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Abstract—Real-time applications require predictable and often
low-latency response times when reacting to external events. Real-
time operating systems allow applications to meet such timing re-
quirements, but they offer less functionality and fewer APIs than
a general-purpose operating system such as Linux. In this work,
we present a virtualization layer that enables predictable, low-
latency interrupt handling for Linux-based real-time applications,
even if Linux itself or unrelated applications cause heavy load.
The benefit of our approach is that developers can draw from the
rich feature set and powerful infrastructure provided by Linux,
but their applications can meet timing requirements as if they
ran directly on a real-time operating system. Our benchmarks
show a reduction of worst-case interrupt response times by more
than two orders of magnitude compared to standard Linux, and
by a factor of 3 on average.

I. INTRODUCTION

Many workloads, like for example those in control systems,
require both predictable execution times as well as low-
latency response to external events. To satisfy these demands,
the designers of such systems rely on real-time operating
systems (RTOS). Compared to general purpose operating
systems (GPOS) such as Linux, classical RTOSes are much
simpler and they often run just a single application on dedicated
hardware. This no-frills approach to system design provides
timing-critical applications with a predictable execution envi-
ronment and it can guarantee consistently low latency for event
processing. However, it also means that RTOSes offer a smaller
feature set, unfamiliar APIs, and even different development
tools than commonly used general purpose systems.

If a use case requires both real-time processing and the
rich functionality of a GPOS, one typically couples two
different computing systems, for example, via a common
memory. Alternatively, system designers can use a multi-core
system, where each of the two OSes runs on a different core.
In the multi-core setup, the two systems are not protected
from each other. Thus, a malfunctioning GPOS, or one
that has been compromised by an attacker, can negatively
influence the RTOS. A solution to this problem is to run the
real-time and the general-purpose software stacks in virtual
machines (VMs), with a hypervisor providing shared memory
for communication between the two isolated domains. However,
in all the architectures described above, the RTOS is separate
from the general-purpose system. An application scenario that
requires services of both OSes must be explicitly developed

as a split application without readily available mechanisms to
let the two components cooperate.

In this work, we aim to combine both worlds by tightly
integrating a real-time capable microkernel with a virtualized
Linux kernel running on top. In this system architecture, we
start real-time applications as ordinary Linux processes, but
let their threads execute directly on the microkernel. Spatial
isolation is still provided by Linux, but the microkernel can
enforce temporal isolation even if Linux is heavily loaded
or stops. This way, these programs can execute under real-
time guarantees of the microkernel, while their non-real-time
parts can benefit from the feature-rich environment offered
by Linux and the huge amount of software available for it.
This architecture builds on previous work on decoupling the
execution of user threads from the Linux kernel scheduler [1],
[2] in order to eliminate execution-time jitter caused by Linux
housekeeping tasks and concurrently running applications. In
this paper, we extend this mechanism to support interrupt
handling in user-level threads, thereby enabling predictable
and low-latency reaction to external events in Linux-based
real-time programs. Using two different hardware architectures,
we evaluate interrupt latency for both standard Linux on bare-
metal hardware and our virtualization-based architecture, where
events are handled by threads running decoupled from Linux.

The remainder of the paper describes the decoupling mecha-
nism and how to use both Linux and L4Re system calls. It then
evaluates interrupt latency characteristics, before we conclude.

II. SYSTEM ARCHITECTURE

A detailed description of the decoupling mechanism can
be found in [2]. In this paper, we only summarize how the
basic building blocks of our system architecture work together
and how they enable noise-free and predictable execution of
Linux-based programs. We then describe how we extended
the decoupled execution model to support predictable and
low-latency interrupt service routines in a Linux user-space
program.

A. Decoupling

The decoupling mechanism is based on the L4Re microkernel
system [3] and L4Linux [4], a paravirtualized Linux kernel that
runs on top of it. The L4Re microkernel can run unmodified
OS kernels in hardware-supported virtual machines. However,
L4Linux has been specifically adapted to run on top of L4Re



as an unprivileged user-level application. A key property of
this tight integration is that L4Linux reuses address-space
and threading APIs of the underlying L4Re microkernel to
implement Linux processes and threads. In our previous work
on decoupled thread execution, we modified L4Linux such that
the execution state of a Linux user thread can transparently
migrate to a dedicated L4Re thread that is controlled directly
by the L4Re microkernel. Such a decoupled thread is running
in the same address space as the Linux process, but it is not
subject to scheduling decisions of L4Linux. Since a Linux
process’ address space is ultimately controlled by the L4Re
microkernel, it can exist on all cores of the system, not just
those known to L4Linux. Thus, by moving a decoupled thread
to a core on which L4Linux does not run, we drastically reduce
any disturbance and noise that Linux can cause due to in-kernel
housekeeping tasks or other Linux processes. Figure 1 shows
an architectural overview of this decoupling architecture.
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Fig. 1. Decoupling architecture, with Linux thread context inactive in the
L4Linux kernel, while application code is executed as an L4Re thread on a
dedicated core under control of the L4Re microkernel.

Decoupled threads can still do Linux system calls. The L4Re
microkernel will forward these "non-L4Re" system calls to
L4Linux, which temporarily migrates the decoupled thread’s
execution state back to the original Linux thread context,
handles the call, and then resumes execution in the decoupled
thread. In this work we extend the decoupling mechanism to
also allow native L4Re system calls, such that a decoupled
thread can implement an interrupt service routine (ISR) that
will be invoked directly by the L4Re microkernel. The expected
benefit is that external events signaled by the interrupt can be
handled with consistently low latency.

B. Kernel Objects, Capabilities, and I/O Resources

L4Re is a capability-based system, where the microkernel
exposes entities such as address spaces, threads, or facilities
for inter-process communication (IPC) through an object-like
interface. An L4Re application can make use of a kernel object
only if it possesses a capability to name it. This is the case,
if the kernel-protected capability table that is associated with
each address space contains a pointer to the kernel object in
question. The application can then invoke the object by doing
a system call that specifies the corresponding index into the
capability table. Additional parameters passed to the invocation

system call indicate the type of operation to perform on the
object.

The L4Re microkernel also provides abstractions for hard-
ware devices. Specifically, it exposes hardware interrupts
through an Irq object. Thus, any L4Re application that
possesses a capability to an Irq object can implement an
interrupt service routine (ISR) in user-space. To do so, it needs
to attach a handler thread to the Irq, which can then wait
on it for incoming interrupts. In all but the simplest cases, the
application also must be able to talk to the hardware device
that generated the interrupt. This access is typically provided
by mapping the I/O registers of the device into the application’s
address space.

C. Passing Capabilities and I/O Resources

Since a decoupled thread is in fact a native L4Re thread that
is independent of the L4Linux scheduler, we can implement
an ISR in a Linux program using the same L4Re microkernel
primitives: The decoupled thread attaches to and then waits on
an Irq object directly, thereby achieving much lower latency
and more predictable response times than Linux can guarantee.
The problem to solve is how the decoupled thread of the Linux
program gets access to the resources it needs for that: the
Irq capability and the I/O memory pages of the device. Both
resources are already held by the L4Linux kernel, which is
also responsible for managing the virtual address space of all
Linux user processes. In L4Re, two cooperating programs can
voluntarily transfer object capabilities and memory mappings,
if they already have established an IPC channel through an
Ipc_gate. Unfortunately, a Linux user program is not aware
of running on top of L4Re and the L4Linux kernel. It can
therefore receive neither the Irq capability nor the I/O memory
mappings through this channel. However, as the creator of
all Linux processes, L4Linux possesses a capability to the
respective address-space objects (called Task). By invoking the
map operation on a process’s Task object, the paravirtualized
Linux kernel can map the I/O memory pages of a device
directly to the user program without its cooperation. The map
operation also allows L4Linux to pass capabilities to Linux
programs and is therefore a suitable mechanism to provide
them the resources needed to implement L4Re-supported ISRs.

D. Making Linux Programs Aware of L4Re

In practice, though, the L4Linux kernel still needs to know
which Irq and I/O resources to pass to which program (if
any). This decision should be made by the system designer or
the application developer who implements the ISR. A simple
and ad-hoc solution is to have L4Linux ioremap the device
register regions and then let the Linux user program request
this I/O memory by mmap’ing those parts of /dev/mem that
contain them. However, this approach is not desirable from
a security point of view. A minimally invasive and – from a
Linux application developer’s perspective – idiomatic way to
request I/O memory is to use the POSIX mmap system call
on a file descriptor pointing to a device node. For example, an
already existing Linux device driver could be extended to hand



out its I/O memory regions via mmap. During this operation,
it could also map the Irq capability to the user program. New
device drivers should be written with user-space I/O in mind
from the start; investigating how our approach can be combined
with Linux UIO framework [5] is subject to future work.

In our prototype, we use a rather simple device for evaluation:
the periodic timer of the system. As the handling of the timer
event itself is done by the microkernel, we rather only need to
block in the microkernel using an IPC operation. Still we need
to read out the counter values of the timer and thus need to have
those accessible to user-level code. Luckily this is easy in our
prototype, as the timer’s counters can be read from user-level
directly when configured this way (TSC on x86, counter values
on ARM). On x86 we additionally need to know the compare
value of the timer which we can read with a specifically crafted
interface to read this particular MSR value. When waiting for
device interrupts, the code is basically similar, however we use
the IRQ capability to block on incoming interrupts.

III. EVALUATION

The main objective of this work is to assess the potential of
the decoupling approach for low-latency and predictable event
handling in a Linux-based user-space program. We therefore
focus our evaluation on the latency of waking a thread that
has been waiting for an incoming hardware interrupt; further
interaction with the device that caused the interrupt (e.g., to
obtain sensor readings) is not considered in this paper.

A. Hardware Setup and Interrupt Source

We perform our experiments on two different platforms: a
desktop system with an Intel CPU (quad-core Core i7-4770,
clocked at 2,993 MHz) and an embedded system based on
the ARM architecture (NXP Layerscape LS1021A-TWR board
with dual-core Cortex-A7, clocked at 1,200 MHz). Both systems
operate in 32-bit mode.

On the x86 system, we considered using the High Precision
Event Timer (HPET), because it is an independent device and it
is known when its interrupt will fire. However, it turned out that
the HPET’s interrupt latency is significantly higher than for the
local APIC (approximately 5µs vs 2µs, respectively). Based
on this insight, we decided not to implement an HPET driver
for L4Re that supports blocking on an Irq object. Instead
we chose to use the local APIC, which is already supported
as the system timer in both Linux and the L4Re microkernel.
The situation is similar on the ARM platform, where both
systems use the generic timer of the CPU. Since the system
timer’s interrupt also triggers wakeup of application threads
that requested to sleep until some timeout, we have a simple
and portable way to measure interrupt latency across OS and
hardware platforms: We just let the benchmark application
sleep until an absolute timeout that can be compared against
the time stamp counter of the CPU. A downside of using the
system timer for our experiments is that the kernel performs
some additional work before waking up the user-level thread. It
needs to program the next timeout, and remove all threads with
expired timeouts (just one in our case) from a queue. However,

the overhead to perform this small amount of in-kernel work
is negligible both in Linux and the L4Re microkernel.

B. Benchmark Configuration
We compare latencies for waking a user-level thread on bare-

metal Linux and on L4Linux, where the decoupled thread of
the Linux program blocks in the underlying L4Re microkernel.
On both hardware platforms, we run a version of L4Linux
that is based on Linux 4.10. All bare-metal Linux runs on the
x86 system use this version, too. On ARM, we had to use a
vendor-provided Linux kernel based on Linux 4.1 for reasons
explained in Section III-E. All Linux kernels were configured
with high-resolution-timers and PREEMPT.

We measure interrupt latency for a simulated real-time ISR.
On native Linux, we use cyclictest from the rt-tests suite [6]
to evaluate the timer latency. Cyclictest continuously measures
the wakeup latency after periodic timeouts. It records measured
latencies and summarizes them in a histogram. On L4Linux
with decoupled threads, we implemented a benchmark similar
to cyclictest, which uses an L4Re mechanism to sleep until
the timeout hits.

L4Re Microkernel L4Re MicrokernelLinux

L Linux4 L Linux4

App Application

Appli-
cation

Core 0 Core 0 Core 0 Core 1Core 1Core 1

Fig. 2. Thread handling in our benchmark configurations: The cyclictest thread
is either scheduled and woken by Linux running on bare-metal hardware (left),
it is a decoupled thread that share a core with L4Linux, or it is placed on a
dedicated core that L4Linux does cannot use (right).

All experiments are done both with and without a background
load in Linux. As a load generator, we use hackbench from
the rt-tests suite. Hackbench is a scheduler stress test, where
process or thread pairs send data back and forth between
them. Unless stated otherwise, we configured hackbench to
exchange 10,000 messages of size 10,000 bytes through
pipes (hackbench -s 10000 -l 10000). It thus creates
a high system load, which ideally should not increase response
time of the real-time work triggered by the interrupt. For
L4Linux, we also vary the placement of the decoupled thread
that runs the benchmark. We measure latencies when it is placed
on a dedicated core, as well as when it shares a core with
the L4Linux kernel. Note that in the latter case, the decoupled
thread has a static priority that is higher than for the virtual CPU
threads of L4Linux. See Figure 2 for all possible placement
and scheduling options (background load not shown for better
readability). In total, there are 12 different configurations, which
we evaluate in the following sections.

C. x86 – Bare-metal Linux
Figure 3 presents the results of the bare-metal Linux runs

on the x86 machine with the Intel CPU. The x-axis shows the
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Fig. 3. Cyclictest results on bare-metal Linux with and without load generated
by hackbench. The worst-case latencies are 6µs without load and 304µs with
load.

latency and the y-axis indicates the number of occurrences of
each latency. Cyclictest latencies without background load are
shown in blue, those with hackbench running in parallel are red.
Hardly visible in the diagram due to intentionally wide scaling
of the x-axis, the maximum latency without background load is
just about 6µs, with most of the measurements clustered around
2µs. With hackbench in the background, the maximum latency
increases dramatically by more than two orders of magnitude
to 304µs. The majority of latency values is between 15µs and
22µs, which is about three times as high as on the unloaded
system.

D. x86 – L4Linux with Decoupling

When we run the benchmark on L4Linux, with the decoupling
mechanism we described in Section II-A, we achieve much
lower latencies and significantly less variance. Figure 4
visualizes the results when the decoupled thread is placed on
the dedicated core of the quad-core CPU. The measurements for
running the decoupled thread on the same core as L4Linux are
shown in Figure 5. In this case it is crucial that the decoupled
thread runs at a higher priority than L4Linux under L4Re’s
fixed-priority scheduler. We changed the scale of the x-axis to
just 3µs for better readability.
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Fig. 4. Cyclictest results on x86 running L4Linux with and without load
generated by hackbench. The decoupled thread runs on a different core. The
worst-case latencies are 1.1µs without load and 2.4µs with load.
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Fig. 5. Same setup as shown in Figure 4 however the decoupled thread runs
on the same core as L4Linux. The worst-case latencies are 1.2µs without load
and 2.5µs with load.

For both the dedicated-core and the shared-core config-
urations, we observe on an idle system a maximum timer
latency of slightly more than 1µs. The majority of observed
latencies cluster around 0.7µs, which is about a third of what
we measure with bare-metal Linux. When loading the system
with hackbench as described previously, the maximum timer
latency increases to approximately 2.4µs, irrespective of the
placement of the decoupled benchmark thread. The majority
of latencies are at around 1µs on the dedicated core, and
about 1.7µs when the L4Re-aware cyclictest replacement (see
Section III-B) shares a core with L4Linux.

The results demonstrate that our decoupling approach is
highly effective for reducing average and tail latencies. They
also indicate that the L4Re microkernel has a more efficient
interrupt-to-wakeup path than Linux. As for the increased
latencies under load, we suspect that they are the result of
cache and TLB misses. The difference is more pronounced in
the shared-core configuration. This could be attenuated in a
dual-socket system, where no caches are shared [1]. However,
this would also significantly increase the cost of the system.

E. ARM – Bare-Metal Linux

Since our decoupling mechanism also works for the ARM
port of L4Linux, we repeated the experiments on that platform.
We chose an NXP Layerscape 1021A-TWR system with a dual-
core ARM Cortex-A7 CPU and attempted to build a vanilla
Linux 4.10 kernel for it; Linux 4.10 is the version we used
on x86 and also the one on which the latest L4Linux with
decoupling support is based on. Unfortunately, we did not
succeed in finding a kernel configuration where the generic
ARM timer of the CPU could operate in high resolution
mode; instead it only supported a resolution of 10 ms, which
is prohibitively inaccurate for our experiments. We therefore
installed the vendor-supplied kernel, which did not have this
problem. This kernel from NXP is based on Linux version 4.1
and has the real-time patch-set applied applied to it (“Linux-
rt”); our ARM build of L4Linux is still based on Linux 4.10.
Using different kernel version is acceptable in our benchmark
setup, because threads decoupled from L4Linux run on the
L4Re microkernel, which is completely different anyway.



The next problem we encountered was that cyclictest reported
incorrect results due to a bug: The load generated by hackbench
caused response time jitter that was so high that an integer
overflow occurred in cyclictest’s measurement logic. We could
prevent the bug from triggering by changing the message-
size parameter of hackbench (-s 100 instead of -s 10000).
However, even with the reduced load, we can see from Figure 6
that bare-metal Linux suffers from extremely high interrupt
latencies on this ARM platform. Cyclictest reports latencies of
up to 147ms, which is why we have to use logarithmic scale
for the x-axis.

F. ARM – L4Linux with Decoupling

To evaluate L4Linux with decoupled threads on the ARM
platform, we reverted the hackbench parameters to those we
used for the x86 runs. The results are shown in Figures 7 and 8
for dedicated-core and and shared-core placement, respectively.
We observe results that are a vastly different from the bare-
metal configuration on the NXP-provided Linux kernel. When
the decoupled thread with our L4Re-aware version of cyclictest
runs on its own core, we measure a maximum latency of 5.1µs
for the wakeup. When it shares a core with the L4Linux kernel,
the highest latency we observed is 31µs. This increase over
the dedicated-core configuration is relatively larger than on
the Intel platform. We believe that this is due to shared-cache
usage, especially of the L1 caches.

G. Summary of Evaluation Results

The evaluation of our decoupling mechanism with regard
to interrupt latency shows that our approach of putting a fully
independent scheduler in charge of time-critical ISRs is highly
beneficial. By decoupling user threads from Linux’s scheduling
regime, we can significantly improve their response time to
external events. While the difference on x86 is about two orders
of magnitude, on the ARM platform, the difference can be
even larger with over four orders of magnitude.

IV. RELATED WORK

We are not the first who aim to combine the properties of
an RTOS with the rich feature set of commodity, off-the-shelf
general-purpose environments. There is related work in both the
real-time community and in the context of high-performance
computing. In principle, there are two approaches to improve
the responsiveness of user programs. Either one enhances the
operating system such that its interrupt latency improves, or
latency-sensitive programs are run next to the general-purpose
operating system, with only a loose coupling for data exchange
between the two worlds.

An example for the first approach is the real-time Linux
project. Most of their enhancements have been merged into
the mainline Linux kernel [7]. Other work aims to separate
latency-constraint programs from the rest of the general-purpose
operating system, for example, Xenomai [8] and RTAI [9]. Both
follow a co-location approach, where they hook into the low-
level interrupt handling to branch execution away to low-latency
handling routines. There has also been work to evaluate the use

of additional protection through address spaces for real-time
work [10].

More recent work focuses on using virtualization techniques
to improve isolation. For example, Xen-RT [11] added real-
time schedulers to the Xen hypervisor [12]. The ability of
hypervisors to provide temporal as well as spatial isolation
is also used to separate execution of the real-time and non-
real-time workloads. Examples are Jailhouse [13], which uses
virtualization technology to assign different cores in the system
to different operating systems. Another example is Xtratum [14]
and there are also commercial systems such as Greenhill’s
Integrity. These approaches cannot provide developers with a
tightly integrated system architecture as we do with L4Linux
and decoupling.

The high-performance community also aims at running
their applications with predictable performance such that,
for example, bulk-synchronous programs do have to wait
unnecessarily on global barriers [15]. This becomes increasingly
important as the core-count increases on the path to Exascale
systems. IBM’s BlueGene systems are a prime example of
noise-free execution. All nodes of the system are controlled by
a compute-node kernel (CNK) that only runs one application.
They suffer from no interference as there are no other activities
on the nodes. However, BlueGene is a proprietary system
that is no longer available anymore. Other projects such as
McKernel/IHK [16] and mOS [17] aim to build systems with
similar properties, but on standard hardware with x86 and ARM
processors. They inject so-called light-weight kernels into Linux
that take control of most of the cores and memory. We have
also been pursuing this approach in the HPC context [1] with
L4re and L4Linux.

V. CONCLUSION

In this work, we have combined the microkernel-based
L4Re system and L4Linux, a paravirtualized variant of the
Linux kernel, into an operating system that enables low-latency
interrupt handling from Linux user-space applications. The key
property of our system is that it decouples timing-sensitive
threads of a process from the Linux scheduler by executing
their code in a separate thread directly on the L4Re microkernel.
Application developers can use all features and APIs of Linux
for non-real-time work as needed. With the extensions to
decoupling that we described in this work, they can also
write interrupt service routines that register directly with the
microkernel in order to respond to external events with low
latency. The majority of the wakeup times we measured for
decoupled threads on L4Linux are at least 3 times shorter than
on bare- metal Linux. Maximum latencies are reduced by two
orders of magnitude and more when there is heavy system
load caused by other processes running in parallel.
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