Firmware 33 55 2 150 5
Bootloader 2 15 8 175 88
Sum ‘ 72 ‘ 1170 16 ‘ 14525 202

Figure 6.1: The TCB in KSLOC of a virtual machine when combining all achievements into a
unified system compared to the minimal and typical configuration shown in Appendix A.

161

CHAPTER 6. CONCLUSIONS

on the top spot when considering the typical case instead. The smallest reduction was
possible at the firmware level. It now accounts for around half of the code in the TCB
even though it is only needed to initialize the platform. Future research should tackle
this area.

Compared to the 1.2 MSLOC for the minimal configuration, a sixteenfold TCB re-
duction could be achieved on average. This increases to two-hundred fold if the typical
case is considered instead. A unified system including all improvements needs only 72
thousand lines of code for the TCB of a virtual machine when assuming that all layers can
be compiled with our own B1 compiler. However, rewriting the whole system including
hypervisor, VMM, and firmware in the Bl programming language is left to future work.

6.1 Techniques

As predicted by [Bro87], I have not found the silver bullet, which will reduce the TCB on
all layers. Instead, several design and implementation techniques had to be employed to
achieve the desired reduction. Most notably techniques are:

Architecture The NOVA OS Virtualization Architecture reduces the TCB for both ap-
plications and virtual machines by following the microkernel approach. It separates
the hypervisor and VMM, uses one VMM per virtual machine, and runs device
drivers in a decomposed user-level environment (§2.2.1).

Component Design Building the user-level environment as well as the VMM from
loosely coupled software components allows to specialize the TCB to the require-
ments of the hardware and the virtualized OS. Furthermore, it enables component
sharing between independent programs (§2.2).

Code Generation A large portion of the instruction emulator was generated automat-
ically thereby reducing the amount of hand-written code (§2.4).

BIOS Virtualization Virtualizing the BIOS inside the VMM is simpler and faster than
emulating it inside the virtual machine (§2.5).

Debugging Memory access and signaling is sufficient for sophisticated debugging of
physical and virtual machines, which minimizes the debug code in the OS (§3.2).
Moreover, Self-Modifying DMA over Firewire provides this low-level interface with-
out any additional runtime code (§3.3).

Compiling Simplifying the programming language, reusing an existing syntax, and im-
plementing it in a high-level language reduces the TCB impact of the compiler (§4).

Boot One can use the platform initialization part of the firmware together with a de-
composed bootloader to reduce the TCB of the boot stack (§5.2). Alternatively,
one may use Trusted Computing based on a DRTM to remove legacy bootloaders
and most of the firmware from the TCB (§5.3).

Heuristic The ACPI code in the OS can be minimized with a heuristic (§5.4).

6.2 Lessons Learned

In the course of this work I have learned several lessons that can be useful when designing
and implementing other systems with a small TCB:

162

6.2. LESSONS LEARNED

The key principle towards a smaller system is divide-and-conquer. One should
breakup large software in manageable entities that are as small as the runtime
overhead permits. The NOVA OS Virtualization Architecture (§2.2.1), the design
of the VMM (§2.2.4), debugger (§3.2.2), and bootloader (§5.2.2) are four cases where
this principle was successfully applied.

One can rely on fine-grained software components to reuse functionality multiple
times and to specialize the TCB to the requirements of the application and hardware
platform. This technique was most prominently used in the VMM (§2.2.4) and in
the NOVA user-level environment (§2.2.3) to encapsulate device models and device
drivers. The bootlets implementing a subset of traditional bootloader functionality
in a replaceable component are another example (§5.2.2).

One should follow a holistic approach and look beyond the single entity to im-
prove. The VMM would not have the same impact on the TCB without running
them on the microhypervisor (§2.2.1). Similarly, the compiler would be larger when
preserving the semantics of the language (§4.1).

One should favor specialized solutions over general ones. The read-only filesystem
code in the bootlets is less complex than a read-write implementation (§5.2.3).
Similarly, extracting only the necessary information from the ACPI tables allows to
use a simple heuristic instead of a full-featured AML interpreter (§5.4).

One should not port existing code that was written with different goals in mind.
A reimplementation will often lead to a much smaller codebase (§2.3.2).

One should not only improve the implementation but also the interfaces. Having
a smaller debugging (§3.2) as well as a simpler filesystem interface (§5.2.3) reduced
the necessary lines of code to implement them.

New hardware features can significantly lower the software complexity. For ex-
ample, hardware support for CPU virtualization made a large and complex binary
translation system unnecessary. Similarly, nested paging removed the need for a
more efficient shadow paging implementation (§2.2.2). Moreover, having a platform
with Firewire connectivity allows to debug the system without runtime code (§3.3).
However, moving functionality from the software to the hardware level will not
reduce the TCB per se (§5.3).

Finally, novel ideas, like reverse engineering the CPU (§2.4) or virtualizing the
BIOS inside the VMM (§2.5), might be necessary to reduce the TCB below a certain
size.

163

CHAPTER 6. CONCLUSIONS

6.3 Future Research Directions

Besides the points already mentioned in the previous chapters, future research should
target the following areas:

e The smallest TCB reduction could be achieved at the firmware level, which remains
the largest part of the TCB. Future research should investigate how a firmware like
coreboot can be further improved.

e Recursive virtualization can counteract the steady software inflation. Even though
we have already proposed an efficient design in [KVB11], an evaluation of this
technique is still missing.

e NOVA currently depends on a small set of platform drivers, which allows it to run
on many x86 systems but surely not on all of them. With dedicated driver VMs we
could reuse legacy device drivers and thereby minimize the required development
effort. One has to solve the minimization and packaging issues to make this tech-
nique feasible and deploy drivers together with their original OS in a single image
of a reasonable size.

e The inherent complexity of the OS could be further reduced by improving the
hardware, namely CPUs, chipsets, and I/O devices. One should research how the
combined complexity of hardware and software can be reduced while keeping the
necessary functionality and performance.

Finally, combining the achievements of this thesis with previous work such as [SKBT07,
Fes09, Weil4] into a general-purpose operating system with a small TCB would be a great
research direction.

164

Appendix A

TCB of Current Systems

Publications aiming for a small TCB (Trusted Computing Base) usually report sizes only
for certain parts of a system. The literature therefore misses a consistent overview of the
size of a contemporary operating system, which supports virtual machines. In the follow-
ing, I aim to close this gap by quantifying the TCB size of a typical operating system
that is needed for a cloud-computing setting, including its kernel/hypervisor, user-level
environment, VMM (virtual machine monitor), debugger, boot stack, and compiler. I
will also try to report lower bounds since it is often assumed that a particular software
package like the Linux kernel can be made significantly smaller through careful configu-
ration [TKR*12, SPHH06, SK10a].

I use SLOC (source lines of code) as the measurement unit for the TCB size. A
SLOC is basically a single non-empty line in a source file, which is not a comment [Whe].
Even if there are programs that are highly obfuscated [IOC]| or that might be explicitly
circumvent this measurement, most programs are written in a straight forward way and
SLOCCount reports useful results. Furthermore, the number of SLOC corresponds to the
lines a developer has to study to understand how the program works and whether or not
it is correct. Finally, measuring the lines of code of a program might not be the perfect
code-complexity indicator. It is nevertheless a very intuitive one.

For completeness reasons I sometimes include closed source programs as well. If possi-
ble I rely on numbers reported in the literature. As a last resort I developed an heuristic
to estimate the SLOC from the binaries.

A.1 Estimating Lines of Code from the Binary

Getting accurate SLOC numbers for closed-source programs is often impossible. Either
this information is kept private by the vendor or the binary is so old that the software
repository was lost long ago. Estimating the size from the binaries might be the only way
to get an approximate result in these cases.

It is common belief that different architectures, programming languages, compilers,
and its optimizations as well as the individual style of the programmer will make such
an estimation very inaccurate. Consequently, there is very little literature about this
technique. The only exception seems to be [Hat05] where Hatton tries to estimate the size
of Windows from a small sample application of 10 KSLOC. Unfortunately, his approach
seems to be too simple and his surprisingly accurate results lead to more questions than
giving answers.

165

APPENDIX A. TCB OF CURRENT SYSTEMS

Bytes/SLOC of binary.gz

Linux defconfig i] 3.61

NOVA HV i] 3.58

Fiasco OC —13.40

Average i] 3.33

Xen 4.4.1 HV i] 3.30

Grub legacy] 2.74 g :;1:

0 1 2 3 4

Figure A.1: Bytes per SLOC in a gzip compressed binary for different low-level software.

Idea

I developed a new approach to predict the code size of closed-source programs with
sufficient accuracy, by refining an idea from [Kau07b|. T use the size of the compressed
binary to approximate the Source Lines of Code that were used to build them. To increase
the accuracy I used the following set of restrictions to exclude or at least minimize the
influence of architecture, programming language, and compilers:

e The binaries are written in similar languages such as C and C++.
e The binaries are compiled for a particular architecture with similar compiler options.

e The binaries are developed for the same environment and perform similar work.
This excludes many apples with oranges comparisons. For instance estimating the
size of a Windows application from a bootloader or device driver.

e The binaries are stripped to make sure that symbols and debug information are
removed. Enabled debugging options can more than double the binary size.

e The binaries are compressed to reduce the effect of code alignment, padding, and
other optimizations such as loop unrolling.

These restrictions cannot fully exclude programmer related deviations. However, pro-
gramming style is not an issue here, as the prediction does not try to reveal the exact
source code size of a project. Instead, it should return how many lines of code would be
needed if a certain program would be written in a style similar to existing software.

Evaluation of the Approach

In the following, I will shortly evaluate the approach by applying it to five different open-
source system software projects. I compiled two different versions for each binary with
gee-4.6, namely a size optimized version (-0s) and a performance optimized one (-02).
This should reveal how large compiler optimizations influence the code size. I measured
the size of the compressed binaries and compared it with the SLOC that were used to
produce it. I relied on gzip for compression. However I observed later that a better
compressor such as xz will result in even smaller deviations.

166

A.2. VIRTUALIZATION

Figure A.1 shows that every SLOC leads on average to 3.33 gzip-bytes for the perfor-
mance optimized version. The low deviation of +9% and -18% is remarkable here. This
shows that low-level system code in open-source projects tend to have the same code
density. The size optimized versions are approximately 14% smaller. This clearly reveals
that compiler optimizations have a small but significant influence. However, the effect of
optimizations could be taken into account because a size-optimized compilation can be
relatively easily detected from the disassembled binary and the numbers can be adjusted
accordingly. These results reveal that, under certain assumptions, binaries can be used
to estimate the number of SLOC with an error rate that is below 20%. A more detailed
comparison might allow to relax some of the restrictions in the future. In the following,
I will use the result of this short experiment, namely the 3.33 gziped-bytes per SLOC, to
estimate lines of code for closed-source binaries.

A.2 Virtualization

A.2.1 Hypervisor

Figure A.2 shows the size of different hypervisor implementations. I either measured the
SLOC myself, if the source was available (Xen, KVM), got the number from the literature
(ESX 2.5 [ESXa|, Hyper-V [LS09]), or I estimated it from the binaries (Hyper-V, ESX
5.0).

This estimation is sufficiently accurate. According to the literature [LS09] the Hyper-V
hypervisor consists of 100 KSLOC of C code and 5000 lines of assembler. The approxi-
mation from the compressed binaries is only 20% below this number. It would be even
more accurate if the code for AMD-V processors could be counted as well, which is not
included in the Intel version of the binaries.

The measured hypervisors are between 30 and 750 KSLOC large. The wide spectrum
mainly results from different system architectures. KVM as the smallest hypervisor heav-
ily relies on its host operating system. It reuses for example drivers as well as resource
management code from Linux and can therefore be much simpler than other stand-alone
hypervisors. Hyper-V, the second smallest HV, supports Windows in a paravirtualized
dom0 to run its device drivers and to implement management software. Xen has a par-
avirtualized dom0 as well but also supports paravirtualized user domains (domU). This
feature makes it more complicated than Hyper-V. Finally, ESX implements operating
system functionality inside the hypervisor to run drivers and applications on top of it.
Whereas ESX is the largest hypervisor, it does not require a Linux or Windows instance
as support OS (operating system). Its size is not as large as it seems to be. In fact, ESX
is only 40% larger than the 530 KSLOC of KVM and a minimal Linux, which is the lower
bound for a hypervisor and support OS altogether.

Another result from the hypervisor size measurements is the observation that virtu-
alization software also grows over time. ESX v5.0 is 3.5 times larger than ESX v2.5 six
years ago. Similarly, Xen has quadrupled its size in the same time frame, as shown at
the right of Figure A.2. This development is similar to the increase of operating system
software as observed on Linux and Windows.

A.2.2 VMM

I measured the size of three virtual machine monitors, namely Qemu, ESX, and Virtual-
Box. The numbers are presented in Figure A.3.

167

APPENDIX A. TCB OF CURRENT SYSTEMS

Version Date SLOC
. Xen 2.0.7 Aug 2005 48,286
Name binary.gz SLOC Xen 3.0.4 Dec 2007 90,504
KVM,/Linux 3.0.4 28,670
Xen 3.2.0 Jan 2008 127,648
Hyper-V 2.0 Intel 271 KB 83,000
Xen 3.3.0 Aug 2008 138,892
Xen 4.1.1 182,935 Xen 3.4.0 May 2009 152,787
ESX 2.5 200,000 o o2 &y ’

Xen 4.1.1 Jun 2011 182,935
Xen 4.3.1 Oct 2013 214,114
Xen 4.4.0 Mar 2014 220,425

ESX 5.0 Kernel 2,420 KB 744,000

Figure A.2: Hypervisor Size in SLOC.

Name binary.gz KSLOC
Qemu x86 64 221
Qemu Repository 582
Qemu x86 64 w/ libs 6,192 kB 1,900
Debian gemu-kvm 15,228 kB 4,573
VirtualBox Repository 1,798
ESX 5.0 VMM 6,998 kB 2,150

Figure A.3: Size of the x86 VMM.

Qemu is the smallest VMM. The repository, which includes support for different archi-
tectures and platforms, consists of 580 KSLOC. Because not all of this code contributes
to a binary for a certain architecture on a given platform, I measured only the part that
was used to compile a binary on Linux for x86 64 processors. I relied on the access
time (atime) feature of the filesystem to decide what files contributed to the binary. This
revealed that only 220 KSLOC from the 580 KSLOC were actually referenced when omit-
ting other architectures and many optional features. However, the compilation returned
a dynamically linked binary, which needs 49 external libraries to run. If T also take the
dynamically linked libraries such as the 1ibc, 1ibglib, and 1ibsdl, into account, Qemu
needs more than 6 MB of compressed binaries. This corresponds to nearly 2 MSLOC.
A similar increase can be observed when installing gemu-kvm and the 63 packages it re-
quires onto a basic Debian 7.0 Wheezy. This operation adds around 15 Mb of compressed
binaries or 4.5 MSLOC to the system.

The VirtualBox repository consists of 1.8 MSLOC. This is much larger than the Qemu
sources due to a couple of reasons. First, the tree includes hypervisor, VMM, and manage-
ment functionality, which cannot be easily separated. Second, a large part (700 KSLOC)
of the source accounts for guest additions. These are paravirtualized libraries to reduce
virtualization overhead. Thus, less than 1 MSLOC will be part of the VMM, if we do not
count any external libraries. Finally, VirtualBox allows to run virtual machines on CPUs
without hardware support for virtualization.

The SLOC for the VMM of ESX 5.0 cannot be directly measured, as no source code is
publicly available. From the compressed binaries I have estimated a size of 2.1 MSLOC.
ESX has the biggest VMM, most likely because it implements the largest feature set
among the three VMMs. It virtualizes for instance graphics with 3D acceleration and
allows to migrate virtual machines between different hosts. Furthermore, the ESX binary,
which includes library code, is not much larger than Qemu plus its external libraries.

In summary, a x86 VMM is between 220 KSLOC and 4.5 MSLOC large. The typical
VMM consists of approximately 2 MSLOC.

168

A.3. SUPPORT OS

14000
Linux 3.x 2
Linux 2.6 = g 12000
Linux 2.5 = r
Linux 2.4 «
Linux 2.3 -E 10000
Linux 2.2 -
Linux 2.1 = -y
" 8000
Linux 2.0 « aman 8
Linux 1.x o - oqa
Linux 0.x =« ol 6000 -~
g 4000

ﬁom MBI e o
c/ 2000

-—M N :
. 1 . 1 1 1 1 1) 1 1 0

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

Figure A.4: Evolution of the Linux kernel size between September 1991 (v0.0.1) and June 2014
(v3.15).

A.3 Support OS

Linux is used as Host OS in most virtualization projects. First, I show how the code size
of the Linux kernel evolved over time. I then answer the question how small a minimal
Linux kernel can be today. Finally, I estimate the size of a Linux distribution and put
these numbers in relation with the size of Windows.

A.3.1 Evolution of an OS

I measured the size of the whole source tree for all releases of the Linux kernel from the
first release in September 1991 up to the latest version (3.15) from June 2014 [LX, LXO].
The sizes of around 1500 different releases are shown in Figure A.4 where each version is
represented by a single dot. Most importantly the code base of Linux has grown from eight
thousand in 1991 to more than twelve million lines today. One can see from the graph
that the slope of the curve increased in 2008 with the introduction of the new development
life cycle. Furthermore, one can distinguish the development and the maintenance phase
for each major version. For example Linux 2.4 was rapidly developed between 2001 and
2004. After that very little code was back ported from newer versions. The kernel was
just maintained for another seven years.

A steady growth of the code base seems to be a characteristic of many actively devel-
oped system projects. Debian, Windows, and Xen exhibit the same behavior as shown in
the Figures A.6, A.7, and A.3. In comparison I discuss in Section 2.7.1 how the size of
the NOVA system might evolve in the future.

169

APPENDIX A. TCB OF CURRENT SYSTEMS

Config SLOC % Binaries Description

allnoconfig 362,771 3.7 762 kB All config options are disabled.
alldefconfig 471,030 4.8 1,151 kB The default for all config options.
defconfig 1,330,650 13.7 4,693 kB The default config for x86.
oldconfig 1,622,700 16.7 5,565 kB T420 laptop config w/ 161 modules.
debian 5,983,958 61.5 31,588 kB Debian config w/ 2774 modules.
allyesconfig 8,266,554 85.0 51,989 kB All config options are enabled.
whole tree 9,729,144 100.0

Figure A.5: SLOC and binary sizes of different configurations for Linux 3.0.4.

A.3.2 Minimal Linux

The previous measurement considered the whole source code of Linux. It does not reveal
how small a minimal Linux can be. In [SK10a] we assumed that Linux can be reduced to
200 KSLOC through careful configuration. Because this was only a very rough estimate,
I’d like to give a more accurate figure here.

The feature set compiled into the kernel has probably the most impact on the code size.
Thus, I distinguish six different configurations: Two minimal (allnoconfig, alldefconfig),
three typical (defconfig, oldconfig, debian), and the maximum configuration (allyesconfig).

I measured the latest kernel version at that time, namely Linux 3.0.4, on the x86
architecture. Whereas older versions will be smaller, one will likely need the newest drivers
and the newest kernel features to get the best performance from the latest machines. To
decide what code was used during kernel compilation, I relied on the access time (atime)
feature of the filesystem. I simply assumed that all files accessed during compilation have
contributed to the kernel size. Note that this assumption leads to slightly overestimated
results because all code in #ifdef sections, normally filtered out by the preprocessor, is
counted as well®.

Figure A.5 shows the results. The minimal configuration of Linux, which consist only
of the core functionality such as the system calls or the block layer, already accounts for
more than 360 KSLOC. A slightly larger configuration, which additionally includes plat-
form drivers such as ACPI, is already 110 KSLOC larger. However, this does not include
any network protocol, disk driver nor a single filesystem. A typical Linux configuration,
which includes these important features, is around 1.5 MSLOC large. A distribution
kernel like the one from Debian that enables almost all drivers, is four times larger. An
allyesconfig that enables all config option includes 85% of the whole Linux tree. The
remaining code is architecture dependent.

In summary, a minimal Linux configuration to support virtual machines will not be
smaller than 500 KSLOC without large modifications to the source code. The typical
case will be three times this size.

A.3.3 Linux Distribution

The kernel alone is not sufficient to run a Linux system, a user-level environment is needed
as well. Using BusyBox [Wel00] statically compiled with uclibc [And] leads to a minimal
environment. Debian ships such a BusyBox binary that supports 219 commands within
approximately 300 KSLOC.

Measuring a typical system is difficult, as it highly depends on the required features.
To get a lower bound, I bootstrapped different Debian releases and measured the size of

1Using strace to trace the open system calls led to the same results albeit with more overhead.

170

A.3. SUPPORT OS

Version Date Packages Download Binary.gz KSLOC
2.2 Potato 08-2000 81 17,340 kB 6,740 kB 2,024
3.0 Woody 07-2002 100 21,412 kB 8,836 kB 2,653
3.1 Sarge 06-2005 122 33,796 kB 13,694 kB 4,112
4.0 Etch 04-2007 124 39,116 kB 16,688 kB 5,011
5.0 Lenny 02-2009 119 43,836 kB 19,596 kB 5,885
6.0 Squeeze 02-2011 116 50,004 kB 21,675 kB 6,509
7.0 Wheezy 05-2013 135 56,228 kB 26,023 kB 7,815
8.0 Jessie TBD 159 52,080 kB 30,717 kB 9,224

Figure A.6: Lines of code for a basic Debian installation.

the installed programs and libraries?. The employed debootstrap tool installs only those
packages tagged as required® or important*. On average 120 packages were installed,
which corresponds to less than a percent of the available packages.

The results of these measurements are shown in Figure A.6. Interestingly, the size of a
basic Debian system increases around 10% every year, which is significantly less than the
“doubling in size every 2 years” of the whole Debian distribution reported in [GBRM™'09].
Debian 2.2 Potato required only 2.0 MSLOC for it. The latest Debian 7.0 Wheezy release
needs already 7.8 MSLOC or approximately two percent of whole release [Brol2]. The
yet to be released Jessie is already 18% larger, even if it has reduced the download size
by compressing the packages with xz instead of gzip.

In summary, a minimal Linux environment is 300 KSLOC whereas a typical Debian
installation will be larger than 7.5 MSLOC.

A.3.4 Windows

Not all virtualization environments use Linux as support OS. Most notably Hyper-V relies
on Windows for this purpose. In [SK10a] we assumed that a Windows Server 2008 would
be larger than 500 KSLOC. In the following, I will show that this number is at least an
order of magnitude to small.

I could not directly measure the size of Windows, due to its undisclosed source code.
Fortunately, the lines of code for some Windows versions were reported in the literature.
Figure A.7 shows the numbers presented in [Mar05]. However, these numbers have to
be taken with a grain of salt. First, they are probably line counts and therefore higher
than what would be measured with SLOCCount. Second, they are likely to cover the
whole codebase of Windows, including helper programs such as regedit.exe that are
not needed in a size-optimized installation. The 50 million lines of code for Windows
Server 2003 can still be taken as an upper bound.

A lower bound can be found in a recent paper [PBWH"11|. The authors have built a
Windows-compatible library OS to run unmodified Windows applications such as Excel
or Internet Explorer. They reused 5.5 million lines of code from Windows. This number
is a lower bound, as it does neither include a filesystem nor any device drivers.

In summary, a Windows based support OS for a virtualization environment will con-
sists of 5.5 to 50 million lines of code. This is similar to a typical Linux installation, which

2Linux Distribution especially optimized for size like AlpineLinux or DamnSmallLinux include more
functionality and are consequently larger.

3These are the binaries one needs to trust when using Debians package system. This includes programs
like bash, perl, gpg, dpkg, coreutils and basic libraries like 1libc, libstd++, libncurses.

4This includes packages one can assume on a Linux system like syslog, cron, traceroute, and an
editor like nano.

171

APPENDIX A. TCB OF CURRENT SYSTEMS

Released Name Size
1993 Jul NT 3.1 4.5 M
1994 Sep NT 3.5 7.5 M
1995 May NT 3.51 9.5 M
1996 Jul NT 4.0 11.5 M
1999 Dec Win 2000 29 M
2001 Oct Win XP 40 M

2003 Apr Server 2003 50 M

Figure A.7: Lines of Code for different Windows versions according to [Mar05].

Name SLOC Description

TinyBIOS 6,478 Incomplete BIOS w/o ACPI and VGA support.
SeaBIOS 26,882 BIOS for Qemu 0.15 w/ limited platform init.
CoreBoot T60 29,492 Platform initialization code for a Lenovo T60.
Bochs BIOS 89,819 65% assembler. Includes Bochs VGABios.

Award BIOS 150,000 Assembler code from 1999.

HP nx6325 150,986 Estimated SLOC from the binary sizes [Kau07b].
CoreBoot v2 290,712 Open-source BIOS for more then 230 mainboards.
AMI UEFI 444,000 UEFI firmware from 2013.

Figure A.8: Size of the PC Firmware (BIOS or UEFI) in SLOC.

needs more than 9 MSLOC for kernel plus user-level environment.

A.4 Boot and Toolchain

A.4.1 PC Firmware

The size of most BIOS (Basic Input/Output System) implementations cannot be directly
measured, as they are usually closed source programs. The only exceptions seem to be
an old AWARD BIOS from 1999 and an AMI UEFI implementation that was leaked
in 2013. Furthermore the source code of open-source BIOS implementations such as
CoreBoot (formerly known as LinuxBIOS) or TinyBIOS and virtual machine BIOSs such
as SeaBIOS or Bochs BIOS are available as well. To also report the size for a recent
closed-source BIOS, I estimated the lines of code for an HP BIOS from the binary size
previously reported in [KauO7b]. This result fits nicely into the measurements of the
open-source implementations.

Figure A.8 lists the measured sizes. Note that the three smallest implementations
are not feature complete. SeaBios for instance does not initialize the DRAM controller
whereas CoreBoot does not include any BIOS runtime service. However, they provide
enough functionality if they act together. In summary, a complete BIOS or UEFI imple-
mentation will be between 55 and 450 KSLOC large, depending on the feature set and
the number of supported platforms. A typical BIOS like the one from HP consists of
150 KSLOC.

A.4.2 Bootloader

There are many bootloaders that can be used to load an operating system from disks or
over the network. Their size heavily depends on the implemented feature set. Some boot-
loaders retrieve only hard-coded binaries whereas others allow the user to interactively

172

A.4. BOOT AND TOOLCHAIN

Name SLOC
Minimal Linux 154
ELILO 3.14 15,259
LILO 23.2 21,428
GRUB2 2.02 302,592

kernel 11,037

linuz16+multiboot 30,004

default 174,718
GRUB Legacy 0.97 27,576
Syslinux 6.02 366,359

Figure A.9: Bootloader Size in SLOC.

change its configuration. Some provide a graphical user interface whereas others print
only diagnostic messages. Some bootloaders include device drivers, understand different
filesystems, and speak different boot protocols whereas others simply call BIOS functions
to get files from the network.

Figure A.9 shows that the size of x86 bootloaders can differ by three orders of magni-
tude. The Minimal Linux Bootloader [Plo12] needs only 154 Lines of assembly to retrieve
the Linux kernel from fixed locations of the disk. However, its functionality is severely
limited.

More advanced bootloaders, which understand the filesystem layout like ELILO [ELI12]
or that let the user select different boot configurations like LILO [LIL11] are already two
orders of magnitude larger. Unfortunately, both just boot Linux and cannot start a
multiboot OS like NOVA.

GRUB2 [GRU14], the bootloader with the largest feature set and the most popu-
lar bootloader on Debian® consists of more than 300 KSLOC. However this shrinks to
30 KSLOC, when counting only the GRUB2 kernel and the seventeen modules required
to boot both Linux and multiboot OSes. This is comparable to the 28 KSLOC of the older
GRUB Legacy codebase, even though this includes support for more filesystems [GRUO05].
A default GRUB2 installation on x86 consists of 175 KSLOC within 250 modules.

The Syslinux [SYS13] codebase, a collection of multiple bootloaders and tools, is even
larger than GRUB2 as this number includes 165 KSLOC for the network bootloader
GPXE. The size of the other parts cannot be as easily separated. However, its core alone
is larger than 18 KSLOC.

In summary, a general purpose bootloader is between 15 and 300 KSLOC large. The
175 KSLOC for the default GRUB2 installation would be typical for a Linux system.

A.4.3 Debugger

The complexity and with it the size of a debugger highly depends on its architecture and
functionality. See Figure A.10 for the size of different system debuggers. A special-purpose
implementation inside a microkernel like Fiasco’s JDB is around 30 KSLOC large whereas
a Unix process debugger that also understands DWARF debug format like Path64 needs
50 KSLOC. Similarly, the Java debugger is reported to be 85 KSLOC large.

A general-purpose implementation that supports multiple architectures and even re-
mote targets like GDB or LLDB will be more than 400 KSLOC large. The GDB size
increases to over a million lines, if the required bfd and opcodes libraries are taken
into account as well [LHGMO09]. LLDB is in the same region if one counts the parts of

5 According to the Debian Popularity Contest GRUB2 is installed in over 85% of the machines [DPC|

173

APPENDIX A. TCB OF CURRENT SYSTEMS

Name KSLOC Source

Fiasco JDB 30 from [Ste09]

Path64 50 https://github.com/path64/debugger
Java Debugger 85 from [LHGMO09|

GDB 420 from [LHGMO9|

GDB w/ libs 1,020 from [LHGMO9]

LLDB 440 http://llvm.org/git/1ldb.git

Valgrind 640 svn://svn.valgrind.org/valgrind/trunk
Frysk 335 git://sourceware.org/git/frysk.git

Figure A.10: The debugger can be as large as 1 MSLOC.

Name KSLOC Notes

LCC 18 v4.2 w/o tests [FHII|

Plan9 20 from [Tho90]

TinyCC 30 v0.9.5 w/o win+tests [Bel02]

LLVM 1,670 http://1lvm.org/git/{clang,llvm}.git
GCC 4,300 v4.6.3 repository [GCC]

Open64 4,400 v5.0 w/ GCC 4.2 frontend [O64]

Figure A.11: A C compiler is between 18 KSLOC and 4.3 MSLOC large.

the LLVM (820 KSLOC) and CLANG repositories (850 KSLOC) is depends on. Other
projects that follow a different debugging approach like Valgrind or Frysk, are also several
hundred KSLOC large.

In summary, 30 KSLOC seem to be a lower bound for a special-purpose debugger
whereas the 1 MSLOC of GDB will be the typical case in most systems.

A.4.4 Compiler

A contemporary operating system will ship programs written in different programming
languages. However, most of the code is still written in C [Brol2]. I have therefore
examined only C compilers. Figure A.11 shows the sizes of several small C compilers and
of multi-purpose compiler projects like GCC and LLVM.

The GCC repository is around 4.3 MSLOC large. A significant portion to this huge
size can be attributed to the support of multiple languages like JAVA, ADA, and Fortran.
To get a more accurate number I have build the OSLO bootloader [Kau07b| with a
GCC toolchain and estimated the size from the binaries. This involves tools that are
approximately 1.8 MSLOC large as shown in Figure A.12. Another 600 KSLOC are
needed for several libraries. The Open64 compiler, which includes the GCC v4.2 frontend,
has a similar size. The LLVM repositories for the C compiler frontend (clang) and code
generation/optimization (Ilvm) are with 1,670 KSLOC less than half their size.

LCC is the smallest compiler for ANSI C. It is around two orders of magnitude smaller
than one of the multi-purpose compilers. The Plan9 C compiler has a similar size. TinyCC
is around 50% larger due to many C99 features it supports.

In summary, a minimal C compiler can be as small as 18 KSLOC whereas the
1.8 MSLOC of GCC will be the typical case.

174

https://github.com/path64/debugger
http://llvm.org/git/lldb.git
svn://svn.valgrind.org/valgrind/trunk
git://sourceware.org/git/frysk.git
http://llvm.org/git/{clang,llvm}.git

OSLO
Tools

ccl

gee

as

1d

make

sh
Libraries
libc

libbfd
libm
libgmp
libmpfr
libopcodes
libpthread
libz
libmpc
librt

libdl

A.5. SUMMARY

] 200

] 98

] 54

] 27

] 15

] 15

] 11

14
1 1

] 71

] 127

1549

Figure A.12: Tools and Libraries with 2.4 MSLOC are needed to compile a small bootloader like
OSLO with a GCC toolchain. The numbers are estimates from the binary sizes.

A.5 Summary

I measured the TCB size of a contemporary operating systems that supports hardware
assisted virtual machines on x86. Figure A.13 presents the sizes for all system layers for
a minimal and a typical configuration. It shows that the TCB for a virtual machine in
current implementations will be between 1.2 MSLOC and 14.5 MSLOC large. This is
at least two times more than what we assumed in [SK10a]. Furthermore, the constant
software growth, which can be observed nearly on all of these layers, will increase the
TCB beyond these values in the future.

Name Minimal Typical
BIOS 55 150
Bootloader 15 175
HV+Kernel 530 1,600
Environment 300 7,800
VMM 220 2,000
Compiler 20 1,800
Debugger 30 1,000
Sum 1,170 14,525

Figure A.13: Overall TCB size in KSLOC for an OS that supports virtual machines in a minimal

and typical configuration.

175

Appendix B

Glossary

ACPI short for Advanced Configuration and Power Interface [ACP] standardizes the
interaction between hardware, firmware, and operating system. It allows an OS
to enumerate platform resources, change resource allocations and perform power-
management tasks. 16, 17, 49, 52, 67, 69, 135-137, 147, 149, 150, 152-159, 162,
163

AHCI short for Advanced Host Controller Interface, is a standardized interface for a
device driver to access SATA devices. 48, 49, 53, 73, 74, 82

Binary Translation allows to run a virtual machine on a non-virtualizable architecture
by translating the instruction stream before it is executed. On x86 superseded by
hardware-assisted virtualization. 20, 22-24, 163, 178

BIOS short for Basic Input/Output System, is the traditional firmware of a PC. After
being loaded from an EEPROM, it initializes the platform including the memory
controller and all the devices that are necessary to run a bootloader as well as the
operating system. A virtual BIOS performs the same task for a virtual machine. A
BIOS can be extended with Option ROMs. 16, 20, 23, 33, 38, 39, 41, 53, 54, 67-71,
73, 85, 86, 100, 136, 141, 142, 144, 145, 149-151, 154, 157, 158, 162, 163, 172, 173,
180, 182, see UEFI

CR3 short for control register #3, is a special purpose register of the x86 CPU pointing
to the current pagetable hierarchy. 104-106, 108

Device Model is one part of a VMM to provide the illusion to the guest that it runs
alone on the platform, by emulating the behavior of their physical counterpart. 16,
20, 23-26, 32, 38, 39, 41-44, 46-51, 53-56, 69-71, 85, 86

DMA short for direct memory access, is the ability of a device to directly write and read
data from main memory. This is used for instance by modern network cards to store
received packets in RAM without involving the CPU. The risk that untrustworthy
drivers can takeover the host OS via DMA can be mitigated by an IOMMU. 15, 27,
28, 32, 39, 42, 53, 54, 56, 64, 83, 97-101, 150, 162, 179

DRAM short for Dynamic Random Access Memory, is volatile memory in a computer
that needs to be periodically refreshed. 54, 70, 72-74, 136, 151, 172

177

Glossary

DWAREF is a standardized data format that helps a debugger to understand a compiled
program by describing its symbols, data types, and even the stack layout at each
instruction pointer [Eag07, DWA10]. 48, 92-95, 107, 127, 134, 173

EEPROM short for Electrical Erasable Programmable Read-Only Memory, is non-
volatile memory keeping stored data even if the system is powered down. 136,
151, 177, see DRAM

ELF short for Executable and Linkable Format, is a file format used by many operating
systems to hold executable machine code [ELF95]. 37, 60, 92, 93, 117, 121, 122, 143

Firewire also known as IEEE-1394, is a serial bus interface that connects 63 devices
with up to 3200 Mbps [IEE08]. 11, 17, 56, 87, 93-103, 108, 143, 162, 163, 179

Firmware is software embedded in a device to initialize it or to provide its external
interface, for instance in a printer or a network card. 16, 21, 135-138, 146-153, 159,
162, 164, 177, 180, 181, see BIOS & UEFI

GDT short for Global Descriptor Table, is a data structure consulted by the x86 CPU to
map code and data segments to protection rings. It may also include T'SS descriptors
and call gates to securely transfer control between rings. 93, 107, 179

Guest An operating system running inside a VM is called a guest of the hypervisor. 3,
15, 16, 20, 22, 23, 25-27, 29, 30, 38-44, 46-54, 57, 64-71, 73, 74, 76-78, 80-85, 88,
168, 177-182

GUI is an acronym for graphical user interface. 29, 53, 56, 93, 95, 137, 138, 140

Hardware-Assisted Virtualization is a platform virtualization approach that neither
modifies the guest OS (paravirtualization) nor uses binary translation. Instead it
relies on a CPU extension such as Intel VT-x and AMD V [UNR*05, SVMO05| to add
the necessary traps from the guest environment to the hypervisor to an otherwise
unvirtualizable processor. 23-25, 75, 77, 141, 177, 180

Hardware-Task Switch can be invoked on a x86 CPU via an interrupt, an exception
or special CALL and JMP instructions. The CPU saves the current state in the active
TSS and loads the next processor state from the invoked TSS. 57, 104, 106, 181

HPET short for High Precision Event Timer, is a platform timer device present in recent
PCs [HPEO04]. 52, 56, 73, 81, 82, 180

Hypervisor runs in kernel mode to multiplex the host machine so that multiple guest
operating systems and in the case of NOVA also native applications can execute
concurrently. 15, 20, 21, 23-33, 35-37, 41, 43, 48, 49, 71, 76, 77, 80-82, 84-86,
88-91, 94, 95, 100, 104, 106-108, 162, 165, 167, 168, 178, 180, 182, see VMM

I/O APIC short for I/O Advanced Programmable Interrupt Controller, is replacing
the PIC on the mainboard to provide multi-processor interrupt management for

typically 24 interrupt sources. Recent implementations just send MSIs to the Local
APICs. 51, 54, 136, 154-157, 179, 180

178

Glossary

IDE short for Integrated Device Electronics, is an older parallel interface to mass-storage
devices, nowadays replaced by SATA. 42, 49, 53, 73

IDT short for Interrupt Descriptor Table, is a data structure that defines interrupt and
exception handler of a x86 CPU. 70, 107

IOMMU short for I/O Memory Management Units were recently added to AMD and
Intel chipsets to translate as well as filter DMA requests originating from devices for
security and legacy reasons [BYMX'06]. IOMMUs also remap DMA requests from
directly assigned devices so that legacy device drivers will run unmodified inside a
VM. Furthermore IOMMUs can sandbox untrustworthy device drivers and restrict
the set of MSIs a device can trigger. 15, 21, 27, 30-32, 39, 42, 56, 83, 84, 100, 150,
177, 179, 180

IPC short for Inter-Process Communication, is an OS feature to pass messages between
different threads. 27, 30-32, 35-37, 40, 41

IRQ short for interrupt request, signals to the CPU that a device needs attention because
a previously programmed device operation completed. 15, 37, 51, 54, 81, 97, 104,
107, 154-158, 179, 180

KSLOC are 1,000 SLOC (source lines of code). 14, 16, 26, 27, 30, 38, 68, 71, 85, 88, 93,
96, 109, 116, 118, 135, 137, 144, 146, 150, 152, 153, 159, 161, 165, 167, 168, 170-175

LDT short for Local Descriptor Table, is the task-local version of the GDT. 104, 106,
108

Local APIC short for Local Advanced Programmable Interrupt Controller, manages
the interrupt pins of a x86 processor and prioritizes IRQs sent from other CPUs,
I/0 APICs, or MSI-capable devices. 25, 51, 52, 55, 70, 73, 81, 82, 98, 178, 180, 182

MMIO short for Memory Mapped I/0, is used by drivers to access device registers via
a special memory region. 30, 31, 37, 49, 57, 65, 70, 80-85, 136, 158, 182, see PIO

MSTI short for Message Signaled Interrupt, is an interrupt raised by a device, for instance
on the PCI bus, by sending a write transaction to a special address range [Bal07].
An MSI can be a vectored interrupt but also an NMI or SMI. MSIs can be remotely
triggered via Firewire and blocked with an IOMMU. 51, 98, 100, 103, 154, 178-180

MSLOC are 1,000,000 SLOC (source lines of code). 13, 38, 109, 161, 162, 168, 170-172,
174, 175

NCQ short for Native Command Queuing, allows a disk controller to execute several
commands in parallel to increase the performance. 47, 53, 74, 76

nested paging is a CPU feature obsoleting shadow paging by autonomously translating
memory accesses from a VM through both the guest and the host pagetables. 21,
23, 26, 32, 71, 76, 77, 80, 81, 83, 86, 181

NIC is an acronym for network interface controller, denoting, for instance, Ethernet and
Infiniband adapters. 20, 38, 42, 43, 48, 53, 54, 72, 96, 97

179

Glossary

NMI short for non-maskable interrupt, is an interrupt, which cannot be inhibited by
clearing the interrupt flag via ¢1i on x86. A NMI is blocked until the previous one
was handled. It can be filtered with an IOMMU and disabled at the device that
causes them. 98, 100, 104-107, 179, 181

NOVA short for NOVA OS Virtualization Architecture, denotes the OS as well as its
novel architecture consisting of microhypervisor, user-level environment and one
VMM per VM. See Section 2.2. 16, 19, 20, 24-37, 41, 42, 44, 46, 56, 60, 70, 71, 73,
74, 76-78, 80, 81, 83-91, 93-95, 100, 104, 106-108, 117, 137, 138, 140, 145, 161-164,
169, 173, 178

Option ROM contains firmware code from an adapter card that extends the BIOS.
Typical use cases for Option ROMs are graphic mode switching or booting from
otherwise unsupported devices such as network cards or SCSI drives. Option ROMs
are sometimes called BIOS itself such as the VGA BIOS or the VESA BIOS. 23,
67, 136, 177

OS short for operating system. 3, 13-16, 19-22, 25, 26, 28-34, 38, 40-43, 46, 48-52, 55,
63, 65, 67-69, 71-73, 80, 82, 85, 90, 92, 93, 96, 98, 101, 104-106, 135-140, 143-159,
161, 162, 164, 167, 169, 171, 173, 175, 177-182

Paravirtualization is a technique to run multiple OSes on non-virtualizable architec-
tures by patching sensitive but non-trapping instructions with calls to the hypervi-
sor. Still used on systems supporting hardware-assisted virtualization to speedup
virtualized I/O by injecting enlightened drivers and libraries into the guest OS. 21,
22, 24-26, 42, 43, 56, 68-71, 74, 75, 77, 85, 167, 168, 178, see binary translation

PCI short for Peripheral Component Interconnect, is a family of computer busses includ-
ing Conventional PCI, PCI-X, and PCI Express, which connect a peripheral device
to a CPU. 20, 37, 39, 47, 51, 53, 96, 98, 100, 136, 151-159, 179

PCR short for Platform Configuration Register, is a 160-bit register in a TPM to store
a chain of hashes of the platform configuration and the executed programs. See
Section 5.3.2. 68, 148-150, 181

PIC short for i8259 Programmable Interrupt Controller, is a chip on the mainboard to
prioritize IRQs from multiple devices [PIC88|. Introduced with the original IBM
PC, it is nowadays replaced by I/O APIC and MSI. 26, 40, 46, 47, 51, 54, 73, 82,
136, 154-158, 178

PIO short for Port I/0, are special instructions on x86 used by drivers to access device
registers via a dedicated I/O address space. 31, 37, 39, 40, 49, 53, 54, 65, 80-82,
136, 141, 158, see MMIO

PIT short for i8254 programmable interval timer, is a chip on the mainboard able to
trigger interrupts periodically after a certain time has passed [PIT94]. Introduced
with the original IBM PC, it is nowadays replaced by HPET and Local APIC timer.
26, 33, 50, 52, 54, 73, 81, 82, 136

PS/2 short for Personal System/2, was a hardware platform by IBM standardizing, for
instance, the PS/2 keyboard and mouse interface. 33, 37, 39, 52, 54, 137, 181

180

Glossary

RTC short for real-time clock, is a chip on the mainboard introduced with the IBM PC-
AT. The RTC keeps wall-clock time and configuration values in battery-buffered
memory. It can also trigger periodic interrupts with a high frequency and used as
alarm watch. 24, 46, 48, 50, 52, 54

SATA short for Serial AT Attachement, specifies a high-speed serialized data link in-
terface to attach mass storage devices to a platform. 25, 53, 56, 73, 82, 83, 177,
179

Shadow Paging is a implementation technique usable by CPUs without nested paging
support which allows the hypervisor to combine the pagetable hierarchies defined
by the guest and host OS. 77, 80, 163, 179

SLOC is a unit of source code size as measured by the SLOCCount tool [Whe]. SLOCs
(Source Lines of Code) are basically all non-empty lines in a source file, which are
not a comment. 44, 53, 55, 62, 71, 85, 100, 106, 118, 134, 135, 139, 140, 143-146,
150, 153, 165-168, 170, 172, 173, 179

SMI short for System Management Interrupt, switches the CPU into SMM. 48, 136, 179,
181

SMM short for System Management Mode, is a special operation mode of the x86 CPU
with higher privileges than kernel mode. If the CPU accesses a certain 1/O port
or receives an SMI, it will switch transparently to SMM mode where it executes
SMM code provided by the firmware. SMM is used to emulate legacy devices such
as serial port or a PS/2 keyboard on legacy-free hardware. It is also employed to
handle power management and platform error events. 28, 135, 136, 147, 151, 181

SSE short for Streaming SIMD Extensions, are several additions to the x86 architec-
ture supporting Single-Instruction Multiple-Data operations on packed integer and
floating-point numbers. 23, 115, 120, 128, 129, 133

TCB short for Trusted Computing Base, consists of all the software that can influence
the security of a program. The TCB of two applications in a traditional OS share
the kernel and all the services such as device drivers or filesystems that both of
them directly or indirectly use. 3, 14-17, 19, 20, 24-30, 33, 38, 42-44, 47, 49, 65,
67-69, 71, 85-89, 91, 95, 96, 103, 104, 108-110, 116, 118, 133, 135, 137-140, 143,
146, 148-152, 154, 159, 161-165, 175

TLB short for Translation Lookaside Buffer, is a CPU cache holding pagetable entries.
30, 32, 63, 71, 72, 76, 77, 80, 81, 84, 86

TPM short for Trusted Platform Module, is a security chip on a motherboard with PCRs
and digital keys to sign them. See Section 5.3.2. 56, 68, 148-152, 159

TSC short for Time-Stamp Counter, is a special register of the x86 processor incremented
with CPU clock rate. 52, 56, 72, 84

TSS short for task state segment, is a data structure provided by the OS that describes
the x86 CPU state loaded during a hardware task switch. This includes all CPU
registers and the stacks that are used to handle traps from lower privilege levels. A
TSS also points to an I/O permission bitmap giving a task fine grained I/O port
access. Events that may occur at unpredictable times in an OS such as double-faults
or NMIs are typically handled with a TSS. 93, 104-108, 178, 181

181

Glossary

UEFT short for Unified Extensible Firmware Interface starts to replace the traditional
BIOS as the first program that runs in a PC. It also initializes the PC and has
to load the first bootloader. Compared to the BIOS it offers richer interfaces to
bootloaders and OSes. 121, 136, 138, 147

USB short for Universal Serial Bus, is a fast and dynamically attachable interface for
peripheral devices on the PC and many other platforms. 38, 56, 88, 96, 97, 99, 103,
144, 152

User-Level Environment are the OS services like filesystem or network stack but also
the management tools that run in the user mode of the CPU. 14-16, 20, 29, 30, 32,
33, 36, 41, 85, 86, 138, 159, 162, 163, 165, 170, 172, 180

VDB short for Vertical DeBugging, is a novel debugging architecture described in Sec-
tion 3.2. 48, 49, 87, 90-95, 107, 108

VESA short for Video Electronics Standard Association, which standardized a BIOS
extension to switch a graphics card into high-resolution modes. 53, 54, 67, 70, 85,
180

VGA short for Video Graphics Array, is an older standard for graphics card and BIOS
interfaces originally defined by IBM. 23, 53, 67, 69, 70, 93, 95, 180

VM short for virtual machine, is an execution environment for an OS provided by hyper-
visor and VMM. A VM is similar to but not necessarily the same as the underlying
physical machine. 3, 15-17, 19-30, 32, 33, 38, 40, 41, 47-49, 53, 54, 56, 67-73,
76-78, 80, 81, 83, 85-88, 90, 94, 95, 161, 162, 165, 168, 170, 172, 175, 178-180

VMM short for virtual machine monitor, provides the illusion to a guest OS that it
runs on its own machine by emulating at least one virtual CPU and the necessary
peripheral devices such as timer and interrupt controller. 3, 15, 16, 20-27, 29, 30,
32, 33, 38-44, 47-55, 57, 64, 65, 67-71, 73, 82, 84-86, 90, 161-163, 165, 167, 168,
175, 177, 180, 182

x2APIC is a novel operating mode of the Local APIC using a faster wrmsr interface
instead of MMIO. 51, 82, 84, 100

182

Appendix C

Bibliography

[AA06]

[AACMO7]

[AAD*09]

[ABB+86]

[ACA]
[ACP]

[ACPOG|
[AFK*11]

[AGSS10]

[Aigl1]

K. Adams and O. Agesen. A Comparison of Software and Hardware Tech-
niques for x86 Virtualization. In ASPLOS’06: 12th Conference on Archi-
tectural Support for Programming Languages and Operating Systems, pages
2-13, San Jose, October 2006. 23, 77

D. Ancona, M. Ancona, A. Cuni, and N. D. Matsakis. RPython: a Step
Towards Reconciling Dynamically and Statically Typed OO Languages. In
DLS’07: Dynamic Languages Symposium, pages 53—-64, Montreal, October
2007. 116

J. Arnold, T. Abbott, W. Daher, G. Price, N. Elhage, G. Thomas, and
A. Kaseorg. Security Impact Ratings Considered Harmful. In HOTOS°09:
Workshop on Hot Topics in Operating Systems, Monte Verita, May 2009.
13

M. J. Accetta, R. V. Baron, W. J. Bolosky, D. B. Golub, R. F. Rashid,
A. Tevanian, and M. Young. Mach: A New Kernel Foundation for UNIX
Development. In USENIX Summer 1986 Conference, pages 93-113, Atlanta,
July 1986. 21

ACPICA - ACPI Component Architecture project. http://acpica.org.
153

ACPI - Advanced Configuration and Power Interface. http://acpi.info.
152, 177

ACPI Specification - Revision 3.0b, October 2006. 153

D. Amelang, B. Freudenberg, T. Kaehler, A. Kay, S. Murrell, Y. Ohshima,
I. Piumarta, K. Rose, S. Wallace, A. Warth, and T. Yamamiya. STEPS
Toward Expressive Programming Systems. Technical Report TR-2011-004,
Viewpoints Research Institute, October 2011. 14

O. Agesen, A. Garthwaite, J. Sheldon, and P. Subrahmanyam. The Evolu-
tion of an x86 Virtual Machine Monitor. ACM SIGOPS Operating Systems
Review, 44(4):3-18, December 2010. 22, 24

R. Aigner. Communication in Microkernel-Based Operating Systems. PhD
thesis, TU Dresden, Germany, January 2011. 27

183

http://www.vmware.com/pdf/asplos235_adams.pdf
http://www.vmware.com/pdf/asplos235_adams.pdf
http://dl.acm.org/citation.cfm?id=1297091
http://dl.acm.org/citation.cfm?id=1297091
http://usenix.org/event/hotos09/tech/full_papers/arnold/arnold.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.91.3964
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.91.3964
http://acpica.org
http://acpi.info
http://www.acpi.info/DOWNLOADS/ACPIspec30b.pdf
http://www.vpri.org/pdf/tr2011004_steps11.pdf
http://www.vpri.org/pdf/tr2011004_steps11.pdf
http://dl.acm.org/citation.cfm?id=1899930
http://dl.acm.org/citation.cfm?id=1899930
http://os.inf.tu-dresden.de/papers_ps/aigner_phd.pdf

APPENDIX C. BIBLIOGRAPHY

[AMDO9)

[And]

[ANW*10]

[APM13]

[AWT5]

[Bal07]

[BDF+03]

[BDKOS5]

[BAPSRI6]

[BDR7]

[Bel02]

[Bel05]

[Bie06]

[BKKH13)|

[BOO]

AMD. SimNow Simulator 4.6.1 - Users Manual - Revision 2.13, November
2009. 20, 24

E. Andersen. uClibc: A C library for embedded Linux. http://wuw.
uclibc.org. 170

A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. C. Skalsky.
HyperSentry: Enabling Stealthy In-context Measurement of Hypervisor In-
tegrity. In CCS’10: 17th Conference on Computer and Communications
Security, pages 38—49, Chicago, October 2010. 26, 28

AMD. AMDG64 Architecture - Programmer’s Manual - Revision 3.20, May
2013. 59, 61

W. G. Alexander and D. B. Wortman. Static and Dynamic Characteristics
of XPL Programs. Computer, 8(11):41-46, November 1975. 120

J. H. Baldwin. PCI Message Signaled Interrupts. In BSDCon’07: The
Technical BSD Conference, Ottawa, May 2007. 98, 154, 179

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the Art of Virtualization. In
SOSP’03: 19th Symposium on Operating Systems Principles, pages 164—
177, Bolton Landing, October 2003. 22, 24, 44, 77

M. Becher, M. Dornseif, and C. N. Klein. FireWire: all your memory are be-
long to us. In CanSecWest’05: 6th Applied Security Conference, Vancouver,
May 2005. 98

F. Barbou des Places, N. Stephen, and F. D. Reynolds. Linux on the OSF
Mach3 Microkernel. In 1st Conference on Freely Distributable Software,
Cambridge, February 1996. 15, 22

E. Bugnion, S. Devine, and M. Rosenblum. DISCO: Running Commodity
Operating Systems on Scalable Multiprocessors. In SOSP’97: 16th Sympo-
stum on Operating Systems Principles, pages 143-156, Saint Malo, October
1997. 21, 22

F. Bellard. TinyCC - Tiny C Compiler. http://www.tinycc.org, 2002.
109, 133, 174

F. Bellard. QEMU, a Fast and Portable Dynamic Translator. In
USENIX’05: USENIX Annual Technical Conference, FREENIX Track,
pages 41-46, Anaheim, April 2005. 20, 22, 23, 43, 44, 87, 88

S. Biemiiller. Hardware-Supported Virtualization for the L4 Microkernel.
Master’s thesis, University of Karlsruhe, Germany, September 2006. 25

J. Butterworth, C. Kallenberg, X. Kovah, and A. Herzog. Problems with
the Static Root of Trust for Measurement. In BlackHat USA, Las Vegas,
July 2013. 147

R. B. de Oliveira. BOO Programming Language. http://boo.codehaus.
org. 116

184

http://developer.amd.com/Assets/SimNowUsersManual4.6.2.pdf
http://www.uclibc.org
http://www.uclibc.org
http://dl.acm.org/citation.cfm?id=1866313
http://dl.acm.org/citation.cfm?id=1866313
http://developer.amd.com/resources/documentation-articles/developer-guides-manuals/
http://dx.doi.org/10.1109/C-M.1975.218804
http://dx.doi.org/10.1109/C-M.1975.218804
http://people.freebsd.org/~jhb/papers/bsdcan/2007/article/node7.html
http://dl.acm.org/citation.cfm?id=945462
http://simson.net/ref/2005/2005-firewire-cansecwest.pdf
http://simson.net/ref/2005/2005-firewire-cansecwest.pdf
http://bat8.inria.fr/~lang/hotlist/free/licence/fsf96/mklinux.html
http://bat8.inria.fr/~lang/hotlist/free/licence/fsf96/mklinux.html
http://dl.acm.org/citation.cfm?id=265930
http://dl.acm.org/citation.cfm?id=265930
http://www.tinycc.org
http://www.usenix.org/event/usenix05/tech/freenix/full_papers/bellard/bellard.pdf
http://os.ibds.kit.edu/589.php
https://media.blackhat.com/us-13/US-13-Butterworth-BIOS-Security-WP.pdf
https://media.blackhat.com/us-13/US-13-Butterworth-BIOS-Security-WP.pdf
http://boo.codehaus.org
http://boo.codehaus.org

[Bro87]

[Bro12]

[BSMY13]

[BSSMOS]

[BUZC11]

[BYDD+10]

[BYMX*06]

[CcC10]

[CCD*10]

[CDE10]

[CFH*05]

F. P. Brooks Jr. No Silver Bullet - Essence and Accidents of Software
Engineering. Computer, 20(4):10-19, April 1987. 14, 162

J. E. Bromberger. Debian Wheezy: ~ US$ 19 Billion. Your
price . . . FREE! http://blog. james.rcpt.to/2012/02/13/

debian-wheezy-us19-billion-your-price-free/, February 2012.
13, 171, 174

V. Bashun, A. Sergeev, V. Minchenkov, and A. Yakovlev. Too Young to
be Secure: Analysis of UEFI Threats and Vulnerabilities. In FRUCT"13:

14th Conference of the Open Innovations Association, pages 11-24, Helsinki,
November 2013. 147, 148

R. Bhargava, B. Serebrin, F. Spadini, and S. Manne. Accelerating Two-
Dimensional Page Walks for Virtualized Systems. In ASPLOS’08: 15th
Conference on Architectural Support for Programming Languages and Op-
erating Systems, pages 26—35, Seattle, March 2008. 23, 32

S. Bucur, V. Ureche, C. Zamfir, and G. Candea. Parallel Symbolic Execution
for Automated Real-World Software Testing. In EuroSys’11: 6th European
Conference on Computer Systems, pages 183-197, Salzburg, April 2011. 14

M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor, N. Har’El, A. Gor-
don, A. Liguori, O. Wasserman, and B.-A. Yassour. The Turtles Project:
Design and Implementation of Nested Virtualization. In OSDI’10: 9th Sym-
posium on Operating Systems Design and Implementation, pages 423-436,
Vancouver, October 2010. 29, 88

M. Ben-Yehuda, J. Mason, J. Xenidis, O. Krieger, L. Van Doorn, J. Naka-
jima, A. Mallick, and E. Wahlig. Utilizing IOMMUs for virtualization in
Linux and Xen. In Linuz Symposium, pages 71-86, Ottawa, July 2006. 15,
179

V. Chipounov and G. Candea. Reverse Engineering of Binary Device Drivers
with RevNIC. In FuroSys’10: 5th European Conference on Computer Sys-
tems, pages 167-180, Paris, April 2010. 43

D. Christie, J.-W. Chung, S. Diestelhorst, M. Hohmuth, M. Pohlack, C. Fet-
zer, M. Nowack, T. Riegel, P. Felber, P. Marlier, and E. Riviére. Evaluation
of AMD’s Advanced Synchronization Facility Within a Complete Transac-
tional Memory Stack. In FuroSys’10: 5th European Conference on Com-
puter Systems, pages 27-40, Paris, April 2010. 20, 24, 64, 88

C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and Auto-
matic Generation of High-Coverage Tests for Complex Systems Programs.
In OSDI’08: 8th Symposium on Operating Systems Design and Implemen-
tation, pages 209—224, San Diego, October 2010. 14

C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, 1. Pratt,
and A. Warfield. Live Migration of Virtual Machines. In NSDI’05: 2nd
Symposium on Networked Systems Design and Implementation, pages 273—
286, Boston, April 2005. 24, 28, 47, 77

185

http://dx.doi.org/10.1109/MC.1987.1663532
http://dx.doi.org/10.1109/MC.1987.1663532
http://blog.james.rcpt.to/2012/02/13/debian-wheezy-us19-billion-your-price-free/
http://blog.james.rcpt.to/2012/02/13/debian-wheezy-us19-billion-your-price-free/
http://www.fruct.org/publications/fruct14/files/Bas_49.pdf
http://www.fruct.org/publications/fruct14/files/Bas_49.pdf
http://dl.acm.org/citation.cfm?id=1346286
http://dl.acm.org/citation.cfm?id=1346286
http://dl.acm.org/citation.cfm?id=1966463
http://dl.acm.org/citation.cfm?id=1966463
http://dl.acm.org/citation.cfm?id=1924973
http://dl.acm.org/citation.cfm?id=1924973
https://www.kernel.org/doc/ols/2006/ols2006v1-pages-71-86.pdf
https://www.kernel.org/doc/ols/2006/ols2006v1-pages-71-86.pdf
http://dl.acm.org/citation.cfm?id=1755932
http://dl.acm.org/citation.cfm?id=1755932
http://dl.acm.org/citation.cfm?id=1755918
http://dl.acm.org/citation.cfm?id=1755918
http://dl.acm.org/citation.cfm?id=1755918
https://www.usenix.org/legacy/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://www.usenix.org/legacy/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://dl.acm.org/citation.cfm?id=1251223

APPENDIX C. BIBLIOGRAPHY

[CGL*08]

[CMW*11]

[CNZF11]

[COMOYS|

[Cov14]
[CVE]

[CYCTO1]

[CYC+08]

[DEGO6]

[Degl2]

[Dep85]

[Deu9t|

[DGT13]

[Dij68]

X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Waldspurger,
D. Boneh, J. Dwoskin, and D. R. K. Ports. Overshadow: A Virtualization-
Based Approach to Retrofitting Protection in Commodity Operating Sys-
tems. In ASPLOS’08: 13th Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 2-13, Seattle, March
2008. 15, 19, 28

H. Chen, Y. Mao, X. Wang, D. Zhou, N. Zeldovich, and M. F. Kaashoek.
Linux kernel vulnerabilities: State-of-the-art defenses and open problems.
In ApSys’11: Asia-Pacific Workshop on Systems, Shanghai, July 2011. 13

P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker, T. Deegan, P. Loscocco,
and A. Warfield. Breaking Up is Hard to Do: Security and Functionality
in a Commodity Hypervisor. In SOSP’11: 23rd Symposium on Operating
Systems Principles, pages 189-202, Cascais, October 2011. 14, 26, 27

Microsoft and DEC. The Component Object Specification Model - Ver-
sion 0.9, October 1995. 40

Coverity. Cowverity Scan: 2013 Open Source Report, April 2014. 13, 14, 161

MITRE. Common Vulnerabilities and Exposure (CVE). https://cve.
mitre.org/. 13

A. Chou, J. Yang, B. Chelf, S. Hallem, and D. R. Engler. An Empiri-
cal Study of Operating Systems Errors. In SOSP’01: 18th Symposium on
Operating Systems Principles, pages 73-88, Banff, October 2001. 88

D. Challener, K. Yoder, R. Catherman, D. R. Safford, and L. van Doorn.
A Practical Guide to Trusted Computing. IBM Press, January 2008.
ISBN: 978-0132398428. 149

L. Duflot, D. Etiemble, and O. Grumelard. Using CPU System Man-
agement Mode to Circumvent Operating System Security Functions. In
CanSecWest’06: Tth Applied Security Conference, Vancouver, April 2006.
147, 151

U. Degenbaev. Formal Specification of the x86 Instruction Set Architecture.
PhD thesis, Saarland University, Germany, February 2012. 66

Department of Defense. DoD 5200.28-STD: Trusted Computer System Eval-
uation Criteria, December 1985. 14

P. Deutsch. GZIP file format specification version 4.3, May 1996. RFC
1952. 130

T. A. David, R. Guerraoui, and V. Trigonakis. Everything You Always
Wanted to Know About Synchronization but Were Afraid to Ask. In
SOSP’13: 24th Symposium on Operating Systems Principles, pages 33-48,
Farmington, November 2013. 37

E. W. Dijkstra. Cooperating sequential processes. In F. Genuys, editor,
Programming Languages, pages 43-112. Academic Press, July 1968. 31

186

http://dl.acm.org/citation.cfm?id=1346284
http://dl.acm.org/citation.cfm?id=1346284
http://dl.acm.org/citation.cfm?id=1346284
http://dl.acm.org/citation.cfm?id=2103805
http://dl.acm.org/citation.cfm?id=2043575
http://dl.acm.org/citation.cfm?id=2043575
http://www.daimi.au.dk/~datpete/COT/COM_SPEC/pdf/com_spec.pdf
http://www.daimi.au.dk/~datpete/COT/COM_SPEC/pdf/com_spec.pdf
http://softwareintegrity.coverity.com/rs/coverity/images/2013-Coverity-Scan-Report.pdf
https://cve.mitre.org/
https://cve.mitre.org/
http://dl.acm.org/citation.cfm?id=502042
http://dl.acm.org/citation.cfm?id=502042
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.2702
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.2702
http://www-wjp.cs.uni-saarland.de/publikationen/UD11.pdf
http://csrc.nist.gov/publications/history/dod85.pdf
http://csrc.nist.gov/publications/history/dod85.pdf
http://dl.acm.org/citation.cfm?id=RFC1952
http://dl.acm.org/citation.cfm?id=2522714
http://dl.acm.org/citation.cfm?id=2522714
https://www.cs.utexas.edu/~EWD/ewd01xx/EWD123.PDF

[Dik01]

[DKC*02]

[DLMGO09]

[DPC|

[DPSP+11]

[DSA]

[DWA10)

[Eag07]

[EH13]

[ELF95]

[ELI12]

[Ern99|

[ESXa]

[ESXb]
[Fai06]

[FBB+97]

[FCO8|

J. Dike. User-mode Linux. In 5th Annual Linux Showcase € Conference,
pages 3—14, Oakland, November 2001. 22, 43

G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M.-C. Chen.
ReVirt: Enabling Intrusion Analysis Through Virtual - Machine Logging
and Replay. In OSDI’02: 5th Symposium on Operating Systems Design and
Implementation, pages 211-224, Boston, December 2002. 28

L. Duflot, O. Levillain, B. Morin, and O. Grumelard. Getting into the SM-
RAM: SMM reloaded. In CanSec West’09: 10th Applied Security Conference,
Vancouver, March 2009. 151

Debian. Popularity Contest. http://popcon.debian.org. 136, 173

T. Distler, I. Popov, W. Schroder-Preikschat, H. P. Reiser, and R. Kapitza.
SPARE: Replicas on Hold. In NDSS’11: 18th Network and Distributed
System Security Symposium, pages 407-420, San Diego, February 2011. 19

Debian Security Advisories. http://www.debian.org/security/. 13

DWARF Debugging Information Format - Version 4. http://wuw.
dwarfstd.org, June 2010. 93, 178

M. J. Eager. Introduction to the DWARF Debugging Format, February 2007.
93, 94, 127, 178

K. Elphinstone and G. Heiser. From L3 to sel.4 - What Have We Learnt in
20 Years of L4 Microkernels? In SOSP’13: 24th Symposium on Operating
Systems Principles, pages 133-150, Farmington, November 2013. 14, 30, 31

Executable and Linking Format (ELF') Specification - Version 1.2, May 1995.
93, 121, 178

ELILO - The EFI Linux Loader - Version 3.14. http://elilo.sf .net, June
2012. 173

T. Ernst. TRAPping Modelica with Python. In CC’99: 8th Conference on
Compiler Construction, pages 288-291, Amsterdam, March 1999. 117

VMware. ESX Server Virtual Infrastructure Node Evaluator’s Guide. http:
//www.vmware.com/pdf/esx_vin_eval.pdf. 167

VMware. VMware ESXi. http://www.vmware.com/esx/. 24

T. Faison. Fvent-Based Programming: Taking Events to the Limit. Apress,
May 2006. ISBN: 978-1590596432. 40

B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and O. Shivers. The
Flux OSKit: A Substrate for Kernel and Language Research. In SOSP’97:
16th Symposium on Operating Systems Principles, pages 38-51, Saint Malo,
October 1997. 15, 40, 44

B. Ford and R. Cox. Vx32: Lightweight User-level Sandboxing on the
x86. In USENIX’08: USENIX Annual Technical Conference, pages 293—
306, Boston, June 2008. 66

187

http://lwn.net/2001/features/OLS/pdf/pdf/uml.pdf
http://dl.acm.org/citation.cfm?id=844148
http://dl.acm.org/citation.cfm?id=844148
http://index-of.es/Misc/csw09-duflot.pdf
http://index-of.es/Misc/csw09-duflot.pdf
http://popcon.debian.org
http://www.isoc.org/isoc/conferences/ndss/11/pdf/8_1.pdf
http://www.debian.org/security/
http://www.dwarfstd.org
http://www.dwarfstd.org
http://dwarfstd.org/doc/Debugging using DWARF.pdf
http://dl.acm.org/citation.cfm?id=2522720
http://dl.acm.org/citation.cfm?id=2522720
http://refspecs.linuxbase.org/elf/elf.pdf
http://elilo.sf.net
http://dx.doi.org/10.1007/978-3-540-49051-7_2
http://www.vmware.com/pdf/esx_vin_eval.pdf
http://www.vmware.com/pdf/esx_vin_eval.pdf
http://www.vmware.com/esx/
http://dl.acm.org/citation.cfm?id=266642
http://dl.acm.org/citation.cfm?id=266642
http://www.usenix.org/events/usenix08/tech/full_papers/ford/ford.pdf
http://www.usenix.org/events/usenix08/tech/full_papers/ford/ford.pdf

APPENDIX C. BIBLIOGRAPHY

[Fes09]

[FHO1]

[FHO6]

[FHL*96]

[FHN*04]

[Fre09]

[Fri06]

[FS03]

[FSLMO02]

[Gall3]

[GBRM*09]

[GCB*08]

[elele]

[GG74]

N. Feske. Securing Graphical User Interfaces. PhD thesis, TU Dresden,
Germany, February 2009. 15, 164

C. W. Fraser and D. R. Hanson. A Retargetable Compiler for ANSI C.
ACM SIGPLAN Notices, 26:29-43, October 1991. 109, 133, 174

N. Feske and C. Helmuth. Design of the Bastei OS Architecture. Technical
Report TUD-FI06-07, TU Dresden, December 2006. 33, 34, 36, 40, 139

B. Ford, M. Hibler, J. Lepreau, P. Tullmann, G. Back, and S. Clawson.
Microkernel Meet Recursive Virtual Machines. In OSDI’96: 2nd Symposium
on Operating Systems Design and Implementation, pages 137-151, Seattle,
October 1996. 34

K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and
M. Williamson. Safe Hardware Access with the Xen Virtual Machine Moni-
tor. In OASIS’04: Workshop on Operating System and Architectural Support
for the on demand IT InfraStructure, Boston, October 2004. 25

S. Frenz. SJC - Small Java Compiler. http://www.fam-frenz.de/stefan/
compiler.html, 2009. 116

T. Friebel. Ubertragung des Device-Driver-Environment-Ansatzes auf Sub-
systeme des BSD-Betriebssystemkerns. Master’s thesis, TU Dresden, Ger-
many, March 2006. 15, 44

N. Ferguson and B. Schneier. A Cryptographic Evaluation of IPsec. Coun-
terpane Internet Security, Inc, December 2003. 14, 135

J.-P. Fassino, J.-B. Stefani, J. L. Lawall, and G. Muller. Think: A
Software Framework for Component-based Operating System Kernels. In
USENIX’02: USENIX Annual Technical Conference, pages 73-86, Mon-
terey, June 2002. 40

J. Galowicz. Live Migration of Virtual Machines between Heterogeneous
Host Systems. Master’s thesis, RWTH Aachen, Germany, October 2013.
48, 53, 86

J. M. Gonzalez-Barahona, G. Robles, M. Michlmayr, J. J. Amor, and D. M.
German. Macro-level software evolution: a case study of a large software
compilation. Empirical Software Engineering, 14(3):262-285, June 2009.
171

S. Garriss, R. Caceres, S. Berger, R. Sailer, L. van Doorn, and X. Zhang.
Trustworthy and Personalized Computing on Public Kiosks. In MobiSys’08:
6th Conference on Mobile Systems, Applications, and Services, pages 199—
210, Breckenridge, June 2008. 149

Free Software Foundation: The GNU Project. GCC - The GNU Compiler
Collection. http://gcc.gnu.org. 109, 174

S. W. Galley and R. P. Goldberg. Software Debugging: the Virtual Ma-
chine Approach. In ACM’74: Annual ACM Conference, pages 395-401, San
Diego, November 1974. 21, 87

188

http://os.inf.tu-dresden.de/papers_ps/feske-phd.pdf
http://dl.acm.org/citation.cfm?id=122621
http://os.inf.tu-dresden.de/papers_ps/bastei_design.pdf
http://www.usenix.org/publications/library/proceedings/osdi96/full_papers/hibler/hibler.ps
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.103.6391
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.103.6391
http://www.fam-frenz.de/stefan/compiler.html
http://www.fam-frenz.de/stefan/compiler.html
http://os.inf.tu-dresden.de/papers_ps/friebel-diplom.pdf
http://os.inf.tu-dresden.de/papers_ps/friebel-diplom.pdf
https://www.schneier.com/paper-ipsec.pdf
http://www.usenix.org/events/usenix02/full_papers/fassino/fassino.pdf
http://www.usenix.org/events/usenix02/full_papers/fassino/fassino.pdf
http://hypervisor.org/thesis-galowicz.pdf
http://hypervisor.org/thesis-galowicz.pdf
http://dx.doi.org/10.1007/s10664-008-9100-x
http://dx.doi.org/10.1007/s10664-008-9100-x
http://dl.acm.org/citation.cfm?id=1378623
http://gcc.gnu.org
http://dl.acm.org/citation.cfm?id=1408806
http://dl.acm.org/citation.cfm?id=1408806

[GIGT10]

[GIP+00]

[GLV*10]

[GOJ
[Gol T3]

[Gol74]

[GRO3]

[Gra85|

[Gra06]

[Gre04]

[GRUOS5]

[GRU14]

[GSB+99)

[GSIC13)

[Hat05]

L. Goiri, F. Julia, J. Guitart, and J. Torres. Checkpoint-based Fault-tolerant
Infrastructure for Virtualized Service Providers. In NOMS’10: Network
Operations and Management Symposium, pages 455—462, Osaka, April 2010.
47

A. Gefflaut, T. Jaeger, Y. Park, J. Liedtke, K. Elphinstone, V. Uhlig, J. E.
Tidswell, L. Deller, and L. Reuther. The SawMill Multiserver Approach. In
EW’00: 9th ACM SIGOPS European Workshop, pages 109-114, Kolding,
September 2000. 14, 22, 30, 40

D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren, G. Varghese, G. M.
Voelker, and A. Vahdat. Difference Engine: Harnessing Memory Redun-
dancy in Virtual Machines. In OSDI’08: 8th Symposium on Operating Sys-

tems Design and Implementation, pages 309-322, San Diego, October 2010.
7

The Go Programming Language. http://golang.org. 116

R. P. Goldberg. Architecture of Virtual Machines. In Workshop on Virtual
Computer Systems, pages 74—112, Cambridge, March 1973. 21, 30

R. P. Goldberg. Survey of Virtual Machine Research. Computer, 7(6):34-45,
June 1974. 21

T. Garfinkel and M. Rosenblum. A Virtual Machine Introspection Based
Architecture for Intrusion Detection. In NDSS’03: 10th Network and Dis-
tributed System Security Symposium, pages 191-206, San Diego, February
2003. 19, 70

J. Gray. Why Do Computers Stop and What Can Be Done About It?
Technical Report 85.7, Tandem Computers, June 1985. 89

D. Grawrock. The Intel Safer Computing Initiative - Building Blocks for
Trusted Computing. Intel Press, January 2006. ISBN: 978-0976483267. 148,
149, 151

T. Green. 1394 Kernel Debugging Tips and Tricks. In WinHEC"04: Win-
dows Hardware Engineering Conference, Seattle, May 2004. 103

Free Software Foundation: The GNU Project. GRUB Legacy - Version 0.97,
May 2005. 173

Free Software Foundation: The GNU Project. GRUB 2, March 2014. 137,
173

E. Gabber, C. Small, J. Bruno, J. Brustoloni, and A. Silberschatz. The
Pebble Component-Based Operating System. In USENIX’99: USENIX
Annual Technical Conference, pages 267-282, Monterey, June 1999. 30, 40

R. Garg, K. Sodha, Z. Jin, and G. Cooperman. Checkpoint-Restart for a
Network of Virtual Machines. In Cluster’13: International Conference on
Cluster Computing, Indianapolis, September 2013. 48

L. Hatton. Estimating Source Lines of Code from Object Code. www.
leshatton.org/Documents/L0OC2005.pdf, August 2005. 165

189

http://dx.doi.org/10.1109/NOMS.2010.5488493
http://dx.doi.org/10.1109/NOMS.2010.5488493
http://dl.acm.org/citation.cfm?id=566751
https://www.usenix.org/conference/osdi-08/difference-engine-harnessing-memory-redundancy-virtual-machines
https://www.usenix.org/conference/osdi-08/difference-engine-harnessing-memory-redundancy-virtual-machines
http://golang.org
http://dl.acm.org/citation.cfm?id=803950
http://dx.doi.org/10.1109/MC.1974.6323581
http://suif.stanford.edu/papers/vmi-ndss03.pdf
http://suif.stanford.edu/papers/vmi-ndss03.pdf
http://www.hpl.hp.com/techreports/tandem/TR-85.7.pdf
http://bandwidthco.com/whitepapers/compforensics/binary/windows/Kernel Debugging 1394 .pdf
https://www.usenix.org/event/usenix99/full_papers/gabber/gabber.pdf
https://www.usenix.org/event/usenix99/full_papers/gabber/gabber.pdf
http://www.ccs.neu.edu/home/gene/papers/cluster13.pdf
http://www.ccs.neu.edu/home/gene/papers/cluster13.pdf
www.leshatton.org/Documents/LOC2005.pdf
www.leshatton.org/Documents/LOC2005.pdf

APPENDIX C. BIBLIOGRAPHY

[Hea06]

[HEBOL]

[HF98]

[HHO5]

[HHF+05]

[HHL*97]

[HILTO5]

[HKY*13]

[HMP97]

[HoaT73]

[HPEO04]

[HSH+09)

[HULOG6]

J. Heasman. Implementing and Detecting an ACPI Rootkit. In BlackHat
Europe, Amsterdam, February 2006. Invited Talk. 147, 153

W. C. Hsieh, D. R. Engler, and G. Back. Reverse-Engineering Instruction
Encodings. In USENIX’01: USENIX Annual Technical Conference, pages
133-146, Boston, June 2001. 62

J. Helander and A. Forin. MMLite: A Highly Componentized System Ar-
chitecture. In EW’98: Workshop on Support for Composing Distributed
Applications, pages 96-103, Sintra, September 1998. 40

A. Ho and S. Hand. On the Design of a Pervasive Debugger. In AADE-
BUG’05: 6th Symposium on Automated Analysis-Driven Debugging, pages
117-122, Monterey, September 2005. 87

H. Hartig, M. Hohmuth, N. Feske, C. Helmuth, A. Lackorzynski, F. Mehn-
ert, and M. Peter. The Nizza Secure-System Architecture. In Collaborate-
Com’05: 1st Conference on Collaborative Computing: Networking, Applica-
tions and Worksharing, San Jose, December 2005. 15, 139

H. Hartig, M. Hohmuth, J. Liedtke, J. Wolter, and S. Schénberg. The
Performance of p-kernel-based Systems. In SOSP’97: 16th Symposium on
Operating Systems Principles, pages 66—77, Saint Malo, October 1997. 15,
22,25, 77

T. Hallgren, M. P. Jones, R. Leslie, and A. Tolmach. A Principled Ap-
proach to Operating System Construction in Haskell. In ICFP’05: 10th In-
ternational Conference on Functional Programming, pages 116-128, Tallinn,
September 2005. 116

J. Han, S. M. Kywe, Q. Yan, F. Bao, R. Deng, D. Gao, Y. Li, and J. Zhou.
Launching Generic Attacks on iOS with Approved Third-Party Applica-
tions. In ACNS’18: 11th Conference on Applied Cryptography and Network
Security, pages 272-289, Banff, June 2013. 147

M. Hof, H. Md&ssenbéck, and P. Pirkelbauer. Zero-Overhead Exception Han-
dling Using Metaprogramming. In SOFSEM’97: 24th Seminar on Cur-
rent Trends in Theory and Practice of Informatics, pages 423-431, Milovy,
November 1997. 122

C. A. R. Hoare. Hints on Programming Language Design. Technical Report
STAN-CS-73-403, Stanford University, December 1973. 115

Intel. IA-PC HPET (High Precision Fvent Timers) Specification - v1.0a,
October 2004. 52, 178

J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A.
Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest We
Remember: Cold-Boot Attacks on Encryption Keys. Communications of
the ACM, 52(5):91-98, May 2009. 151

G. Heiser, V. Uhlig, and J. LeVasseur. Are Virtual-Machine Monitors Micro-
kernels Done Right? ACM SIGOPS Operating Systems Review, 40(1):95-99,
January 2006. 30

190

http://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Heasman.pdf
http://www.stanford.edu/~engler/derive-usenix01.pdf
http://www.stanford.edu/~engler/derive-usenix01.pdf
http://dl.acm.org/citation.cfm?id=319210
http://dl.acm.org/citation.cfm?id=319210
http://dl.acm.org/citation.cfm?id=1085146
http://os.inf.tu-dresden.de/papers_ps/nizza.pdf
http://dl.acm.org/citation.cfm?id=266660
http://dl.acm.org/citation.cfm?id=266660
http://dl.acm.org/citation.cfm?id=1086380
http://dl.acm.org/citation.cfm?id=1086380
http://dx.doi.org/10.1007/978-3-642-38980-1_17
http://dx.doi.org/10.1007/978-3-642-38980-1_17
http://dx.doi.org/10.1007/3-540-63774-5_122
http://dx.doi.org/10.1007/3-540-63774-5_122
http://i.stanford.edu/pub/cstr/reports/cs/tr/73/403/CS-TR-73-403.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/software-developers-hpet-spec-1-0a.pdf
http://dl.acm.org/citation.cfm?id=1506429
http://dl.acm.org/citation.cfm?id=1506429
http://dl.acm.org/citation.cfm?id=1113363
http://dl.acm.org/citation.cfm?id=1113363

[HvDO04]

[HWF+05]

[IBM90)

[IEE0S]

[Int96]

[10C]

[10S14]

[TWX07]

[Kai08]

[Kau05]

[Kau06]

[Kau07a]

[Kau07b]

[Kau09a]

[Kau09b]

[KCW+06]

J. Hendricks and L. van Doorn. Secure Bootstrap is Not Enough: Shoring
Up the Trusted Computing Base. In EW’04: 11th ACM SIGOPS European
Workshop, Leuven, September 2004. 152

S. Hand, A. Warfield, K. Fraser, E. Kotsovinos, and D. Magenheimer. Are
Virtual Machine Monitors Microkernels Done Right? In HOTOS’10: Work-
shop on Hot Topics in Operating Systems, Santa Fe, June 2005. 30

IBM. Personal System/2 - Hardware Interface Technical Reference, October
1990. 52

IEEE 1394 Working Group. 1894-2008, Standard for a High-Performance
Serial Bus, October 2008. IEEE Computer Society. 97, 178

Intel. I/O Advanced Programmable Interrupt Controller (I/0 APIC), May
1996. Order Number: 290566-001. 51, 154

The International Obfuscated C Code Contest. http://www.ioccc.org.
165

Apple. i0OS Security. http://images.apple.com/ipad/business/docs/
i0S_Security_Febl4.pdf, February 2014. 147

X. Jiang, X. Wang, and D. Xu. Stealthy Malware Detection Through VMM-
Based "Out-of-the-Box" Semantic View Reconstruction. In CCS’07: 14th
Conference on Computer and Communications Security, pages 128-138,
Alexandria, October 2007. 19

B. Kaindl. Using physical DMA provided by OHCI-139/ Fire Wire controllers
for debugging, January 2008. 103

B. Kauer. L4.sec Implementation - Kernel Memory Management. Master’s
thesis, TU Dresden, Germany, May 2005. 41

B. Kauer. TinyIDL: How to make an IDL compiler simple? DROPSCon
Talk, TU Dresden, November 2006. 118

B. Kauer. Fulda: Next Generation OS Debugging via Firewire. DROPSCon
Talk, TU Dresden, May 2007. 87, 98

B. Kauer. OSLO: Improving the Security of Trusted Computing. In 16th
USENIX Security Symposium, pages 229-237, Boston, July 2007. 68, 109,
135, 140, 143, 147, 148, 149, 166, 172, 174

B. Kauer. ATARE: ACPI Tables and Regular Expressions. Technical Report
TUD-FI09-09, TU Dresden, August 2009. 135, 153

B. Kauer. RTC polling mode broken, September 2009. gemu-devel mailing-
list. 46

S. T. King, P. M.-C. Chen, Y.-M. Wang, C. Verbowski, H. J. Wang, and J. R.
Lorch. SubVirt: Implementing malware with virtual machines. In S&P’06:
27th Symposium on Security and Privacy, pages 314-327, Oakland, May
2006. 147

191

http://dl.acm.org/citation.cfm?id=1133600
http://dl.acm.org/citation.cfm?id=1133600
https://www.usenix.org/legacy/events/hotos05/final_papers/full_papers/hand/hand.pdf
https://www.usenix.org/legacy/events/hotos05/final_papers/full_papers/hand/hand.pdf
http://www.mcamafia.de/pdf/pdfref.htm
http://dx.doi.org/10.1109/IEEESTD.2008.4659233
http://dx.doi.org/10.1109/IEEESTD.2008.4659233
http://www.intel.com/design/chipsets/datashts/290566.htm
http://www.ioccc.org
http://images.apple.com/ipad/business/docs/iOS_Security_Feb14.pdf
http://images.apple.com/ipad/business/docs/iOS_Security_Feb14.pdf
http://dl.acm.org/citation.cfm?id=1315262
http://dl.acm.org/citation.cfm?id=1315262
http://lxr.linux.no/linux+v3.1.1/Documentation/debugging-via-ohci1394.txt
http://lxr.linux.no/linux+v3.1.1/Documentation/debugging-via-ohci1394.txt
http://os.inf.tu-dresden.de/papers_ps/kauer-diplom.pdf
http://os.inf.tu-dresden.de/~kauer/tinyidl/tinyidl.pdf
http://os.inf.tu-dresden.de/~kauer/fulda/fulda.pdf
http://static.usenix.org/events/sec07/tech/full_papers/kauer/kauer.pdf
http://os.inf.tu-dresden.de/papers_ps/tr-atare-2009.pdf
http://dx.doi.org/10.1109/SP.2006.38

APPENDIX C. BIBLIOGRAPHY

[KDCO5]

[KEHT09]

[KGD]

[KKL*+07]

[Knu74]

[Knu84]

[Kor09]

[KS08]

[KS09)

[KTC*08]

[KVB11]

[KZB*91]

[Law96]

[LCFD05]

S. T. King, G. W. Dunlap, and P. M.-C. Chen. Debugging operating systems
with time-traveling virtual machines. In USENIX’05: USENIX Annual
Technical Conference, pages 1-15, Anaheim, April 2005. 28, 87

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch,
and S. Winwood. sel.4: Formal Verification of an OS Kernel. In SOSP’09:
22nd Symposium on Operating Systems Principles, pages 207-220, Big Sky,
October 2009. 14, 116

KGDB: Linux Kernel Source Level Debugger. http://kgdb.linsyssoft.
com. 103

A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. KVM: The Linux
Virtual Machine Monitor. In Linux Symposium, pages 225-230, Ottawa,
June 2007. 25, 44

D. E. Knuth. Structured Programming with go to Statements. ACM Com-
puting Surveys, 6(4):261-301, December 1974. 114

D. E. Knuth. Literate programming. Computer, 27(2):97-111, May 1984.
118

K. Kortchinsky. Cloudburst - Hacking 3D and Breaking out of VMware. In
BlackHat USA, Las Vegas, July 2009. 19

P. A. Karger and D. R. Safford. I/O for Virtual Machine Monitors: Security
and Performance Issues. IEEFE Security € Privacy, 6(5):16-23, September
2008. 19

E. Késper and P. Schwabe. Faster and Timing-Attack Resistant AES-GCM.
In CHES’09: Cryptographic Hardware and Embedded Systems Workshop,
pages 1-17, Lausanne, September 2009. 151

S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and Y. Zhou. Designing
and implementing malicious hardware. In LEET’08: Workshop on Large-
Scale Exploits and Emergent Threats, pages 1-8, San Francisco, April 2008.
152

B. Kauer, P. E. Verissimo, and A. Bessani. Recursive Virtual Machines for
Advanced Security Mechanisms. In DCDV’11: Workshop on Dependability
of Clouds, Data Centers and Virtual Computing Environments, Hong Kong,
June 2011. 21, 86, 164

P. A. Karger, M. E. Zurko, D. W. Bonin, A. H. Mason, and C. E. Kahn.
A Retrospective on the VAX VMM Security Kernel. IEEE Transactions on
Software Engineering, 17(11):1147-1163, November 1991. 21, 25

K. P. Lawton. Bochs: A Portable PC Emulator for Unix/X. Linuz Journal,
1996(29es), September 1996. 20, 23, 43

B. Leslie, P. Chubb, N. Fitzroy-Dale, S. Go6tz, C. Gray, L. Macpherson,
D. Potts, Y.-T. Shen, K. Elphinstone, and G. Heiser. User-Level De-
vice Drivers: Achieved Performance. Computer Science and Technology,
20(5):654-664, September 2005. 15

192

https://www.usenix.org/event/usenix05/tech/general/king/king.pdf
https://www.usenix.org/event/usenix05/tech/general/king/king.pdf
http://dl.acm.org/citation.cfm?id=1629596
http://kgdb.linsyssoft.com
http://kgdb.linsyssoft.com
http://www.linuxsymposium.org/archives/OLS/Reprints-2007/kivity-Reprint.pdf
http://www.linuxsymposium.org/archives/OLS/Reprints-2007/kivity-Reprint.pdf
http://dl.acm.org/citation.cfm?id=356640
http://dx.doi.org/10.1093/comjnl/27.2.97
http://www.blackhat.com/presentations/bh-usa-09/KORTCHINSKY/BHUSA09-Kortchinsky-Cloudburst-PAPER.pdf
http://dx.doi.org/10.1109/MSP.2008.119
http://dx.doi.org/10.1109/MSP.2008.119
http://dx.doi.org/10.1007/978-3-642-04138-9_1
https://www.usenix.org/legacy/event/leet08/tech/full_papers/king/king.pdf
https://www.usenix.org/legacy/event/leet08/tech/full_papers/king/king.pdf
http://dx.doi.org/10.1109/DSNW.2011.5958796
http://dx.doi.org/10.1109/DSNW.2011.5958796
http://dx.doi.org/10.1109/32.106971
http://dl.acm.org/citation.cfm?id=326357
http://dx.doi.org/10.1007/s11390-005-0654-4
http://dx.doi.org/10.1007/s11390-005-0654-4

[LCM*05]

[LCWS+09)

[Ler09]

[LHGMOY]

[Lic95)|

[LIL11]
[LINOS]
[Loc10]

[LPH*10]

[LPL10]

[LS09]

[LSS04]

[LUC*05]

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. Pin: Building Customized Program
Analysis Tools with Dynamic Instrumentation. In PLDI’05: 2005 Confer-
ence on Programming Language Design and Implementation, pages 190-200,
Chicago, June 2005. 24

H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell, P. Patchin, S. M. Rum-
ble, E. de Lara, M. Brudno, and M. Satyanarayanan. SnowFlock: Rapid
Virtual Machine Cloning for Cloud Computing. In FuroSys’09: 4th FEu-
ropean Conference on Computer Systems, pages 1-12, Nuremberg, March
2009. 77

X. Leroy. Formal Verification of a Realistic Compiler. Communications of
the ACM, 52(7):107-115, July 2009. 14, 110

B. Lee, M. Hirzel, R. Grimm, and K. S. McKinley. Debug All Your Code:
Portable Mixed-Environment Debugging. In OOPSLA’09: 24th Conference
on Object-Oriented Programming, Systems, Languages, and Applications,
pages 207-226, Orlando, October 2009. 91, 173, 174

J. Liedtke. On p-Kernel Construction. In SOSP’95: 15th Symposium on
Operating Systems Principles, pages 237-250, Copper Mountain, December
1995. 22, 30, 31

LILO - The Linux Loader - Version 23.2. http://lilo.alioth.debian.
org, April 2011. 173

Linux 2.6.27.4 PCI quirks. http://lxr.linux.no/linux+v2.6.27.4/
drivers/pci/quirks.c, 2008. 154

M. Locktyukhin. Improving the Performance of the Secure Hash Algorithm
(SHA-1), March 2010. 133

J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui, L. Xia, P. Bridges,
A. Gocke, S. Jaconette, M. Levenhagen, and R. Brightwell. Palacios and
Kitten: New High Performance Operating Systems For Scalable Virtualized
and Native Supercomputing. In IPDPS’10: International Symposium on
Parallel and Distributed Processing, pages 1-12, Atlanta, April 2010. 26, 43

S. Liebergeld, M. Peter, and A. Lackorzynski. Towards Modular Security-
conscious Virtual Machines. In RTLWS’10: 12th Real-Time Linux Work-
shop, Nairobi, October 2010. 26, 43, 72

D. Leinenbach and T. Santen. Verifying the Microsoft Hyper-V Hypervisor
with VCC. In FM’9: 16th Symposium on Formal Methods, pages 806-809,
Eindhoven, November 2009. 14, 25, 167

D. E. Lowell, Y. Saito, and E. J. Samberg. Devirtualizable Virtual Ma-
chines Enabling General, Single-node, Online Maintenance. In ASPLOS’0/:
11th Conference on Architectural Support for Programming Languages and
Operating Systems, pages 211-223, Boston, October 2004. 47

J. LeVasseur, V. Uhlig, M. Chapman, P. Chubb, B. Leslie, and G. Heiser.
Pre-Virtualization: Slashing the Cost of Virtualization. Technical Report
2005-30, Universitat Karlsruhe, November 2005. 22

193

http://dl.acm.org/citation.cfm?id=1065034
http://dl.acm.org/citation.cfm?id=1065034
http://dl.acm.org/citation.cfm?id=1519067
http://dl.acm.org/citation.cfm?id=1519067
http://dl.acm.org/citation.cfm?id=1538814
http://dl.acm.org/citation.cfm?id=1640105
http://dl.acm.org/citation.cfm?id=1640105
http://dl.acm.org/citation.cfm?id=224075
http://lilo.alioth.debian.org
http://lilo.alioth.debian.org
http://lxr.linux.no/linux+v2.6.27.4/drivers/pci/quirks.c
http://lxr.linux.no/linux+v2.6.27.4/drivers/pci/quirks.c
http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/
http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/
https://cfwebprod.sandia.gov/cfdocs/CCIM/docs/ipdps10.pdf
https://cfwebprod.sandia.gov/cfdocs/CCIM/docs/ipdps10.pdf
https://cfwebprod.sandia.gov/cfdocs/CCIM/docs/ipdps10.pdf
http://os.inf.tu-dresden.de/papers_ps/rtlws2010_modularvms.pdf
http://os.inf.tu-dresden.de/papers_ps/rtlws2010_modularvms.pdf
http://dx.doi.org/10.1007/978-3-642-05089-3_51
http://dx.doi.org/10.1007/978-3-642-05089-3_51
http://dl.acm.org/citation.cfm?id=1024419
http://dl.acm.org/citation.cfm?id=1024419
http://os.ibds.kit.edu/812.php

APPENDIX C. BIBLIOGRAPHY

[LUSGO4]

[LW09]

[LX]
[LXO]

[MAB*13]

[Mac79|

[Man09]

[Mar05]

[MBI10]

[MBZ+12]

[MCE+02]

[Meh05]

[MGLI0]

[Mic01]

[Mic03]

[Mic09]

J. LeVasseur, V. Uhlig, J. Stof, and S. G6tz. Unmodified Device Driver
Reuse and Improved System Dependability via Virtual Machines. In
0SDI’04: 6th Symposium on Operating Systems Design and Implementa-
tion, pages 17-30, San Francisco, December 2004. 30

A. Lackorzynski and A. Warg. Taming Subsystems: Capabilities As Univer-
sal Resource Access Control in L4. In IIES’09: Workshop on Isolation and
Integration in Embedded Systems, pages 25-30, Nuremberg, March 2009. 33,
36

Linux Kernels. ftp://ftp.kernel.org/pub/linux/kernel/. 169

Old Linux Kernels. ftp://nic.funet.fi/ftp/pub/Linux/PEOPLE/
.Linus.old/. 169

F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shalfi,
V. Shanbhogue, and U. R. Savagaonkar. Innovative Instructions and Soft-
ware Model for Isolated Execution. In HASP’13: Workshop on Hardware
and Architectural Support for Security and Privacy, June 2013. 151

R. A. MacKinnon. The Changing Virtual Machine Environment: Interfaces
to Real Hardware, Virtual Hardware, and Other Virtual Machines. IBM
Systems Journal, 18(1):18-46, March 1979. 21

K. Mannthey. System Management Interrupt Free Hardware. Linux
Plumbers Conference, September 2009. 151

V. Maraia. The Build Master: Microsoft’s Software Configuration Manage-
ment Best Practices. Addison-Wesley, October 2005. ISBN: 978-0321332059.
171, 172

Multiboot Specification - Version 0.6.96. http://www.gnu.org/software/
grub/manual/multiboot/, January 2010. 117, 137, 138, 139

C. Miller, D. Blazakis, D. D. Zovi, S. Esser, V. lozzo, and R.-P. Wein-
mann. 10S Hacker’s Handbook. John Wiley & Son, May 2012. ISBN: 978-
1118228432. 147

P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moested, and B. Werner. Simics: A Full System
Simulation Platform. Computer, 35(2):50-58, February 2002. 24

F. Mehnert. Kapselung von Standard-Betriebssystemen. PhD thesis, TU
Dresden, Germany, July 2005. 28

F. Mehnert, J. Glauber, and J. Liedtke. Fiasco Kernel Debugger Manual -
Version 1.1.6+, September 2010. 88

Microsoft. Key Benefits of the 1/O APIC, December 2001. 154

Microsoft. Windows XP: 1/0 Ports Blocked from BIOS AML, January 2003.
153

Microsoft. BitLocker Drive Encryption: Technical Overview, July 2009. 148

194

http://www.usenix.org/event/osdi04/tech/full_papers/levasseur/levasseur.pdf
http://www.usenix.org/event/osdi04/tech/full_papers/levasseur/levasseur.pdf
http://dl.acm.org/citation.cfm?id=1519135
http://dl.acm.org/citation.cfm?id=1519135
ftp://ftp.kernel.org/pub/linux/kernel/
ftp://nic.funet.fi/ftp/pub/Linux/PEOPLE/.Linus.old/
ftp://nic.funet.fi/ftp/pub/Linux/PEOPLE/.Linus.old/
http://css.csail.mit.edu/6.858/2013/readings/intel-sgx.pdf
http://css.csail.mit.edu/6.858/2013/readings/intel-sgx.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.84.8731
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.84.8731
http://linuxplumbersconf.org/2009/slides/Keith-Mannthey-SMI-plumers-2009.pdf
http://www.gnu.org/software/grub/manual/multiboot/
http://www.gnu.org/software/grub/manual/multiboot/
http://www.it-docs.net/ddata/781.pdf
http://dx.doi.org/10.1109/2.982916
http://dx.doi.org/10.1109/2.982916
http://os.inf.tu-dresden.de/papers_ps/mehnert-phd.pdf
http://os.inf.tu-dresden.de/fiasco/doc/jdb.pdf
http://os.inf.tu-dresden.de/fiasco/doc/jdb.pdf
http://www.microsoft.com/whdc/archive/IO-APIC.mspx
http://www.microsoft.com/whdc/archive/BIOSAML.mspx
http://technet.microsoft.com/en-us/library/cc732774(v=ws.10).aspx

[Mic12]
[Mic14]

[MMHO8]

[MMP+12]

[Mor10]

[MP97]

[MPRB09]

[MPT78]

[MQL*10]

[MSB]

[NSO7]

[NUL

[NVM12]
[064]
[OHCO00]

[OPSS93]

Microsoft. Hypervisor Top-Level Functional Specification: Windows Server
2008 R2 - Version 2.0a, May 2012. 25

Microsoft. Windows Hardware Certification Requirements, April 2014. 147

D. G. Murray, G. Milos, and S. Hand. Improving Xen Security through
Disaggregation. In VEE’08: jth Conference on Virtual Fxecution Environ-
ments, pages 151-160, Seattle, March 2008. 14, 26

L. Martignoni, S. McCamant, P. Poosankam, D. Song, and P. Maniatis.
Path-exploration Lifting: Hi-fi Tests for Lo-fi Emulators. In ASPLOS’12:
17th Conference on Architectural Support for Programming Languages and
Operating Systems, pages 337-348, London, March 2012. 50

J. P. Morrison. Flow-based programming. CreateSpace, May 2010.
ISBN: 978-1451542325. 40

Intel. MultiProcessor Specification - Version 1.4, May 1997. Order Number:
242016-006. 154

L. Martignoni, R. Paleari, G. F. Roglia, and D. Bruschi. Testing CPU Em-
ulators. In ISSTA’09: 18th International Symposium on Software Testing
and Analysis, pages 261-272, Chicago, July 2009. 23, 50, 66

M. D. Mcllroy, E. N. Pinson, and B. A. Tague. Unix Time-Sharing System:
Forward. The Bell System Technical Journal, 57(6, part 2):1899-1904, July
1978. 139

J. M. McCune, N. Qu, Y. Li, A. Datta, V. D. Gligor, and A. Perrig. TrustVi-
sor: Efficient TCB Reduction and Attestation. In S&P’10: 31st Symposium
on Security and Privacy, pages 143—-158, Oakland, May 2010. 29

Microsoft. Security Bulletin. https://technet.microsoft.com/
security/bulletin/. 13

N. Nethercote and J. Seward. Valgrind: A Framework for Heavyweight
Dynamic Binary Instrumentation. ACM SIGPLAN Notices, 42(6):89-100,
June 2007. 24

NOVA UserLevel Environment - Repository. https://github.com/
TUD-0S/NUL/. 33

Intel. NVM Ezxpress - Revision 1.1, October 2012. 85
The Open64 Compiler Infrastructure. http://www.open64.net. 174

1394 Open Host Controller Interface Specification - Release 1.1, January
2000. 97

B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The Information Bus - An
Architecture for Extensible Distributed Systems. In SOSP’93: 14th Sym-
posium on Operating Systems Principles, pages 58—68, Asheville, December
1993. 40

195

http://www.microsoft.com/en-us/download/details.aspx?id=18673
http://www.microsoft.com/en-us/download/details.aspx?id=18673
http://msdn.microsoft.com/en-us/library/windows/hardware/dn423132
http://dl.acm.org/citation.cfm?id=1346278
http://dl.acm.org/citation.cfm?id=1346278
http://dl.acm.org/citation.cfm?id=2151012
http://www.intel.com/design/pentium/datashts/24201606.pdf
http://dl.acm.org/citation.cfm?id=1572303
http://dl.acm.org/citation.cfm?id=1572303
https://archive.org/download/bstj57-6-1899/bstj57-6-1899_text.pdf
https://archive.org/download/bstj57-6-1899/bstj57-6-1899_text.pdf
http://dx.doi.org/10.1109/SP.2010.17
http://dx.doi.org/10.1109/SP.2010.17
https://technet.microsoft.com/security/bulletin/
https://technet.microsoft.com/security/bulletin/
http://dl.acm.org/citation.cfm?id=1250746
http://dl.acm.org/citation.cfm?id=1250746
https://github.com/TUD-OS/NUL/
https://github.com/TUD-OS/NUL/
http://nvmexpress.org/wp-content/uploads/NVM-Express-1_1.pdf
http://www.open64.net
http://download.microsoft.com/download/1/6/1/161ba512-40e2-4cc9-843a-923143f3456c/ohci_11.pdf
http://dl.acm.org/citation.cfm?id=168624
http://dl.acm.org/citation.cfm?id=168624

APPENDIX C. BIBLIOGRAPHY

[Orm07]

[0STO6]

[Par08]

[Par13]

[PBWH*11]

[PDS0)

[Pea02]

[PEP]

[Per82]

[PG74]

[PIC8S]

[Pik0O]

[PIT94]

[PKB+08]

[Plo12]

[Poe09]

T. Ormandy. An Empirical Study into the Security Exposure to Hosts of
Hostile Virtualized Environments. In CanSec West’07: 8th Applied Security
Conference, Vancouver, April 2007. 19

D. A. Osvik, A. Shamir, and E. Tromer. Cache Attacks and Countermea-
sures: The Case of AES. In CT-RSA’06: RSA Conference, Cryptographers’
Track, pages 1-20, San Jose, February 2006. 151

B. J. Parno. Bootstrapping Trust in a "Trusted" Platform. In HOTSEC’08:
Workshop on Hot Topics in Security, San Jose, July 2008. 151

M. Partheymiiller. Adding SMP Support to a User-Level VMM. Master’s
thesis, TU Dresden, Germany, November 2013. 56

D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C. Hunt.
Rethinking the Library OS from the Top Down. In ASPLOS’11: 16th Con-
ference on Architectural Support for Programming Languages and Operating
Systems, pages 291-304, Newport Beach, March 2011. 171

D. A. Patterson and D. R. Ditzel. The Case for the Reduced Instruction
Set Computer. ACM SIGARCH Computer Architecture News, 8(6):25-33,
October 1980. 120

S. Pearson. Trusted Computing Platforms: TCPA Technology in Context.
Prentice Hall, August 2002. ISBN: 978-0130092205. 148

Python Enhancement Proposal (PEP) 255 - Simple Generators. http://
www.python.org/dev/peps/pep-0255/. 94

A. J. Perlis. Special Feature: Epigrams on Programming. ACM SIGPLAN
Notices, 17(9):7-13, September 1982. 87

G. J. Popek and R. P. Goldberg. Formal Requirements for Virtualizable
Third Generation Architectures. Communications of the ACM, 17(7):412—
421, July 1974. 21

Intel. 8259A - Programmable Interrupt Controller (PIC), December 1988.
Order Number: 231468-003. 51, 73, 154, 180

R. Pike. Systems Software Research is Irrelevant. Invited talk, University
of Utah, April 2000. 15

Intel. 82C54 - CHMOS Programmable Interval Timer (PIT), October 1994.
Order Number: 231244-006. 73, 180

A. Povzner, T. Kaldewey, S. Brandt, R. Golding, T. M. Wong, and
C. Maltzahn. Efficient Guaranteed Disk Request Scheduling with Fahrrad.
In EuroSys’08: 3rd European Conference on Computer Systems, pages 13—
25, Glasgow, March 2008. 38

S. Plotz. Minimal Linux Bootloader. http://sebastian-plotz.blogspot.
de/2012/07/1.html, July 2012. 138, 173

H. Poetzl. i8259 defaults wrong?, August 2009. gemu-devel mailing-list. 46

196

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.105.6943
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.105.6943
http://dx.doi.org/10.1007/11605805_1
http://dx.doi.org/10.1007/11605805_1
https://www.usenix.org/legacy/event/hotsec08/tech/full_papers/parno/parno.pdf
http://www.hypervisor.org/thesis-partheymueller.pdf
http://dl.acm.org/citation.cfm?id=1950399
http://dl.acm.org/citation.cfm?id=641917
http://dl.acm.org/citation.cfm?id=641917
http://www.python.org/dev/peps/pep-0255/
http://www.python.org/dev/peps/pep-0255/
http://dl.acm.org/citation.cfm?id=1083808
http://dl.acm.org/citation.cfm?id=361073
http://dl.acm.org/citation.cfm?id=361073
http://pdos.csail.mit.edu/6.828/2010/readings/hardware/8259A.pdf
http://herpolhode.com/rob/utah2000.pdf
http://download.intel.com/design/archives/periphrl/docs/23124406.pdf
http://dl.acm.org/citation.cfm?id=1352595
http://sebastian-plotz.blogspot.de/2012/07/1.html
http://sebastian-plotz.blogspot.de/2012/07/1.html

[PSLWO0Y]

[PyM]
[Pyt]
[RCO5|

[RCK*09]

[REHO7]

[RI00]

[RPOG]

[RS09]

[RTO9]

[Rus08]

[SA99]

[San09)]

[SATO9]

[SBK10]

[Scho1]

M. Peter, H. Schild, A. Lackorzynski, and A. Warg. Virtual Machines
Jailed: Virtualization in Systems with Small Trusted Computing Bases. In
VTDS’09: Workshop on Virtualization Technology for Dependable Systems,
pages 18-23, Nuremberg, March 2009. 25, 27, 44, 72, 78

D. Hall. Python-on-a-Chip: PyMite. http://www.pythononachip.org. 118
Python v3.2.3 Documentation. http://docs.python.org/3.2/. 110

J. F. Reid and W. J. Caelli. DRM, Trusted Computing and Operating Sys-
tem Architecture. In AusGrid’05: Australasian Workshop on Grid Comput-
ing and e-Research, pages 127-136, Newcastle, January 2005. 149

L. Ryzhyk, P. Chubb, I. Kuz, E. Le Sueur, and G. Heiser. Automatic Device
Driver Synthesis with Termite. In SOSP’09: 22nd Symposium on Operating
Systems Principles, pages 73-86, Big Sky, October 2009. 43

T. Roscoe, K. Elphinstone, and G. Heiser. Hype and Virtue. In HOTOS°07:
Workshop on Hot Topics in Operating Systems, San Diego, May 2007. 15,
19

J. S. Robin and C. E. Irvine. Analysis of the Intel Pentium’s Ability to
Support a Secure Virtual Machine Monitor. In 9th USENIX Security Sym-
posium, pages 129-144, Denver, August 2000. 21

A. Rigo and S. Pedroni. PyPy’s Approach to Virtual Machine Construc-
tion. In OOPSLA’06: 21st Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 949-953, Portland, October
2006. 111, 116

M. E. Russinovich and D. A. Solomon. Microsoft Windows Internals. Mi-
crosoft Press, June 2009. ISBN: 978-0735625303. 95

J. Rutkowska and A. Tereshkin. FEvil Maid goes after TrueCrypt. The
Invisible Things Lab’s blog, October 2009. 149

R. Russell. virtio: Towards a De-Facto Standard For Virtual I/O Devices.
ACM SIGOPS Operating Systems Review, 42(5):95-103, July 2008. 22, 68

T. Shanley and D. Anderson. PCI System Architecture. Addison-Wesley,
May 1999. ISBN: 978-0201309744. 153

R. Sandrini. VMkit: A lightweight hypervisor library for Barrelfish. Master’s
thesis, ETH Ziirich, Switzerland, September 2009. 26

L. M. Silva, J. Alonso, and J. Torres. Using Virtualization to Improve
Software Rejuvenation. IEEE Transaction on Computers, 58(11):1525-1538,
November 2009. 28

U. Steinberg, A. Bottcher, and B. Kauer. Timeslice Donation in Component-
Based Systems. In OSPERT’10: Workshop on Operating Systems Platforms
for Embedded Real-Time Application, Brussels, July 2010. 31, 36

S. B. Schreiber. Undocumented Windows 2000 Secrets - A Programmer’s
Cookbook. Addison-Wesley, May 2001. ISBN: 978-0201721874. 93

197

http://dl.acm.org/citation.cfm?id=1518688
http://dl.acm.org/citation.cfm?id=1518688
http://www.pythononachip.org
http://docs.python.org/3.2/
http://dl.acm.org/citation.cfm?id=1082308
http://dl.acm.org/citation.cfm?id=1082308
http://dl.acm.org/citation.cfm?id=1629583
http://dl.acm.org/citation.cfm?id=1629583
https://www.usenix.org/events/hotos07/tech/full_papers/roscoe/roscoe.pdf
http://www.usenix.org/events/sec00/full_papers/robin/robin.pdf
http://www.usenix.org/events/sec00/full_papers/robin/robin.pdf
http://dl.acm.org/citation.cfm?id=1176753
http://dl.acm.org/citation.cfm?id=1176753
http://theinvisiblethings.blogspot.de/2009/10/evil-maid-goes-after-truecrypt.html
http://dl.acm.org/citation.cfm?id=1400108
http://www.barrelfish.org/sandrini-masters-vmkit.pdf
http://dx.doi.org/10.1109/TC.2009.119
http://dx.doi.org/10.1109/TC.2009.119
http://os.inf.tu-dresden.de/papers_ps/ospert2010_steinberg_boettcher_kauer.pdf
http://os.inf.tu-dresden.de/papers_ps/ospert2010_steinberg_boettcher_kauer.pdf
http://undocumented.rawol.com/
http://undocumented.rawol.com/

APPENDIX C. BIBLIOGRAPHY

[Sch12]

[SDM13)]

[SET+09]

[SFA]

[SHA95]

[Shi08]

[SK10a]

[SK10b]|

[SKB+07]

[SKLR11]

[SLQPO7]

[SPHHO6]

[Spi]

A. L. Schiipbach. Tackling OS Complexity with Declarative Techniques. PhD
thesis, ETH Ziirich, Switzerland, December 2012. 153

Intel. Intel 64 and IA-32 Architectures - Software Developer’s Manual
(SDM), March 2013. Order Number: 325462-046US. 59, 61, 98, 151

T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote, S. Hasegawa, T. Horie,
M. Hirano, K. Kourai, Y. Oyama, E. Kawai, K. Kono, S. Chiba, Y. Shinjo,
and K. Kato. BitVisor: A Thin Hypervisor for Enforcing I/O Device Secu-
rity. In VEE’09: 5th Conference on Virtual Fxecution Environments, pages
121-130, Washington DC, March 2009. 19, 28

Linux/ACPI Project - DSDT repository. http://acpi.sf.net/dsdt/. 156

National Institute of Standards and Technology. FIPS PUB 180-1: Secure
Hash Standard (SHA-1), April 1995. 131

H. Shimokawa. dcons (4) - dumb console device driver. The FreeBSD
Project, January 2008. 103

U. Steinberg and B. Kauer. NOVA: A Microhypervisor-Based Secure Vir-
tualization Architecture. In FuroSys’10: 5th European Conference on Com-
puter Systems, pages 209-222, Paris, April 2010. 16, 19, 29, 32, 72, 80, 82,
165, 170, 171, 175

U. Steinberg and B. Kauer. Towards a Scalable Multiprocessor User-level
Environment. In IIDS’10: Workshop on Isolation and Integration for De-
pendable Systems, Paris, April 2010. 36

L. Singaravelu, B. Kauer, A. Bé&ttcher, H. Hartig, C. Pu, G. Jung, and
C. Weinhold. BLAC: Enforcing Configurable Trust in Client-side Software
Stacks by Splitting Information Flow. Technical Report GIT-CERCS-07-11,
Georgia Tech, November 2007. 15, 164

J. Szefer, E. Keller, R. B. Lee, and J. Rexford. Eliminating the Hypervisor
Attack Surface for a More Secure Cloud. In CCS’11: 18th Conference on
Computer and Communications Security, pages 401-412, Chicago, October
2011. 26, 28

A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: A Tiny Hypervisor to
Provide Lifetime Kernel Code Integrity for Commodity OSes. In SOSP’07:
21st Symposium on Operating Systems Principles, pages 335-350, Steven-
son, October 2007. 19, 28

L. Singaravelu, C. Pu, H. Héartig, and C. Helmuth. Reducing TCB Com-
plexity for Security - Sensitive Applications: Three Case Studies. In Fu-
roSys’06: 1st Furopean Conference on Computer Systems, pages 161-174,
Leuven, April 2006. 15, 165

M. Spivey. OBC - Oxford Oberon-2 Compiler. http://spivey.oriel.ox.
ac.uk/corner/0xford_Oberon-2_compiler/. 133

198

http://www.barrelfish.org/schuepbach-declarative-os.pdf
http://download.intel.com/products/processor/manual/325462.pdf
http://download.intel.com/products/processor/manual/325462.pdf
http://dl.acm.org/citation.cfm?id=1508311
http://dl.acm.org/citation.cfm?id=1508311
http://acpi.sf.net/dsdt/
http://www.itl.nist.gov/fipspubs/fip180-1.htm
http://www.itl.nist.gov/fipspubs/fip180-1.htm
http://www.freebsd.org/cgi/man.cgi?query=dcons&sektion=4
http://dl.acm.org/citation.cfm?id=1755935
http://dl.acm.org/citation.cfm?id=1755935
http://eurosys2010-dev.sigops-france.fr/workshops/IIDS2010/iids2010_6.pdf
http://eurosys2010-dev.sigops-france.fr/workshops/IIDS2010/iids2010_6.pdf
http://os.inf.tu-dresden.de/papers_ps/git-cercs-07-11.pdf
http://os.inf.tu-dresden.de/papers_ps/git-cercs-07-11.pdf
http://dl.acm.org/citation.cfm?id=2046754
http://dl.acm.org/citation.cfm?id=2046754
http://dl.acm.org/citation.cfm?id=1294294
http://dl.acm.org/citation.cfm?id=1294294
http://dl.acm.org/citation.cfm?id=1217951
http://dl.acm.org/citation.cfm?id=1217951
http://spivey.oriel.ox.ac.uk/corner/Oxford_Oberon-2_compiler/
http://spivey.oriel.ox.ac.uk/corner/Oxford_Oberon-2_compiler/

[SPS09]

[SPS13]

[SS08]

[SSF99]

[Ste02]

[Ste05]

[Ste09]

[Stell]

[Stel3]

[Stel5]

[SVLO1]

[SVMO5]

[SYS13]

[Szo05]

[Tarl0]

[TBOJ
[THBOG|

[Tho72]

M. Sand, S. Potyra, and V. Sieh. Deterministic High-Speed Simulation of
Complex Systems Including Fault-Injection. In DSN’09: 39th International
Conference on Dependable Systems and Networks, pages 211-216, Estoril,
June 2009. 26, 43

R. M. Stallman, R. Pesch, and S. Shebs. Debugging with GDB: the GNU
Source-Level Debugger. GNU Press, May 2013. ISBN: 978-0983159230. 90

M. Strasser and H. Stamer. A Software-Based Trusted Platform Module
Emulator. In Trust’08: 1st Conference on Trusted Computing and Trust in
Information Technologies, pages 33—47, Villach, March 2008. 68, 150

J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: A Fast Capability
System. In SOSP’99: 17th Symposium on Operating Systems Principles,
pages 170-185, Charleston, December 1999. 30

U. Steinberg. Fiasco u-Kernel User-Mode Port. Study thesis, TU Dresden,
Germany, December 2002. 43

M. Steil. 17 Mistakes Microsoft Made in the Xbox Security System. In
220C3: 22nd Chaos Computing Congress, Berlin, December 2005. 147, 148

J. Stecklina. Remote Debugging via FireWire. Master’s thesis, TU Dresden,
Germany, April 2009. 87, 88, 91, 104, 105, 106, 143, 174

U. Steinberg. NOVA Microhypervisor - Interface Specification. TU Dresden,
October 2011. 16, 20, 30

U. Steinberg. Pulsar PXE Loader - Version 0.5. http://hypervisor.org/
pulsar/, June 2013. 143

U. Steinberg. NOVA: A Microhypervisor for Secure Virtualization. PhD
thesis, TU Dresden, Germany, est. 2015. Work in Progress. 16, 20, 30

J. Sugerman, G. Venkitachalam, and B.-H. Lim. Virtualizing I/O Devices
on VMware Workstation’s Hosted Virtual Machine Monitor. In USENIX’01:
USENIX Annual Technical Conference, pages 1-14, Boston, June 2001. 24

AMD. Secure Virtual Machine Architecture - Reference Manual - Revi-
sion 3.01, May 2005. 23, 30, 151, 178

The Syslinux Project - Version 6.02. http://www.syslinux.org, October
2013. 139, 173

P. Szor. The Art of Computer Virus Research and Defense. Pearson Edu-
cation, February 2005. ISBN: 978-0321304544. 147

C. Tarnovsky. Hacking the Smartcard Chip. In BlackHat DC, Washington
DC, January 2010. 151

Trusted Boot (TBOOT). http://tboot.sf.net. 149, 150

A. S. Tanenbaum, J. N. Herder, and H. Bos. Can We Make Operating
Systems Reliable and Secure? Computer, 39:44-51, May 2006. 15

K. Thompson. User’s Reference to B, January 1972. 111, 115

199

http://dx.doi.org/10.1109/DSN.2009.5270335
http://dx.doi.org/10.1109/DSN.2009.5270335
https://sourceware.org/gdb/download/onlinedocs/gdb.pdf.gz
https://sourceware.org/gdb/download/onlinedocs/gdb.pdf.gz
http://dx.doi.org/10.1007/978-3-540-68979-9_3
http://dx.doi.org/10.1007/978-3-540-68979-9_3
http://dl.acm.org/citation.cfm?id=319163
http://dl.acm.org/citation.cfm?id=319163
http://os.inf.tu-dresden.de/papers_ps/steinberg-beleg.pdf
http://events.ccc.de/congress/2005/fahrplan/attachments/591-paper_xbox.pdf
http://os.inf.tu-dresden.de/papers_ps/jstecklina-diplom.pdf
https://github.com/IntelLabs/NOVA/raw/master/doc/specification.pdf
http://hypervisor.org/pulsar/
http://hypervisor.org/pulsar/
http://os.inf.tu-dresden.de/papers_ps/steinberg_phd.pdf
http://www.vmware.com/pdf/usenix_io_devices.pdf
http://www.vmware.com/pdf/usenix_io_devices.pdf
http://www.mimuw.edu.pl/~vincent/lecture6/sources/amd-pacifica-specification.pdf
http://www.mimuw.edu.pl/~vincent/lecture6/sources/amd-pacifica-specification.pdf
http://www.syslinux.org
https://www.blackhat.com/presentations/bh-dc-10/Tarnovsky_Chris/BlackHat-DC-2010-Tarnovsky-DASP-slides.pdf
http://tboot.sf.net
http://dx.doi.org/10.1109/MC.2006.156
http://dx.doi.org/10.1109/MC.2006.156
http://cm.bell-labs.com/cm/cs/who/dmr/kbman.html

APPENDIX C. BIBLIOGRAPHY

[Tho84]

[Tho90]

[TKR*12]

[UNR*05]

[VCI+13]

[VMQ*10]

[VMw11]

[Vog08]

[Wal75]

[Wal02]

[Wat08]

[WD12]

[Weil4]

[Wel00]

K. Thompson. Reflections on Trusting Trust. Communications of the ACM,
27(8):761-763, August 1984. 16, 109

K. Thompson. A New C Compiler. In UNIX — The Legend Evolves: Summer
1990 UKUUG Conference, pages 41-51, London, July 1990. 116, 174

R. Tartler, A. Kurmus, A. Ruprecht, B. Heinloth, V. Rothberg,
D. Dorneanu, R. Kapitza, W. Schroder-Preikschat, and D. Lohmann. Au-
tomatic OS kernel TCB Reduction by Leveraging Compile-Time Configura-
bility. In HotDep’12: Workshop on Hot Topics in System Dependability,
Hollywood, October 2012. 165

R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. M. Martins, A. V.
Anderson, S. M. Bennett, A. Kagi, F. H. Leung, and L. Smith. Intel Vir-
tualization Technology. Computer, 38(5):48-56, May 2005. 23, 30, 151,
178

A. Vasudevan, S. Chaki, L. Jia, J. M. McCune, J. Newsome, and A. Datta.
Design, Implementation and Verification of an eXtensible and Modular Hy-
pervisor Framework. In S&P’13: 8/th Symposium on Security and Privacy,
pages 430444, San Francisco, May 2013. 150

A. Vasudevan, J. M. McCune, N. Qu, L. Van Doorn, and A. Perrig. Re-
quirements for an Integrity-Protected Hypervisor on the x86 Hardware Vir-
tualized Architecture. In Trust’10: 3rd Conference on Trusted Computing
and Trust in Information Technologies, pages 141-165, Berlin, June 2010.
150

VMware. Timekeeping in VMware Virtual Machines, December 2011. 52

W. Vogels. Beyond Server Consolidation. ACM Queue, 6(1):20-26, January
2008. 19

E. J. Walton. The UCLA Security Kernel. Master’s thesis, UCLA, USA,
1975. 21

C. A. Waldspurger. Memory Resource Management in VMware ESX Server.
In OSDI’02: 5th Symposium on Operating Systems Design and Implemen-
tation, pages 181-194, Boston, December 2002. 24

J. Watson. VirtualBox: Bits and Bytes Masquerading as Machines. Linuz
Journal, 2008(166), February 2008. 25, 44

J. Winter and K. Dietrich. A Hijacker’s Guide to the LPC Bus. In Fu-
roPKI’11: 8th European Conference on Public Key Infrastructures, Services,
and Applications, pages 176-193, Leuven, September 2012. 151

C. Weinhold. Reducing Size and Complexity of the Security-Critical Code
Base of File Systems. PhD thesis, TU Dresden, Germany, January 2014.
15, 164

N. Wells. BusyBox: A Swiss Army Knife for Linux. Linuz Journal, 2000(78),
October 2000. 170

200

http://dl.acm.org/citation.cfm?id=358210
http://doc.cat-v.org/bell_labs/new_c_compilers/new_c_compiler.pdf
https://www.usenix.org/system/files/conference/hotdep12/hotdep12-final11.pdf
https://www.usenix.org/system/files/conference/hotdep12/hotdep12-final11.pdf
https://www.usenix.org/system/files/conference/hotdep12/hotdep12-final11.pdf
http://dx.doi.org/10.1109/MC.2005.163
http://dx.doi.org/10.1109/MC.2005.163
http://dx.doi.org/10.1109/SP.2013.36
http://dx.doi.org/10.1109/SP.2013.36
http://dx.doi.org/10.1007/978-3-642-13869-0_10
http://dx.doi.org/10.1007/978-3-642-13869-0_10
http://dx.doi.org/10.1007/978-3-642-13869-0_10
http://www.vmware.com/files/pdf/techpaper/Timekeeping-In-VirtualMachines.pdf
http://dl.acm.org/citation.cfm?id=1348590
http://ftp.cs.ucla.edu/tech-report/198_-reports/800105.pdf
http://static.usenix.org/events/osdi02/tech/waldspurger/waldspurger.pdf
http://dl.acm.org/citation.cfm?id=1344210
http://dx.doi.org/10.1007/978-3-642-29804-2_12
http://os.inf.tu-dresden.de/papers_ps/weinhold-phd.pdf
http://os.inf.tu-dresden.de/papers_ps/weinhold-phd.pdf
http://dl.acm.org/citation.cfm?id=364422

[WG92]

[WHOS]

[Whe]

[Whe05]

[Wir95]

[Wir04]

[WJ10]

[Woj08]

[WR09a]

[WRO9b]

[WSG02]

[WSG10]

[WWGJ12]

[WWJ13]

[YHLR13]

N. Wirth and J. Gutknecht. Project Oberon - The Design of an Operat-
ing System and Compiler. Addison-Wesley, November 1992. ISBN: 978-
0201544282. 109, 116

C. Weinhold and H. Hértig. VPFS: Building a Virtual Private File Sys-
tem with a Small Trusted Computing Base. In FuroSys’08: 3rd European
Conference on Computer Systems, pages 81-93, Glasgow, March 2008. 27,
36

D. A. Wheeler. SLOCCount. http://www.dwheeler.com/sloccount/. 165,
181

D. A. Wheeler. Countering Trusting Trust through Diverse Double-
Compiling. In ACSAC’05: 21st Annual Computer Security Applications
Conference, pages 33-48, Tucson, December 2005. 110

N. Wirth. A Plea for Lean Software. Computer, 28(2):64-68, February 1995.
13, 14

N. Wirth. Programming in Oberon - A derivative of Programming in
Modula-2, October 2004. 116

Z. Wang and X. Jiang. HyperSafe: A Lightweight Approach to Provide
Lifetime Hypervisor Control-Flow Integrity. In S&P’10: 31th Symposium
on Security and Privacy, pages 380-395, Oakland, May 2010. 26, 28

R. Wojtczuk. Subverting the Xen Hypervisor. In BlackHat USA, Las Vegas,
August 2008. 19

R. Wojtczuk and J. Rutkowska. Attacking Intel Trusted Execution Tech-
nology. In BlackHat DC, Washington DC, February 2009. 151

R. Wojtczuk and J. Rutkowska. Attacking SMM memory via Intel CPU
cache poisoning. Inwvisible Things Lab, March 2009. 151

A. Whitaker, M. Shaw, and S. D. Gribble. Denali: Lightweight Virtual
Machines for Distributed and Networked Applications. Technical Report
02-02-01, University of Washington, February 2002. 22

J. Wang, A. Stavrou, and A. Ghosh. HyperCheck: A Hardware-Assisted
Integrity Monitor. In RAID’10: 13th Conference on Recent Advances in
Intrusion Detection, pages 158-177, Ottawa, September 2010. 26, 28

Z. Wang, C. Wu, M. Grace, and X. Jiang. Isolating Commodity Hosted
Hypervisors with HyperLock. In FuroSys’12: 7th European Conference on
Computer Systems, pages 127-140, Bern, April 2012. 26, 27, 72

C. Wu, Z. Wang, and X. Jiang. Taming Hosted Hypervisors with (Mostly)
Deprivileged Execution. In NDSS’13: 20th Network and Distributed System
Security Symposium, San Diego, February 2013. 26, 27, 72

R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar. Performance Evaluation of
Intel Transactional Synchronization Extensions for High-performance Com-
puting. In SC’13: Conference for High Performance Computing, Network-
ing, Storage and Analysis, Denver, November 2013. 64

201

http://www.inf.ethz.ch/personal/wirth/ProjectOberon/
http://www.inf.ethz.ch/personal/wirth/ProjectOberon/
http://dl.acm.org/citation.cfm?id=1352602
http://dl.acm.org/citation.cfm?id=1352602
http://www.dwheeler.com/sloccount/
http://www.acsa-admin.org/2005/papers/47.pdf
http://www.acsa-admin.org/2005/papers/47.pdf
http://dx.doi.org/10.1109/2.348001
http://www.ethoberon.ethz.ch/WirthPubl/ProgInOberon.pdf
http://www.ethoberon.ethz.ch/WirthPubl/ProgInOberon.pdf
http://dx.doi.org/10.1109/SP.2010.30
http://dx.doi.org/10.1109/SP.2010.30
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.167.5640
http://invisiblethingslab.com/resources/bh09dc/Attacking Intel TXT - paper.pdf
http://invisiblethingslab.com/resources/bh09dc/Attacking Intel TXT - paper.pdf
http://invisiblethingslab.com/resources/misc09/smm_cache_fun.pdf
http://invisiblethingslab.com/resources/misc09/smm_cache_fun.pdf
http://denali.cs.washington.edu/pubs/distpubs/papers/denali_usenix2002.pdf
http://denali.cs.washington.edu/pubs/distpubs/papers/denali_usenix2002.pdf
http://dx.doi.org/10.1007/978-3-642-15512-3_9
http://dx.doi.org/10.1007/978-3-642-15512-3_9
http://dl.acm.org/citation.cfm?id=2168850
http://dl.acm.org/citation.cfm?id=2168850
http://www4.ncsu.edu/~cwu10/files/NDSS13_DEHYPE.pdf
http://www4.ncsu.edu/~cwu10/files/NDSS13_DEHYPE.pdf
http://dl.acm.org/citation.cfm?id=2503232
http://dl.acm.org/citation.cfm?id=2503232
http://dl.acm.org/citation.cfm?id=2503232

APPENDIX C. BIBLIOGRAPHY

[You07]

[ZC10]

[ZCCZ11]

[ZL96]

M. T. Yourst. PTLsim: A Cycle Accurate Full System x86-64 Microarchitec-
tural Simulator. In ISPASS’07: International Symposium on Performance
Analysis of Systems and Software, pages 23—-34, San Jose, April 2007. 24

C. Zamfir and G. Candea. Execution Synthesis: a Technique for Automated
Software Debugging. In FuroSys’10: 5th Furopean Conference on Computer
Systems, pages 321-334, Paris, April 2010. 14

F. Zhang, J. Chen, H. Chen, and B. Zang. CloudVisor: Retrofitting Protec-
tion of Virtual Machines in Multi-tenant Cloud with Nested Virtualization.
In SOSP’11: 23rd Symposium on Operating Systems Principles, pages 203—
216, Cascais, October 2011. 28

A. Zeller and D. Liitkehaus. DDD - a free graphical front-end for UNIX
debuggers. ACM SIGPLAN Notices, 31(1):22-27, January 1996. 95

202

http://dx.doi.org/10.1109/ISPASS.2007.363733
http://dx.doi.org/10.1109/ISPASS.2007.363733
http://dl.acm.org/citation.cfm?id=1755946
http://dl.acm.org/citation.cfm?id=1755946
http://dl.acm.org/citation.cfm?id=2043576
http://dl.acm.org/citation.cfm?id=2043576
http://dl.acm.org/citation.cfm?id=249108
http://dl.acm.org/citation.cfm?id=249108

	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Approach
	1.2.1 Minimizing the OS
	1.2.2 Ensuring Compatibility
	1.2.3 Additional Layers

	1.3 Contributions

	2 A Smaller Virtualization Stack
	2.1 Background and Related Work
	2.1.1 A short History of Virtualization
	2.1.2 Virtualization Today
	2.1.3 Securing the Virtualization Layer
	2.1.4 Advanced Use Cases for Virtualization

	2.2 Design
	2.2.1 NOVA Architecture
	2.2.2 The NOVA Microhypervisor
	2.2.3 NUL: The NOVA User-Level Environment
	2.2.4 Vancouver: A Small VMM for NOVA

	2.3 Device Models
	2.3.1 Approaches to Reduce the TCB
	2.3.2 Reusing an Existing VMM
	2.3.3 Implementation
	2.3.4 Implementation Details
	2.3.5 Evaluation: Code Size and Density
	2.3.6 Future Work

	2.4 Instruction Emulator
	2.4.1 Background
	2.4.2 First Generation: Hand-written Tables
	2.4.3 Automating the Knowledge Extraction
	2.4.4 Current Generation: Reuse the Assembler
	2.4.5 Summary and Future Work

	2.5 Virtual BIOS
	2.5.1 Design
	2.5.2 Implementation
	2.5.3 Enabling Emulators
	2.5.4 Summary

	2.6 Performance Evaluation
	2.6.1 Setting up the Benchmark
	2.6.2 Results
	2.6.3 Measurement Error
	2.6.4 Detailing the Overhead
	2.6.5 Performance Outlook

	2.7 Conclusions
	2.7.1 Size Outlook

	3 TCB-aware Debugging
	3.1 Requirements
	3.1.1 Virtual Machines and Emulators
	3.1.2 On-target versus Remote Debugger
	3.1.3 Tracing and Interactive Debugging
	3.1.4 Special Requirements for NOVA

	3.2 The Vertical Debugger VDB
	3.2.1 Reusing GDB?
	3.2.2 Design
	3.2.3 Implementation

	3.3 Debugging without a Target Driver
	3.3.1 Choosing the Hardware
	3.3.2 Remote Access Without Runtime Code on the Target
	3.3.3 Surviving a Bus-Reset
	3.3.4 Implementation
	3.3.5 Firewire Performance
	3.3.6 Related and Future Work

	3.4 Minimizing the Debug Stub
	3.4.1 Design of a Halt and Resume Stub
	3.4.2 Debugging a NOVA system

	3.5 Summary

	4 Simplifying the Compiler
	4.1 Design
	4.1.1 The Syntax
	4.1.2 Variables and Constants
	4.1.3 Operators, Functions and Control Structures
	4.1.4 Discussion

	4.2 Implementation
	4.2.1 Implementation Language
	4.2.2 Let Python Parse
	4.2.3 Compiling to an Intermediate Representation
	4.2.4 Optimizing the Compiler Output
	4.2.5 Generating Machine Code
	4.2.6 Linking the Binary
	4.2.7 Implementing the Standard Library
	4.2.8 Summary

	4.3 Evaluation
	4.3.1 The Influence of the Optimizer
	4.3.2 Exception Handling
	4.3.3 System Calls: dd
	4.3.4 Simple Calculation: wc
	4.3.5 Complex Calculation: gunzip
	4.3.6 Number Crunching: sha1sum
	4.3.7 Summary

	4.4 Conclusions and Future Work

	5 Shrinking the Boot Stack
	5.1 Background: Booting an OS on a PC
	5.1.1 The Firmware
	5.1.2 The Bootloader
	5.1.3 The OS

	5.2 The Bootloader
	5.2.1 Features
	5.2.2 Design
	5.2.3 Implementation
	5.2.4 Evaluation
	5.2.5 Summary

	5.3 Trusted Computing
	5.3.1 Secure Boot
	5.3.2 Trusted Computing with a Static Root of Trust for Measurement
	5.3.3 Trusted Computing with a Dynamic RTM
	5.3.4 Security Challenges
	5.3.5 Summary

	5.4 ATARE: Parsing ACPI Tables with Regular Expressions
	5.4.1 Background
	5.4.2 Pattern Matching on AML
	5.4.3 The Search Algorithm
	5.4.4 Evaluation
	5.4.5 Summary

	5.5 Conclusions

	6 Conclusions
	6.1 Techniques
	6.2 Lessons Learned
	6.3 Future Research Directions

	A TCB of Current Systems
	A.1 Estimating Lines of Code from the Binary
	A.2 Virtualization
	A.2.1 Hypervisor
	A.2.2 VMM

	A.3 Support OS
	A.3.1 Evolution of an OS
	A.3.2 Minimal Linux
	A.3.3 Linux Distribution
	A.3.4 Windows

	A.4 Boot and Toolchain
	A.4.1 PC Firmware
	A.4.2 Bootloader
	A.4.3 Debugger
	A.4.4 Compiler

	A.5 Summary

	B Glossary
	C Bibliography

