
ATARE: ACPI Tables and Regular
Expressions

Bernhard Kauer

Institut für Systemarchitektur

TUD-FI09-09 August 2009

Technische Berichte
Technical Reports

ISSN 1430-211X

Fakultät Informatik

Technische Universität Dresden
Fakultät Informatik
D−01062 Dresden
Germany
URL: http://www.inf.tu−dresden.de/

ATARE: ACPI Tables and Regular Expressions

Bernhard Kauer
Technische Universität Dresden

Dresden, Germany
bk@vmmon.org

ABSTRACT
Operating system drivers often need platform specific knowl-
edge to work correctly. One example might be the routing
of the interrupt lines on todays PC platforms. The canon-
ical way to get these information is to rely on ACPI [1], a
standard for platform configuration and power management.

In OS our environment where power management is not an
issue and a minimal TCB is one of our goals, we are not will-
ing to provide a complete ACPI implementation. Neverthe-
less ACPI seems to be the only source for the configuration
of these platforms.

To bridge the different requirements we found an surpris-
ingly simple heuristic based on regular expressions that can
extract information from ACPI tables. Our experiments
show that our heuristic can provide the IRQ routing of the
platform in all of our test cases with a code size that is
approximately two orders of magnitude smaller than a full
ACPI interpreter.

1. INTRODUCTION
The ACPI machine language (AML) [1, 2] is a domain spe-
cific language for hardware device configuration and power
management. As AML is Turing complete and quite pow-
erful, evaluating ACPI tables written in AML is a complex
task.

In many cases only a fraction of the information available in
AML is actually needed. One example is the routing of PCI
interrupt lines [14] to interrupt controller (I/O-APIC [8])
pins, an information needed by drivers to get the right IRQ.
This platform specific knowledge is pretty much based on
the chipset as well as the board wiring. During boot-time
of a system or in an OS without power management, PCI
IRQ routing can be the only mandatory information that
needs to be extracted from the ACPI tables. Utilizing and
maintaining an AML interpreter for this task seems to be
disproportional for getting a single number per PCI device.

We therefore searched for alternatives and came up with a
radical new approach based on regular expressions that can
evaluate AML.

The paper is structured as follows: The next section we
describe other approaches to the IRQ routing problem. In
the third section we argue why we want to avoid an AML
interpreter. After that we explain how we came up with
pattern matching in AML and gives an heuristic to extract
the IRQ routing out of AML which is much simpler than a
full AML interpreter. In the fifth section we evaluate how
many cases we can cover with it and analyze the reasons
why it is successful. The last section concludes the paper
with further work.

2. HOW ARE IRQS ROUTED?
The simplest approach to get the IRQ routing of a PCI de-
vice is to read it from the PCI config-space. Unfortunately
this works only with the legacy PIC [7] mode. Using them
would give up most of the gains from the newer I/O APIC
architecture such as reduced IRQ sharing and fine-grained
IRQ routing to different processors [10]. Furthermore ac-
knowledging an IRQ can be quite slow on a PIC. Sticking
with the PIC mode is therefore not an option for us.

Message Signaled Interrupts (MSI) [3] are the latest alter-
native to interrupt controllers and dedicated IRQ lines. A
PCI device with MSI support can be programmed to directly
send messages containing an interrupt vector to the CPU.
With MSIs IRQ routing is not an issue anymore as any in-
terrupt vector can be directly specified. Unfortunately MSI
support is not available on many devices and even broken
on some platforms. Linux 2.6.27.4 for example disables MSI
in 24 cases [9]. MSIs will be the future, but an OS can not
solely rely on them today.

There are other sources for IRQ routing. One could for
example rely on the MP configuration table, as defined in
the Multi-Processor Specification [11]. It consists of a much
simpler format than AML but it is deprecated since the first
ACPI specification was published in 1999. Today PCs are
sometimes shipped without an MP table. Another hypothet-
ical option would be to build our own IRQ routing database
into the OS. As collecting these information for every moth-
erboard type is a tremendous task, this idea can be easily
dismissed.

Name LOC
Linux 2.6.27.4 drivers/acpi 50295

include/acpi 7325
FreeBSD head contrib/dev/acpica 44621

dev/acpica 12878
ACPICA 20080926 binary: 98.2k 73840

Figure 1: ACPI implementations: Lines of Code

In summary there is no good alternative to ACPI as the
authoritative source to get the IRQ routing of a platform.
Unfortunately the routing is not contained in static ACPI ta-
bles, such as the MADT, which are relatively easy to parse.
Instead it is embedded in AML byte-code of the System
Description Tables (DSDT and SSDTs). To get this infor-
mation an OS has to be able to (at least partially) evaluate
AML.

3. AVOIDING AN AML INTERPRETER
In the previous section we have shown that ACPI can not
be ignored and that evaluating AML is therefore mandatory.
In this section we argue that utilizing a fully featured AML
interpreter is not a good idea when AML provides only min-
imal information such as IRQ routing, which can be the case
during boot-time or in an OS without power management
support.

The current ACPI specification v3.0b [2] has more than 600
pages, defines 13 ACPI tables and references 19 externally
defined ACPI tables. It specifies AML (ACPI machine lan-
guage) as domain specific language for System Definition
Tables. Furthermore it contains a corresponding source lan-
guage (ASL), a hierarchical name space and dozens of AML
methods that needs to be provided from the platform ven-
dor. An OS evaluates these methods to get and set the
platform configuration and to perform power management
tasks.

Table 1 gives lines of code for major parts of the ACPI im-
plementations in Linux and FreeBSD. As both are based on
ACPICA, its size is also given as reference. Please note that
ACPICA also includes various tools such as an ASL com-
piler that are not strictly needed for an OS. When looking at
the numbers we can understand that the “Linux/ACPI sub-
system is large and complex” [4]. In summary more than
50000 lines are needed for a full ACPI implementation.

Interpreting AML has also some security implications. As
shown by Heasman [6] implementing a rootkit in AML is
possible. Sandboxing the AML interpreter could be one so-
lution to this problem. Windows for example blocks access
to some IO-ports [15], not for security but for availability
reasons. Secure Sandboxing of ACPI that does not exclude
to many platforms is a research challenge on its own.

We conclude that interpreting ACPI tables is a complex
problem, that leads to large code and can pose a security
threat. We therefore search for a simpler approach.

4. PATTERN MATCHING IN AML
To understand how we came up with using regular expres-
sions for pattern matching on AML and why it works, we

Method (_PRT, 0, NotSerialized)
{

If (GPIC)
{

Return (Package (0x01)
{

Package (0x04)
{

0x0014FFFF,
0x02,
0x00,
0x12

},
})

}
else

Return (Package (0x01)
{

Package (0x04)
{

0x0014FFFF,
0x02,
_SB.PCI0.LPC0.LNKC,
0x00

},
})

}

Figure 2: A _PRT method in ASL.

have to dig deeper into AML/ASL and how the IRQ routing
information is represented in it.

ACPI code is written in ASL (ACPI source language) and
later compiled to AML (ACPI machine language) a more
compact byte-code representation with the very same fea-
tures. So even if a compiler is used to convert ASL to AML
and a decompiler to convert it back there is a 1:1 correspon-
dence between these two languages.

ASL has many features: It knows named objects, methods
that could be called on them and control structures such
as if, while and return that are used to implement meth-
ods. It supports different types such as strings, variable
sized lists called packages and numbers. Different opera-
tions could be done on these types. Numbers for example
support the usual arithmetic and bit-operations on them. In
summary AML/ASL is a Turing-complete domain-specific
language specially tailored for platform configuration and
power management.

4.1 IRQ Routing
IRQ routing information is returned in ACPI by calling the
_PRT method of a PCI bridge. This returns a variable sized
package of IRQ mappings for devices on its bus. An IRQ
mapping is itself a four element package with the following
fields:

1. PCI device address

2. IRQ pin (0 - #IRQA, 1 - #IRQB,. . .)

3. a name of a PCI IRQ router

4. a GSI (global system interrupt) number if the third
field is zero

NAMESEG = "[A-Z_][A-Z_0-9]{3}"
NAMERE = "((\\\\|\\^*)(("+NAMESEG + ")

|(\x2e" + NAMESEG + NAMESEG + ")
|(\x2f.("+NAMESEG+")*)))"

PKGLEN = "(([\x00-\x3f])
|([\x40-\x7f].)
|([\x80-\xbf]..)
|([\xc0-\xff]...))"

DATA = "([\x00\x01\xff]
|([\x0c]....)
|([\x0b]..)
|([\x0a].))"

DEVICES = "\\[\x82"+ PKGLEN + NAMERE
METHODS = "[\x14]" + PKGLEN + NAMERE
SCOPES = "[\x10]" + PKGLEN + NAMERE
IRQMAP = "[\x12]" + PKGLEN +

"[\x04]("+ DATA + "{4})"
DEFNAME = "[\x08]" + NAMERE +

"(" + DATA + "|([\x12]" + PKGLEN + "))"

Figure 3: Regular Expressions for AML

Figure 2 shows a slightly modified real-world _PRT method.
Depending on the value of the GPIC variable, which distin-
guish in this example whether the OS runs in I/O-APIC (if)
or PIC mode (else), it returns different IRQ mappings. The
difference between both cases is obvious: in the I/O-APIC
case the IRQ pin is routed to GSI 0x12 whereas in the PIC
case it is routed to an IRQ router named LNKC. As we are
interested to which input pin of an I/O APIC an IRQ line of
the PCI device is connected, we can ignore the second case.

4.2 A Pattern
There is a pattern in pretty much all DSDTs that we can
also see here: The IRQ mappings for the I/O APIC do not
facilitate an IRQ router instead fixed GSI values are hard
coded in the ASL. It should therefore be possible to find a
similar pattern in AML.

Our first approach to find this pattern in AML was unsuc-
cessful. To search the _PRT method in the byte-code we tried
to exactly parse the AML elements and skip all the unneeded
ones. Unfortunately there is not a clear hierarchy between
different element types. It is possible that a calculation of
some value of a variable is directly followed by a definition
of a new method. To find the beginning of the method we
had to be able to skip pretty much every different element
of AML. This turned to be impractical, so we had to throw
away the idea of an accurate AML parsing.

4.3 A Sparsely Encoding
A deeper look in the AML definition revealed that distinct
binary ranges where often used for different elements. Fig-
ure 3 lists all the regular expressions in Python RE-syntax
[12] that we use. The first four ones are just shortcuts for
definition reasons, the last five regular expressions in this
list are the ones used to do the search.

Name segments for example are always four characters long
and start with an uppercase letter or an underscore. The last
three chars can also contain digits. Another example would
be the data that is found in the four element IRQ mapping
packages we are interested in. It consists either of one of

fail if there is no _PIC method
for every _PRT method:

search bridge device which contains this _PRT
search for _ADR, _BBN, _SEG of the bridge
look for IRQ mappings contained in the _PRT method
if nothing found:

search for references in the _PRT method
for every reference:

get corresponding object
search IRQ mappings in the object

output _ADR, _BBN, _SEG and IRQ mappings

Figure 4: Pseudo-code of a heuristic to search for
IRQ routing information

the characters {0,1,255} or it starts with one of {12,11,10}
followed by a {4,2,1} byte-wide integer respectively. The
pattern called DATA in Figure 3 reflects this example.

AML is densely packed binary data but still contains enough
“space” in its encoding. This allows us to apply regular ex-
pressions to search for specific AML elements. Furthermore
the variable sized objects, such as METHODS or DEVICES di-
rectly contain its length. Whether one object is contained
in another one is therefore easily decidable.

In summary IRQ routing information for the I/O APIC is
often hard coded in a repeating design pattern in ASL. We
need only 5 regular expressions to match this pattern in the
corresponding AML byte-code.

4.4 Searching for IRQ Mappings
We can use the regular expressions listed in Figure 3 to
search for IRQ mappings. A plain search for packages that
look like IRQ mappings is not sufficient. We also have to
output the PCI bus address. The _ADR, _BBN and _SEG num-
bers of the bridge device reveal the device address, the bus
and segment number respectively.

To avoid false positives we have to make sure that IRQ map-
pings are returned from a _PRT method. We therefore search
for IRQ mappings contained in it.

Not all IRQ mappings can be found this way. ASL writers
sometimes put the package of IRQ mappings outside the
actual _PRT method and just reference them via a name. To
cope with that case we follow the references and search for
IRQ mappings in them, too. Our tests have not shown any
usage of indirect references, even if ACPI seems to allow
this.

Figure 4 lists the pseudo-code of the search. We immediately
fail if there is no _PIC method present. The _PIC method is
needed to tell ACPI that the OS switched from the default
of using the PIC to I/O-APIC mode. The absence of it
is a good indicator that the ACPI table is too old to have
support for an I/O-APIC.

compile error 108
no I/O-APIC 270
good case 456
IRQ router 17
Sum 851

Figure 5: DSDTs tested

4.5 Implementation
We implemented a prototype of the heuristic in Python. We
choose Python instead of C or another low-level language,
because of its good rapid prototyping property. Our imple-
mentation currently consists of 108 lines of python code.

A low-level C port is currently work in-progress. It will be
a stand-alone component executed from the boot loader be-
fore the OS runs. It will parse the DSDT and SSDTs and
overrides the part of the PCI config space that normally
holds the PIC IRQ with the I/O APIC pin number. This
interface seems to be much simpler than inventing a new
data-structure or reconstructing an old one. The only dis-
advantage seems to be that the rarely used PCI hotplug will
not work.

Implementing regular expression in C can be a lengthy task.
A scanner generator such as re2c [5] can ease the implemen-
tation a lot. Another solution would be to link against a
libregex, trading some performance for simplicity. Regular
expression libraries can be quite small, the version in dietlibc
for example consists of less than 500 SLOC.

5. EVALUATION
In this section we try to estimate the success probability of
our approach in the real-world, explain on what we depend
to be successful and illuminate reasons for failure and how
we cope with them.

5.1 Measure our Approach
We used 851 real-world DSDTs from a now discontinued
DSDT repository [13]. The oldest entries date back to 2003
while the latest ones were added in November 2007. Col-
lecting and testing newer DSDTs is left as a future task.

Figure 5 shows the results. From the original 851 DSDTs
13% or 108 had compile errors since they were submitted
in the wrong format such as hex dumps or C-code. Around
32% of the DSDTs where not I/O-APIC aware. They either
didn’t include a _PIC method or they simply ignored it. This
left 456 good cases and 17 ones where our heuristic failed.
Please note that DSDTs repeat in the database as users were
uploading updated versions. A list of the different vendor
and version strings showed that from the 456 DSDTs only
190 have a unique vendor and version.

We manually inspected the 17 failed ones and figured out
that they relied on IRQ routers that also allow to route
IRQs to I/O APICs. This is possible by reusing outputs of
the PCI IRQ routers that would normally clash with legacy
I/O devices such as the PIT (IRQ 1) or the RTC (IRQ 8)
and connect them to I/O APIC inputs that are normally
unavailable. Fortunately at boot-time the IRQ routers are
configured for PIC mode.

So by using a fallback when the IRQ extraction failed and
recover the IRQ router configuration from the PCI config
space, we can cope with these 17 cases. Because we are not
able to change the routing we are probably left with some
shared IRQs and unused I/O APIC pins.

In more than 95% of the cases our heuristic extracts the IRQ
routing from AML. A simple fallback results in a quality
degradation for the missing cases but not in a failure. In
summary our approach is successful in all known cases.

5.2 Successful and Simple
We have seen that our approach is successful and with 5
regular expression also quite simple. In this section we give
a couple of reasons that reveals on what our approach de-
pends. They can also be used to judge similar cases.

A repeating design pattern People tend to be lazy. A
reason may be that BIOS developers never use these
ACPI tables but have to adopt them for every board
revision.

Simple hardware IRQ routing is often static, thus hard-
coded values are sufficient.

Minimal information We need only a very small number
of words (in average 132 bytes) out of a big datastruc-
ture (in average 22k), thus 5 regular expressions are
enough.

A sparse encoding There is no complicated state-machine
for decoding AML. A sparse encoding can be matched
with a simple expression.

Known structure sizes All structures have a known size
or the size is encoded directly at the beginning. This
allows to easily decide which belongs to whom in the
hierarchy.

The first point is based on peoples behavior, it is the weak-
est point in our heuristic. The second point is a hardware
property that can change over time if new devices emerge.
It is mainly driven by cost reasons of the hardware manufac-
turer. The last three points were decisions by the designers
of the domain specific language. Our use case was surely
never intended by them, but we benefit here from language
properties that are unlikely to change.

5.3 Failure Handling
Our search is a heuristic and can therefore fail. One reason
may be the use of indirect references: a _PRT method calls a
method that calls another method to return the IRQ map-
pings. A second reason would be if the list of IRQ mappings
is not static, but a template that is filled on call time. A
third reason would be if an ACPI table contains superflu-
ous entries, that are never reached in an interpreter due to
AML’s control structures 1. Our code would output multiple
entries for a single PCI device without any hint which one
is the right one. None of these degrees of freedom provided
by AML where actually observed in our tests.

1Example: if (0) ...

A failure of our heuristic is easily detectable and results in
DoS of the system: drivers will not get interrupts and the
system will probably not boot anymore. This can only hap-
pen at defined points in time: either this is a new mother-
board or a BIOS update has changed the ACPI tables. A
virus can also overwrite the ACPI tables. This would render
them unusable for us as well as for a full ACPI interpreter.
In summary the effects of a failure is quite limited and no
security implications are involved.

One obvious reaction to new cases not handled by our heuris-
tic is to put more knowledge into the regular expression,
thereby extracting more context information from AML. In
the end this could mean we need to fully understand AML
and therefore will be as complex as a full AML interpreter
and have not gained anything from this approach. This will
surely never happen. This assumption is backed by the fact
that 95% of the current cases are happy with a static IRQ
routing. So why should an AML writer make the code more
complicated as it needs to be?

6. FUTURE WORK AND SUMMARY
There are a couple of things that should be done in the
future:

• show that our heuristic can be efficiently implemented
in a non-scripting language such as C,

• collect and test newer ACPI tables,

• apply regular expressions to more parts of AML, to
extract the I/O-port regions of the legacy serial ports
or to evaluate power management functions, and

• research whether other implementations of domain spe-
cific languages can also be benefit from regular expres-
sions.

ACPI handling is a mess. There are two extremes of coping
with ACPI: either ignoring it or implementing a full featured
AML interpreter. We developed a radical new approach that
resides between these two. By using regular expressions to
evaluate AML we can reduce the complexity of the imple-
mentation by approximately two orders of magnitudes, thus
making it more maintainable and likely more secure. We
implemented a prototype that extracts IRQ routing from
ACPI tables and showed that it handles all our test cases.
We think that this approach has further applications for
AML as well as for other domain specific languages.

APPENDIX
A. REFERENCES
[1] ACPI - Advanced Configuration & Power Interface.

URL: http://acpi.info.

[2] Advanced Configuration and Power Interface
Specification, Revision 3.0b. URL:
http://www.acpi.info/DOWNLOADS/ACPIspec30b.pdf,
2006.

[3] J. H. Baldwin. PCI Message Signaled Interrupts.
URL: http://people.freebsd.org/~jhb/papers/
bsdcan/2007/article/node7.html, 2007.

[4] L. Brown. ACPI in Linux - Myths and Reality. In
Proceedings of the Linux Symposium, Ottawa,
Ontario, Canada, 2007.

[5] P. Bumbulis and D. D. Cowan. Re2c: a more versatile
scanner generator. ACM Lett. Program. Lang. Syst.,
2(1-4):70–84, 1993.

[6] J. Heasman. Implementing and Detecting an ACPI
Rootkit. In BlackHat Federal, January 2006.

[7] Intel. i8259 - Programmable Interrupt Controller
(PIC). URL:
http://en.wikipedia.org/wiki/Intel_8259, 1988.

[8] Intel. I/O Advanced Programmable Interrupt
Controller (I/O APIC) Datasheet. URL: http://www.
intel.com/design/chipsets/datashts/290566.htm,
1996.

[9] Linux 2.6.27.4 PCI quirks. URL: http://lxr.linux.
no/linux+v2.6.27.4/drivers/pci/quirks.c, 2008.

[10] Microsoft. Key Benefits of the I/O APIC. URL: http:
//www.microsoft.com/whdc/archive/IO-APIC.mspx,
2001.

[11] MultiProcessor Specification. URL: http://www.
intel.com/design/pentium/datashts/242016.htm,
1997.

[12] Python Library Reference - Regular Expression
Syntax. URL: http:
//www.python.org/doc/2.5.2/lib/re-syntax.html,
2008.

[13] Linux/ACPI Project - DSDT repository. URL:
http://acpi.sourceforge.net/dsdt.

[14] T. Shanley and D. Anderson. PCI System
Architecture. Addision Wesley, forth edition, 1999.

[15] Windows XP: I/O Ports Blocked from BIOS AML.
URL: http:
//www.microsoft.com/whdc/archive/BIOSAML.mspx,
2003.

